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Deformations of homogeneous and isotropic pinned–pinned and fixed–fixed Euler–Bernoulli beams supported on

nonlinear elastic foundations and heated uniformly into the postbuckling regime have been analyzed numerically.

Geometric nonlinearities introduced by finite deflections and curvature of the deformed beams are incorporated in

the problem formulation. First buckling due to the uniform temperature rise and buckling mode transitions are

investigated analytically by analyzing the linear problem. Subsequently, the nonlinear boundary-value problems for

postbuckling of beams are transformed into initial-value problems and analyzed by the shooting method. For

different values of the elastic foundation parameters, postbuckled configurations are illustrated.

Nomenclature

A = area of the cross section of the beam
E = Young’s modulus
f = dimensionless deflection of the beam center
H = resultant horizontal force
I = moment of inertia of the cross section
K1, K2 = dimensionless values of k1, k2
�K1�mn = stiffness of elastic foundation at which buckling

mode transitions
k1, k2 = linear and cubic stiffness parameters of the elastic

foundation
l = initial length of the beam
M = bending moment
m = dimensionless value ofM
m0 = dimensionless bending moment at a fixed end
N = resultant axial force
PH, PV = dimensionless values of H and V
qx, qy = distributed mechanical loads on the beam
S = dimensionless value of s
s = arc length of the deformed centroidal axis
T = temperature rise
U = dimensionless value of u
u = displacement in x direction
V = resultant vertical force
W = dimensionless value of w
w = displacement in y direction or beam deflection
x, y = rectangular Cartesian coordinate axes
� = coefficient of thermal expansion
� = angle between the deformed beam’s axis and the x

axis
�0 = rotational angle of the pinned end of the beam
� = curvature of the deformed beam axis
� = stretch of the centroidal axis
� = slenderness ratio of the beam

� = dimensionless value of x
� = dimensionless value of T

I. Introduction

I T is well known that a beam heated from the stress free reference
configuration with its edges constrained frommoving axially will

have an axial compressive stress developed in it. When this axial
compressive stress reaches a critical value, the beamwill buckle, and
will go into a postbuckled configuration upon further heating. The
postbuckling deformations of slender components, such as robotic
arms, optical fibers, satellite tethers, microresonators, and micro-
electromechanical systems, are of interest for design purposes.
Satellite tethers are subjected to large variations in temperature
during their life cycle. Microelectromechanical resonators are
fabricated as clamped–clamped composite beams, and they
sometimes buckle during the manufacturing process. These are
often used as filters and are important for mobile communication
systems and signal processing applications. Also, the temperature
rise caused by the heat produced by the electric current may be
enough to induce buckling or change the bucklingmode as discussed
below.

The analysis of postbuckling behavior under thermal loads of
railroad tracks, concrete pavements, and pipelines either buried
underground or resting on ground is needed to fully comprehend
their failure. These structural elements are exposed to different
environmental conditions and hence to different thermal cycles. Here
we consider a problem in the second category, and simplify it
considerably by studying the buckling and postbuckling response of
a uniformly heated Euler–Bernoulli beam resting on an elastic
foundation. Furthermore, the elastic foundation is assumed to exert
distributed forces on the beam; these forces may vary either linearly
or nonlinearlywith both the axial and the transverse displacements of
a point. Even such a simple model involves nonlinear governing
equations and illuminates interesting transitions among buckling
modes. The mathematical model applies to a beam/rod wrapped in a
thick rubberlike sleeve with the action of the sleeve replaced by
distributed forces on the beam, and to a microelectromechanical
resonator with the action of the electrode replaced by a distributed
force on the substrate.

