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Finite torsional deformations of an incompressible viscoelastic
circular cylinder are studied with its material modeled by wo
constitutive relations. One of these is a linear relation between the
determinate part of the second Piola-Kirchhoff stress tensor and
the time history of the Green-St. Venant strain tensor, and the
other a linear relation between the deviatoric Cauchy stress ten-
sor and the left Cauchy-Green tensor, its inverse, and the time
history of the relative Green-St. Venant strain tensor. It is shown
that the response predicted by the latter constitutive relation is in
better agreement with the test data, and this constitutive relation
is used to compute energy dissipated during torsional oscillations

of the cylinder. [S0021-8936(00)00502-X]

Batra and Yu [1] recently studied the stress relaxation in an
1Isotropic, incompressible, and homogeneous viscoelastic body de-
formed either 1n finite simple shear or finite simple extension. The
material response was modeled by two constitutive relations, one
linear in the history of the Green-St. Venant strain tensor E (e.g..

f see Christensen [2]) and the other linear in the history of the

relative Green-St. Venant strain tensor E, (e.g., see Bernstein,

Kearsley, and Zapas 3] and Fosdick and Yu {4]). For each one of

t  the two deformations studied, the former constitutive relation pre-
dicted that the tangent modulus (i.e., the slope of the stress-strain
curve) is an increasing function of the strain but according to the
latter constitutive relation, the tangent modulus is a nonincreasing
function of the strain which agrees with the behavior observed
experimentally for most materials (e.g., see Bell [5]). A similar
result had been obtained by Batra [6] for two linear constitutive
relations in isotropic finite elasticity. We note that both simple
shearing and simple extension are homogeneous deformations and
are universal 1n the sense that they can be produced by surface
tractions alone in every elastic or viscoelastic body. Batra [7] has
recently compared the response predicted by four linear constitu-
tive relations for finite shearing, finite extension, biaxial loading,
and triaxial loading of an 1sotropic elastic body.

Here we study finite torsional deformations of an incompress-
ible, homogeneous, and isotropic viscoelastic circular cylinder.
Even though these deformations are inhomogeneous, Ericksen [8]
and Carroll [9] have shown that they are universal for elastic and
viscoelastic bodies, respectively. In cylindrical coordinates, tor-
sion of a circular cylinder is described by r=R, =0+ «Z,
z=Z, where (r,0,z) denote cylindrical coordinates of a point in
the present configuration that occupied the place (R,0,Z) in the
stress-free reference configuration, and « is the angle of twist per
unit length of the cylinder. Relative to an orthonormal set of
bases, the physical components of the deformation gradient F, the
left Cauchy-Green tensor B, and tensors E and E, are given by

" — p— -_—
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F=. 0 1| «xr|, B=|0 [+ Kk°r"  kr ’ (1)
0 0 1 0 KF I
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We model the material by the following two constitutive rela-
tions (e.g., see Christensen [10], Bernstein et al. [3], and Fosdick
and Yu [4])

T=—pl+pFypF’,

T= —_p1+ pF( lp#F)Ta

where a superimposed dot indicates the material time-derivative
C=F'F, B=FF7, 2E=(C—1), ¢,g=0¢/JE, ,g= 3l IF,

_ A JtrE(7) dtrE
p¢=j J Gl(f‘“T,I—T]) ) (ﬂ)dfd’}} -

(3a)
(3b)

aT an
| L JE(7) JE( 1)
+_..... — —_
2J_WJ_EG2(I T,t n)tr( or T an drdn,
(4)
1 1 . f otrE,(7)
pt,b=-5,81trB+ -Z-B._,trB + g(t—7) . dr.