Emam [1] has reviewed the literature on vibrations of postbuckled
Euler–Bernoulli beams, and has compared analytically predicted
interactions among different modes with the experimental findings;
the reader is referred to Emam’s dissertation for historical
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developments in the field. Lestari and Hanagud [2] have studied the
nonlinear vibrations of buckled beams with elastic end constraints,
and the beam subjected simultaneously to axial and lateral loads.
Other works [3–5] have analyzed either analytically or numerically
nonlinear ordinary differential equations associated with the post-
buckling behavior of initially straight rods subjected to compressive
loads and different boundary conditions. Kreider and Nayfeh [6]
have studied experimentally and theoretically the nonlinear vibra-
tions of a clamped–clamped buckled beam. Phungpaingam et al. [7]
have investigated the postbuckling response of a simple beam under
an intermediate follower force acting along the tangent to the
deformed axis of the beam. They found that the analytical solution
obtained by solving the elliptic integral equations matched well with
the numerical solution computed with the shootingmethod. Plaut [8]
studied the postbuckling deformations and vibrations of end-
supported elastica pipes carrying fluid and also subjected to follower
loads. He employed the shooting method to solve the nonlinear
boundary-value problem for the equilibrium configuration, and the
linear boundary-value problem for frequencies of thefirst fourmodes
of vibration.

Postbuckling deformations of perfect and geometrically imperfect
elastic columns resting on an elastic Winkler foundation have been
analyzed by Kounadis et al. [9]. They found that the critical state of a
perfect column is a stable symmetric bifurcation point. Abu-Salih
and Elata [10] assumed the beam to be infinite, perfectly bonded to a
linear elastic foundation, and subjected to internal compressive
stresses. They incorporated extensional deformations into the
problem formulation, and found that the wave length of a post-
buckled beam is unaffected by themagnitude of the internal stress. Li
and Balachandran [11] have analyzed the buckling and free
vibrations of compositemicroelectromechanical resonators modeled
as a stepped composite Euler–Bernoulli beam. They accounted for
axial deformations of the beam. It appears that postbuckling
deformations of a thermally loaded Euler–Bernoulli beam resting on
an elastic foundation have not been analyzed thus far.

A difference between the buckling of a beam due to the applied
axial force and that due to temperature rise is that in the latter case
axial deformationsmay not be negligible and ought to be considered.
Jekot [12] has studied deformations of a thermally postbuckled beam
made of a nonlinear thermoelastic material. However, the geometric
nonlinearity introduced by the curvature of the centroidal axis of the
deformed beam was not considered, and a simple expression for the
axial strain was employed. Raju and Rao [13–18] have used the
Rayleigh–Ritz and the finite element methods to analyze the thermal
postbuckling of uniform and tapered columns supported on elastic
foundations. They incorporated the geometric nonlinearity similar to
that in the von Karman plate theory, but ignored the nonlinearity
introduced by the curvature of the deformed centroidal axis.

For a pinned–pinned beam, Coffin and Bloom [19] accounted for
the curvature of the beam deformed due to heating, or the absorption
of water, and formulated the problem for the postbuckled beam in
terms of two coupled elliptic integral equations that were solved
numerically. For a nonlinear thermal strain-temperature relation,Vaz
and Solano [20,21] investigated postbuckling deformations of
pinned–pinned rods and gave a closed-form solution via uncoupled
elliptic integrals. However, their analysis is valid only for pinned–
pinned boundary conditions. Based on the geometric nonlinear
theory of extensible beams and with temperature increasing
uniformly throughout the beam, Li and Cheng [22] and Li et al. [23]
have developed mathematical models of postbuckled Euler–
Bernoulli beams with pinned–pinned, fixed–fixed, and pinned–fixed
boundary conditions. The resulting nonlinear boundary-value
problems were solved numerically with the shooting method in
conjunction with concepts of analytical continuation. The work has
been extended [24] to bending and buckling of nonlinear
Timoshenko beams subjected to thermomechanical loads. Wu and
Zhong [25] studied postbuckling and imperfection sensitivity of
axially compressed beams with clamped–clamped and fixed–free
ends resting on an elastic Winkler foundation. They [25] found that
for a linear Winkler foundation and a large range of values of the
foundation stiffness parameter, a measure of the beam deformation

increases with a decrease in the load during its postbuckling
deformations, and concluded that the postbuckled paths are unstable.