Here, T is the Cauchy stress tensor; p the hydrostatic pressure not

determined by the deformation; p the mass density; ¢ and ¢ are
specific (per unit mass) strain energy functionals; and g(-),
G,(-,-), and G,(-,-) are material relaxation functions which are
smooth, positive, and monotonically decreasing functions of time
t. G(-, ) and G,(-,-) satisfy G (x,y)=G (y,x). The constants
B, and B_, satisfy B8,>0, B_,<0. Substituting (4) into (3)
yields, in physical components,

_ ! JE T)
TU='——p5u+(3KLf 2Gl(f"" 'T,O)"' MM(_dT
— oo oT
’ OF ¢y (T)
-+ [ Gz(f""— T,O) s d'T) FfKFjL , (561)
— % o7
- —1 r 5Effj(7)
Tij—_p5ij+ﬁlBij+B*]B;‘j T _mg(f'“'?') 9 ar,
(50)

where &;; is the Kronecker delta. Here and below, quantities for
the constitutive relation (3a) are indicated by a superposed bar.
Constitutive relations (5a) and (5b) are more gtneral than those
studied by Batra and Yu [1].

Christensen [10] has analyzed the torsional deformations of a
homogeneous viscoelastic cylinder made of material (5a). Follow-
ing the same procedure or that given by Truesdell and Noll [11]
for the torsion of an isotropic elastic cylinder, we determine the
hydrostatic pressure and the components of the Cauchy stress ten-
sor that satisfy the balance of linear momentum without body and
inertia forces, and the boundary condition of null tractions on the
mantle of the cylinder.

The stress components, T.. and T4, , have the expressions

L 2(0)(at = ) (2F (1) + Fa(1))

7—133({)_ 14

1
+ > k() (@’ = r?)Fs(1) +r2Fy(1), (6a)
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(70)
where a is the radius of the cylinder, and
F h G OdKE(T)d =1,2
f(t)- 2 . g(f T, ) dT T, g_ 9~y
f dk(T)
Fai(t)= G,(t—7,0) P dr. (8)

We now consider a stress-relaxation test with «(f)= kgh(t);
h(t) being the Heaviside unit step function. Noting that
2F (£)=Gg(t,0)fcﬁ, and F1(t)=G,(1,0) k¢ (e.g., see Christensen
[105), we obtain the following expressions for the resultant normal
force, N,(1t), and the resultant torque, M (1), acting on a Cross
section of the cylinder.

_ wral | 1
N (1)= G(1.0)t 5 Gy(1,0) |,
6 | 2 |
mria’
Nz(r)— [ 216-1+B1+g(t)]= (9)
(s _xﬁaz ] 1

M ()= Exﬂa‘* (2G,(1,0) + G,(1,0)) + E(;z(r,,O) ,

(10a)

'y 4, ]

M _(1)= '2"*{051 1 (B1—B-1)t Eg(f) .
Recalling that g, G,, G,, and B, are positive and [, 1S nega-
tive, each constitutive relation predicts that a compressive axial
force must be applied to the end faces of the cylinder in order to

maintain its length. The average axial stress is proportional to
xéa“ and K%az for the constitutive relations (5a) and (5b), respec-
tively. Whereas M, is a linear function of «, for the constitutive
relation (5b), it also depends upon ky for the constitutive relation
(5a).

We now compare average shear stress versus shear strain
curves as predicted from these two constitutive relations without
the experimental data of Lenoe et al. ([12], Fig. 3), and set «(¢)

= xt. where k is the torsional rate. Lenoe et al. assume that
G(I)=E?=0‘If,-e_”f’ ., where ¥, is the relaxation modulus and 7y,
equals the reciprocal of the relaxation time. For the polyurethane
rubber studied, they found that ¥(=2.896 MPa, ¥ |=0.387 MPa,

¥,=0.152 MPa, ¥,=0689 MPa, and 7,=0 s™', ¥
—0.001316 s, y,=0.0050 s~', y;=0.002631 s~ provided a
good fit to the test data. Recall that the average shear stress, T,
= [82rT 4, dr/a*. We assign following values to various material
parameters:

(10b)

(11)
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Fig. 1 Average shear stress versus shear strain curves com-
puted from constitutive relations (5a) and (5b) and the test data
of Lenoe et al. [12]. The test data is indicated as dots.

Figure 1 exhtbits the average shear stress versus the shear strain

curves for x=0.0036 s~ ' as computed from constitutive relations
(5a) and (5b), and also the experimental data of Lenoe et al. For
shear strains up to 0.1, the three curves are close to each other.
However, for large shear strains, the experimental curve is con-
cave downwards but the ones obtained from constitutive relations
(5a) and (5b) are concave upwards and nearly linear, respectively.
For large shear strains, predictions from the constitutive relation
(5a) are not even in qualitative agreement with the test data.
Henceforth we only use constitutive relation (5b) and analyze
the damping of vibrations. We consider steady-state oscillations

with k(1) =« sin wt, where w, the frequency of oscillations, is

such that nertia effects can be neglected (e.g., see Christensen
[10]). The encrgy loss per cycle is given by A

r 2l w

=] M{(t)k(t)dt since there is no work done by N_ because of
null axial elongation of the cylinder. For g(1r)=g,¢~ ¥ we obtain

Aly,w)=

ﬁg0E5a4 TYyw( 'y3+ wz) + w" ?'(e_“'“""’““'— 1)
| 7

2 (y* + w”)
(12)

Whenever the term ¢ can be neglected, the energy loss will
be a symmetric function of y and w. Figure 2 depicts the normal-

1zed energy loss A”=4;§(y,w)/ﬁrg@f?ﬁa4 as a function of y and
w. For e """*“< vy or w, we see that the energy disstpation per
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Fig. 2 The normalized energy loss/cycle per unit length of the
cylinder as a function of the reciprocal of the relaxation time
and the angular frequency
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Fig. 3 Energy loss/cycle per unit length of the cylinder as a
function of the forcing frequency for the polyurethane rubber
tested by Lenoe et al. [12]

cycle 1 maximum when y=w. One possible explanation 1s tha
when the material relaxes faster than the frequency of the applicd
torque, 1.€., y>w, or when the matenial relaxes very slowly. 1.¢..
y<w, there will be a larger component of M. in phase with s
during a part of the loading cycle which will decrease A. For = 0,
the material takes forever to relax. and there 1s no encryy
dissipation.

For a viscoelastic material with g(1)=37_ ,W.e ™% the encryy
loss per cycle s

~2 4 3 2 2 2 2 ~2pyiw
TKLd Ty,o(y tw)+w y (e “TV'Y=1)
A(UJ): ’ Z 'llf!,. e ';rf’}
4 T (y; T w7)”
(I3)

For the atorestated values of material parameters and «,= |
a=0.1 m, the energy loss 15 plotted 1n Fig. 3. The energy loss 1s
high tor 0.002=w=0.004. One can similarly find the optimum
frequency range for other materials.

In conclusion, we note that the predictions from the constitutive
relation (5b) are in better qualitative agreement with the test ob-
servations than those from the constitutive relation (Sa). A real
test of a constitutive relation is its ability to predict results in
agreement with test data for configurations other than those usecd
to find the values ot matenal parameters. This arduous task has
not been pursued here.
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A strip element method is presented for analvzing waves scattered
bv a crack in an axisymmetric cross-ply laminated composite cyl-
inder. The cvlinder is at the outset discretized as axisymmetric
strip elements through the radial direction. The application of the
Hamilton variational principle develops a set of governing ordi-
nary differential equations. The particular solutions to the result-
ing equations are found using a modal analysis approach in con-

Jjunction with the Fourier transform technique. The comple-

mentary solutions are formulated by the superposition of eigen-
vectors, the unknown coefficients of which are determined from
axial stress boundary conditions at the tips of the crack. The
summation of the particular and complementary solutions gives
the general solutions. Numerical examples are given for cross-ply
laminated composite cvlinders with radial cracks. The results
show that the present method is effective and efficient.