Here we consider geometric nonlinearities, and develop a
mathematical model of thermal buckling and postbuckling of an
elastic Euler–Bernoulli beam resting on a nonlinear elastic
foundation. The load applied by the elastic foundation is assumed
to depend upon two components of displacement of a point on the
centroidal axis of the beam. For a satellite tether, the force exerted by
the environment could conceivably be modeled by a similar relation.
For a microelectromechanical resonator, the force exerted by the
piezoelectric layer on the substrate can be approximated in a similar
way. Because deformations of a hygroscopic body due to moisture
absorption are similar to those of a thermoelastic body due to
temperature rise, the analysis also applies to beams immersed in
water with the action of water on the beam approximated by
distributed forces depending upon the displacements of a point on the
centroidal axis of the beam. The nonlinear boundary-value problem
is numerically solved with the shooting method for postbuckled
configurations of beams and their equilibrium paths. Computed
results are compared with those available in the literature. We
delineate effects of parameters of the elastic foundation on the
beam’s deformations, and give values of the foundation stiffness at
which the transition in buckling modes occurs.

II. Mathematical Model

We consider a uniform elastic beam of initial length l resting on a
nonlinear elastic foundation and having its ends constrained from
moving axially; a schematic sketch of the problem studied is shown
in Fig. 1. An axially distributed mechanical load q� �qx; qy� and a
uniform slow T deform the beam from its natural state. Assume that
E and � are independent of T, and a plane section initially
perpendicular to the centroidal axis of the beam remains plane and
becomes perpendicular to the centroidal axis of the deformed beam.
We denote a point of the centroidal axis of the undeformed beam as
C: �x; y�with x 2 �0; l�, y � 0, in which x and y are coordinates of a
point in a rectangular Cartesian coordinate system.When the beam is
deformed, as shown in Fig. 2, the material pointCmoves to the point
C0: �X; Y� � �x� u�x�; w�x��, in which u�x� and w�x� are dis-
placements of the point C in the x and the y directions, respectively.
Herewe have presumed that the centroidal axis of the deformed beam
is in the xy plane. Thus,

ds

dx
��;

du

dx
��cos � � 1;

dw

dx
��sin � (1)

where

��
������������������������������������������������������
�1� du=dx�2 � �dw=dx�2

p
(2)

.

Elastic foundation

Beam

y

x

q

q y

x

Fig. 1 (Top) A schematic sketch of the problem studied, and (bottom) a
representation of forces exerted by the elastic foundation on the beam.
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A free-body diagram of a differential element of the beam is
exhibited in Fig. 3. The equilibrium of forces and of moments acting
on a segment, ds, of the deformed beam yield

dH

dx
���qx;

dV

dx
���qy;

dM

dx
���H sin � � V cos ��

(3)

For a beam resting on a nonlinear elastic foundation, the force
exerted by the foundation on the beam opposes displacements of the
beam’s centroidal axis, and can be expressed as

q ���k1 � k2�
2�� (4)

in which �� fu;wgT is the displacement vector of a point of the
centroidal axis, and

u� � cos �; w� � sin � (5)

Because �� �����������������
u2 �w2

p
, therefore

qx ��k1u � k2u�u2 �w2�; qy ��k1w � k2w�u2 �w2�
(6)

When the resistance offered by the elastic foundation due to the axial
displacement u can be neglected, then Eq. (6) is simplified to

qx � 0; qy ��k1w� k2w
3 (7)

For an isotropic and homogeneous elastic beam resting on an
isotropic and homogeneous elastic foundation, assumption (4) for
the force exerted by the foundation on the beam is reasonable. One
could, in principle, consider different values of stiffness parameters
k1 and k2 for forces in the x and the y directions, respectively.

Constitutive relations for the thermoelastic beam are taken to be

N � EA�� � 1� �T� (8a)

M��EI

�

d�

dx
(8b)

inwhichEA andEI are, respectively, the same as the extensional and
the bending rigidities of a linear elastic beam. Furthermore, T is
assumed to be uniform throughout the beam, andN is perpendicular
to the cross section. We note that Eqs. (8a) and (8b) are not linear in
displacement gradients. N is related to H and V by

N �H cos �� V sin � (9)

Substituting for N from Eq. (9) into Eq. (8a), and solving the
resulting equation for � we get

�� ��H cos �� V sin ��=EA� � �T � 1 (10)

Equation (8b), and equations obtained by substituting from Eqs. (6)
and (10) into Eqs. (1) and (3), form seven coupled nonlinear
differential equations for the seven unknown functions s�x�, u�x�,
w�x�, ��x�, H�x�, V�x�, and M�x� defined on the interval �0; l�.

By introducing the following nondimensional quantities

��; S; U;W� � �x; s; u; w�=l; �� l�A=I�1=2
�K1; K2� � �k1; k2�l4=EI

(11a)

�� ��2T; �PH; PV� � l2�H;V�=EI; m� lM=EI

(11b)

and substituting them into Eqs. (1), (3), (8), and (10), we arrive at the
following equations in terms of nondimensional variables:

dS

d�
�� (12a)

dU

d�
��cos � � 1 (12b)

dW

d�
��sin � (12c)

d�

d�
��m

�
(13a)

dm

d�
���PH sin � � PV cos �� (13b)

dPH

d�
��U�K1 � K2�U2 �W2�� (14a)

dPV

d�
��W�K1 � K2�U2 �W2�� (14b)

in which

�� �PH cos �� PV sin �� ��=�2 � 1 (15)

is derived from Eqs. (10) and (11b).
In terms of nondimensional variables, boundary conditions for

pinned–pinned and fixed–fixed beams are given below.

pinned –pinned: S�0� � 0; U�0� � 0; W�0� � 0

m�0� � 0

(16a)

U�1� � 0; W�1� � 0; m�1� � 0 (16b)

fixed –fixed: S�0� � 0; U�0� � 0; W�0� � 0

��0� � 0
(17a)

U�1� � 0; W�1� � 0; ��1� � 0 (17b)

x u

θ

Y w=
C

C′

X

,x X

,y Y

o

l

Fig. 2 A buckled configuration of a pinned–pinned beam.
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Fig. 3 Free-body diagram of a differential element.
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Note that in each case S�0� � 0 implies that the length S along the
centroidal axis is measured from the left end of the beam. In addition
to boundary conditions, the following conditions are imposed to
specify a buckled configuration of the beam.

pinned –pinned: ��0� � �0 (18)

fixed –fixed: m�0� �m0 (19)

Thus, for a specified nonvanishing value of �0 orm0, we can solve
Eqs. (12–19) for �S;U;W; �; PH; PV;m� and the accompanying
nondimensional temperature rise �. If one is not interested in finding
the length of the deformed centroidal axis of the beam, then one can
ignore Eq. (12a).

III. Solution of the Problem

A. Linear Problem for Buckled Shapes and Buckling Mode

Transitions

The onset of buckling of a uniformly heated beam resting on an
elastic foundation is governed by the following linear equation
obtained from Eqs. (12–14) by setting �� 1, sin �	 �	W 0,
cos �� 1, and PH ���, and neglecting nonlinear terms in the
unknown functions:

W 0000 � �W 00 � K1W � 0 (20)

Here a prime denotes differentiation with respect to �. Equation (20)
is the same as that of a beam subjected to an axial force [9,25,26] at
the ends. The corresponding boundary conditions are

pinned –pinned: W��� � 0; W 00��� � 0; at �� 0 and 1

(21)

fixed –fixed: W��� � 0; W 0��� � 0; at �� 0 and 1

(22)

Assuming that � > 2
������
K1

p
, a general solution of Eq. (20) is [9,25]

W � C1 sin��� C2 cos��� �C1 sin
���� �C2 cos

��� (23)

in which

��
�
�=2�

�������������������������
��=2�2 � K1

p �
1=2

���
�
�=2�

�������������������������
��=2�2 � K1

p �
1=2

(24)

1. Pinned–Pinned Beams

For the pinned–pinned beam, assuming that either C1 ≠ 0, or
�C1 ≠ 0, and recalling that �2 � ��2 �

�������������������
�2 � 4K1

p
> 0, Eq. (23)

satisfies boundary conditions (21) provided that

sin� sin ��� 0 (25)

whose solutions are

either ��m	; or ��� n	 �m; n� 1; 2; 3; . . .� (26)

Temperatures for different bucklingmodes, subsequently also called
critical temperatures, are given by