[S0021-8936(00)00202-6]

Introduction

Wave propagation 1n anisotropic media is one of the most fun-
damentai and 1mportant subjects 1n the practice of engineering.
Relevant literature is vast. Mal [1] and Nayfeh [2] reviewed it
well. Because of the inherent complexities invoived in material
itself, an analysis of wave propagation in layered composite cyl-
inders needs to resort to numerical techniques. Dealing with
propagating waves and edge vibration in anisotropic composite
cylinders, Huang and Dong [3] proposed an efficient numerical-
analytical method in which a composite cylinder was modeled by
finite elements, triangular functions, and wave function expan-
sions 1n the radial, circumferential, and axial directions, respec-
tively. The salient features of the method are to be capable of
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reducing the spatial dimensions of a problem by one and to omit
tedious pre-processors occupying a substantial part of a finite €l-
ement method. Rattanwangcharoen et al. [4] utilized the
numerical-analytical method to solve the reflection problem of
waves at the free edge of a laminated circular cylinder. Recently,
Rattanwangcharoen et al. [5] combined the numerical-analytical
method and the finite element method to analyze scattering of
axisymmetric guided waves by a weldment between two lami-
nated cylinders. In their treatise, the numerical-analytical method
was employed to model the cylinders and the finite element
method was used to model the weldment. This combinatory pro-
cedure was applied to axisymmetric guided wave scattering by
cracks in welded steel pipes by Zhuang et al. [6]). The advantage
of the combinatory procedure 18 to be able to treat complex local
domains of a cylinder, such as weldment, hole, and imperfection.
The disadvantage is (o reduce the efficiency of the numerical-
analytical method. Therefore, it 1s interesting to develop a
numerical-analytical method for analyzing waves in a composite
cylinder containing a crack.

In this paper, a strip element method i1s formulated for analyz-
ing wave scattering by a crack in an axisymmetric cross-ply lami-
nated composite cylinder, subjected to a harmonic excitation of a
line source along the circumferential direction. The method 18
based on a strip element method proposed by Liu and Achenbach
[7,8] for a cracked laminated composite plate as well as the
numerical-analytical method proposed by Huang and Dong [3] for
a perfect laminated composite cylinder. The cylinder 1s first mod-
eled using axisymmetric strip elements in the radial direction.
Then the Hamilton variational principle 1s used to derive a system
of governing ordinary differential equations for the cylinder 1n a
frequency domain. A particular solution for the resulting equa-
tions 1s found using a modal analysis approach and inverse Fou-
rier transform techniques. A general solution is obtained with
axial stress boundary conditions. Lastly, numerical examples are
presented for multilayered cylinders with outer surface-breaking
and radial interior cracks.

Formulation

Consider an infinttely long cracked cross-ply laminated com-
posite cylinder made of an arbitrary number of linearly elastic
cylinder-like laminae. The bonding between plies is perfect except
in the region of the crack. Deformations of the cylinder are as-
sumed small under a harmonic excitation. A radial line load ot
g =g, expl(iwt) uniformly distributed along the circumferential di-
rection is applied on the outer surface of the cylinder.

Because the geometry of the cylinder and the load are indepen-
dent of the circumferential direction, the problem is axisymmetric.
Let z and r denote, respectively, the axial and radial coordinates,
then the strain-displacement relations are given by |

e=Lu (1)

where g/ e. g4 ¢, %:]T is the vector of strains and u=[u wl’ is
the vector of displacements. Here u and w are the displacement
components in the axial and radial directions, respectively. The
operator matrix L 18 given by

_ ST
— 0 0 —
07 or s, J 1
L N | S %, Llé?z “dr r (2)
i roor ozl

where the matrices L, L,, and L; can be obtained by inspection
of Eq. (2).

A lamina under consideration is transversely isotropic, so the
stresses are related to strains by

o=Q¢ (3)

where o=[o_ o, o, 7,.]" is the vector of stresses and
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