�m � K1

m2	2
�m2	2; or �n �

K1

n2	2
� n2	2 (27)

The condition for the buckling mode transition is

�m � �n �m ≠ n� (28)

which gives following values of the elastic foundation parameter

�K1�mn �m2n2	4 �m ≠ n� (29)

and corresponding values of the load parameter are

�mn � �m2 � n2�	2 �m ≠ n� (30)

Form� 1; 2; . . . ; 6, Fig. 4 shows �m=	
2 versusK1=	

4; each curve
is a straight line whose intercept with the vertical axis gives the
corresponding temperature at the onset of buckling forK1 � 0. Thus
the effect of the linear elastic foundation is to increase the
temperature rise required for the onset of buckling. For a fixed
buckling mode (i.e., a fixed value of m) the critical temperature
depends linearly upon the elastic foundation parameterK1. The point
of intersection, Amn, of two of these curves gives the value of K1 at
which the bucklingmode could transition from one to the other. Thus
for the linear stiffness parameter and the critical temperature
corresponding to the point ��K1�mn; �mn� � fm2�m� 1�	4; �m2�
�m� 1�2�	2g, there can be a transition in the buckling mode. Values
of the elastic foundation parameter corresponding to the first three
transitions in the buckling modes are 4	4, 64	4, and 144	4, which
are the same as those given inWu and Zhong [25], and Hetenyi [27].
When the temperature of the bar is uniformly raised for a fixed value
ofK1, the deformed shapes will follow the path indicated by the solid
curve in Fig. 4 because it requires a temperature lower than that
needed to stay on the original dotted straight line.

If we assume that C1 ≠ 0 and �C1 � 0, then we obtain the
following buckled mode shapes:

W � C1 sinm	� �m� 1; 2; 3; . . .� (31)
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Fig. 4 Dependence of the temperature rise at the onset of buckling upon the foundation stiffness parameter.
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The constant C1 is independent of K1 implying that buckled mode
shapes of a pinned–pinned beam do not depend on the elastic
foundation parameter K1. From Fig. 4, we conclude that the critical
buckling mode changes from symmetric (i.e., m� 1; 3; . . .) to
antisymmetric (i.e., m� 2; 4; . . .) and vice versa in passing through
the points Ak�k�1� (k� 1; 2; 3 . . .) and A2k�2k�1� (k� 1; 2; 3 . . .),
respectively. The order of the critical buckling mode increases with
an increase in the value of K1.

2. Fixed–Fixed Beams

For a fixed–fixed beam, we require that the general solution (23)
satisfy boundary conditions (22). Recalling that � > 2

������
K1

p
, we

arrive at the characteristic equation

��1� cos� cos ��� � 2
������
K1

p
sin� sin �� (32)

which cannot be solved analytically for the load parameter � as a

function of the stiffness parameterK1 because� and �� depend upon �
and K1. We thus employ the Newton iteration method to find its
roots. Figure 5 depicts the plot of the critical temperature as a
function of the linear stiffness parameter of the foundation. Points
Am1 (m� 0, 1, 2, 3) with coordinates

�K1�m �m2�m� 2�2	4; �m � �m2 � �m� 2�2�	2 (33)

correspond to the bucklingmode transitions. As for a pinned–pinned
beam, for a given value of the linear stiffness of the foundation, they
give the lowest temperature at which buckling will ensue. Thus the
three lowest values of K1 at which buckling mode transitions occur
are 9	4, 64	4, and 225	4. The critical temperature versus K1 curve
and the two lowest values ofK1 corresponding to the buckling mode
transition coincide with those given in Wu and Zhong [25] for an
axially compressed beam. Substitution from Eq. (33) into Eq. (32)
gives

�m � �m� 2�	; ��m �m	 (34)

For different values of the linear elastic foundation stiffness
parameter K1 we have plotted in Fig. 6 the deformed shape of the
beam at the initiation of buckling in one of the first three buckling
modes. As also pointed out by Wu and Zhong [25], buckling modes
of a fixed–fixed beam depend upon the parameter K1, and with an
increase in the value of K1, the buckling mode changes from
symmetric to antisymmetric, back to symmetric, and so on.
However, bucklingmodes of the pinned–pinned beam do not depend
on the value of the linear elastic foundation stiffness parameter K1.

B. Nonlinear Problem for Postbuckled Shapes

It is difficult to solve analytically the nonlinear coupled boundary-
value problem defined by Eqs. (12–19), therefore we find its
approximate solution numerically by the shooting method that
replaces the two-point boundary-value problem by a sequence of
initial-value problems. That is, values of unknown functions at the
initial point and unknown parameters are estimated to start
computations [26], and these estimates are modified until specified
boundary conditions at the terminal point are satisfied; the
transformation of the boundary-value problem into an initial-value
problem for use in the shootingmethod is described in the Appendix.

For a pinned–pinned beam, �0 is specified, and for a fixed–fixed
beam m0 is specified. Then PH�0�, PV�0�, and � are varied until
Eq. (16b) or Eq. (17b) is satisfied. The Runge–Kutta method is used
to integrate Eqs. (12–19) and the Newton–Raphson iteration method
is used to compute the varying parameters. By gradually increasing
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Fig. 5 Dependence of the temperature rise at the onset of bucklingupon

the linear foundation stiffness parameter.
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the parameter �0 (or m0), finding the corresponding equilibrium
configuration, and using the continuation method, we determine
postbuckled configurations of the beam as a continuous function of
the temperature rise �. By assigning the parameter �0 (or m0) a very
small value in the computation, we can obtain the critical buckling
load and the corresponding mode shape. In computing numerical
results presented below we have set �� 100.

Figure 7 exhibits the postbuckled configurations obtained by
starting from the first (symmetric) and the second (antisymmetric)
buckledmodes of the pinned–pinned beam for different values of the
nondimensional temperature rise �. For each case the deflection of a
point continues to increase monotonically with an increase in the
temperature. For a fixed–fixed beam, Fig. 8 depicts the first three
postbuckled configurations computed by starting from the buckling
modes of Fig. 6. For a prescribed value of K1 between 4	

4 and 9	4

that correspond to transition in the buckling modes, equilibrium
paths for the two beams in terms of plots of f�W�0:5� versus � are
illustrated in Fig. 9. They are qualitatively similar in the sense that for
a fixed value of f, an increase in K1 requires a higher value of the
temperature rise.

To explore the influence of the nonlinear foundation stiffness
parameter K2 on the postbuckling response, we set K1 � 200.
Figure 10 shows the variation of the central deflection parameter
f�W�0:5�with the temperature rise � for five values of the stiffness
parameterK2. It is clear from these plots that effects of the nonlinear
foundation stiffness parameter are noticeable only for large
postbuckling deformations of the beam.

For the fixed–fixed beam and for different values of the stiffness
parameter K1, the variation of the bending moment m�1� with the
temperature rise is exhibited in Fig. 11. It shows that the endmoment
m�1� decreases with an increase in K1. In contrast to the symmetric
buckling of beams without an elastic foundation [22], the end
transverse force PV�1� will be produced when the buckled beam is

supported on an elastic foundation. The variations of the transverse
force PV�1� with temperature � for different values of K1 are
presented in Fig. 12 for both pinned–pinned and fixed–fixed beams.
For large values of � (>60 for the pinned–pinned beam, and>125 for
the fixed–fixed beam), the end transverse force PV�1� increases with
an increase in the foundation stiffness parameter K1.

IV. Remarks

A challenging task is to determine experimentally the stiffness of
an elastic foundation. One could use the following inverse method to
do so. By comparing the deformed shape of the beam for different
values of temperature rise with those computed by the present
method, one can find the stiffness of the elastic foundation. The
challenging task then is to ensure that this value of stiffnesswill result
in the correct temperatures at which buckling mode shapes transition
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from one to another. Li et al. [28] used a similar procedure to identify
the buckled shape of a microresonator.

For the present problem, results computed by taking �� 1 in
Eq. (8b) differ from those presented here by less than 0.1% ,
suggesting thereby that the consideration of the stretching of the
midsurface of the beam in Eq. (8b) does not have much influence on
the postbuckled shapes computed here. However, for a micro-
electromechanical beam, Batra et al. [29] used the von Karman
approximation to consider stretching of the beam’s midsurface and
found that it significantly affects the pull-in voltage. Tiersten [30] has
recently revisited the Euler–Bernoulli beam theory and delineated
various approximations made to simplify the problem. Several
investigators [5,9,31] have set �� 1 in Eq. (8b) while studying
postbuckling deformations of beams.

V. Conclusions

We have studied the buckling and the postbuckling deformations
of uniformly heated pinned–pinned and fixed–fixed Euler–Bernoulli
beams supported on nonlinear elastic foundations. The geometric
nonlinearity introduced by the curvature of the deformed beam, and
the constraint force of the elastic foundation in both longitudinal and
transverse directions, are incorporated in the problem formulation.
Buckling modes and transitions among them are computed by
solving analytically the linear problem. The dependence of the
initiation of the first few buckling modes upon the linear foundation
stiffness parameter is plotted from which values of the Winkler
foundation parameter corresponding to the transition in the buckling
mode are determined. The nonlinear boundary-value problem for
postbuckling deformations is solved by the shooting method by first
transforming it to an initial-value problem. For different values of the
elastic foundation parameter, equilibrium paths and configurations
derived from the first buckling mode are illustrated. As expected, the
nonlinear foundation stiffness parameter does not influence the

buckling temperature, and has a small effect on the postbuckling
deformations as compared with the effect of the linear foundation
stiffness parameter. The problem studied here is directly related to
the compressed elastic column. The analysis presented here applies
to buckling and postbuckling deformations of a hygroscopic beam
supported on an elastic foundation, and exposed to moisture.

Appendix: Shooting Method for the Nonlinear Problem

We briefly describe the procedure used to numerically solve the
nonlinear two-point boundary-value problem defined by Eqs. (12–
19). We write it as

dY

d�
�H��;Y�; �0< � < 1� (A1a)
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mode �1 postbuckling deformations of beam.
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B 0Y�0� � b0 (A1b)

B 1Y�1� � b1 (A1c)

in which

Y�fy1; y2; y3; y4; y5; y6; y7; y8gT �fS;U;W;�;m;PH;PV; �gT
H�f�;�cosy4 � 1;�siny4;�y7=�;F1;F2;F3;0gT

F1 ���y5 siny4 � y6 cosy4�; F2 ��y2

h
K1 �K2

�
y22 � y23

�i

F3 ��y3

h
K1 �K2

�
y22 � y23

�i

���y5 cosy4 � y6 siny4 � y8�=�2 � 1; b1 �f0;0;0gT

B0 �

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

2
66664

3
77775; b0 �f0;0;0; �0;0gT

B1 �
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

2
4

3
5 for pinned-pinned beam

b0 �f0;0;0;0;m0gT

B1 �
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

2
4

3
5 for fixed-fixed beam

We consider the following initial-value problem corresponding to
the boundary-value problem (A1):

dZ

d�
�H��;Z�; �� > 0� (A2a)

Z �0� � I�D� (A2b)

in which Z� fz1; z2; :::; z8gT , andD� fd1; d2; d3gT is an unknown
vector related to initial values of functions z6���, z7���, and z8���;
I�D� � f0; 0; 0; �0; m0; d1; d2; d3gT with m0 � 0 for a pinned–
pinned beam, and �0 � 0 for a fixed–fixed beam. A solution of the
initial-value problem (A2) may be symbolically written as

Z ��; �0; m0;D� � I�D� �
Z

�

0

H�
;Z�d
 (A3)

For a given nonzero value of �0, orm0 (one of themmust be zero), we
find that solution of (A3) which satisfies boundary condition (A1c),
that is,

B 1Z�1; �0; m0;D� � b1 (A4)

Obviously, if D�D
 is a root of Eq. (A4), then a solution of the
boundary—value problem (A1) is

Y ��� � Z��; �0; m0;D

� (A5)

We employ the Runge–Kutta method to integrate the system (A2) of
ordinary differential equations, and the Newton–Raphson iteration
method to search for a root D
 of Eq. (A5) to find a numerical
solution of the boundary-value problem (A1).
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