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Stress Concentration in 
an Elastic Cosserat Plate 
Undergoing Extensional 
Deformations 
We formulate and solve the boundary value problem of  a linearly elastic, infinite 
Cosserat plate which contains a circular hole and which is loaded in tension at 
infinity. The effect of  hole radius, plate thickness, and material parameters on the 
stress concentration at the hole is discussed, We also discuss the stress concentration 
when the plate is subjected to pure shear. 

1 Introduction 
The problem of stress concentration around a circular hole 

in the Kirchhoff-Love theory for flexural deformations of a 
plate was investigated by Goodier (1936). This bending theory 
does not consider the effect of transverse shear deformation; 
the paper by Reissner (1945) addresses the stress concentration 
problem within the context of a theory which accounts for trans- 
verse shear deformation. The corresponding problem for exten- 
sional deformations of a classical plate is well known; it is 
precisely the generalized plane-stress problem of linear elastic- 
ity, where the unbounded domain containing a circular hole 
is loaded in far-field tension (see, e.g., Sokolnikoff, 1956). 
However, the generalized plane stress theory does not account 
for transverse normal strain effects. We remark that in the con- 
text of a dynamical problem of plates, Kane and Mindlin (1956) 
have proposed a set of equations for extensional motions which 
include the effect of transverse normal strain. They have indi- 
cated the importance of this effect in the context of high-fre- 
quency extensional vibrations of plates. However, the stress 
concentration problem in an extensional theory of plates ac- 
counting for transverse normal strain does not appear to have 
been studied. 

In the present work, we study the stress concentration prob- 
lem using the linear theory of an elastic Cosserat plate. This 
theory is unified in the sense that it encompasses the set of 
equations for both extension as well as bending of a plate. This 
is in contrast to the theory of Kane and Mindlin (1956) which is 
specifically designed to address the high-frequency extensional 
behavior of plates, so much so that the value of a constant in 
their theory is tailored m accurately reflect three-dimensional 
high-frequency behavior. This is the main reason we choose 
the Cosserat theory to model our plate. 

In Section 2, we record the basic equilibrium equations of 
the linear theory of a Cosserat plate. We also indicate the rela- 
tionship between the extensional equations arising in this theory 
and those utilized by Kane and Mindlin (1956). In Section 3, 
we formulate and solve the stress concentration problem for the 
case of uniaxial tension. We also discuss in this section the 
stress concentration when the plate is subjected to pure shear 
at infinity. 
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2 Basic Equations for a Linearly Elastic Cosserat 
Plate 

We recall that a Cosserat plate is an initially flat material 
surface embedded in a three-dimensional Euclidean space and 
to each point of which is attached deformable vector fields 
called directors. Here, we confine ourselves to the case of a 
single director. These models have been discussed extensively 
by Naghdi (1972), 

The linear version of the theory of a Cosserat plate has been 
discussed in detail by Green and Naghdi (1967) and by Green, 
Naghdi, and Wenner (1971), The basic kinematic ingredients 
in the theory are the displacement u(xa) of surface particles 
and the director displacement/~(x~), where x. (a  = 1, 2) denote 
rectangular Cartesian coordinates on the midsurface of the 
plate, l The fundamental kinematic assumption in the theory is 
the following condition relating the displacement u*(x~, x3) of 
a particle in the three-dimensional plate-like continuum to u 
and ~: 

u*(x . ,  x3) = u(x~) + x38(x~), (2.1) 

where x3 is the third Cartesian coordinate which is normal to 
the midsurface) We denote the fixed orthonormal basis associ- 
ated with xi by { ei } and write 

U = u i e i ,  8 = 6sea + 6e3.  (2.2) 

The kinematical variables which enter the theory of a Cosserat 
plate are the quantities e ~ ,  7i, and Ki. defined by 

2e.~ = u~,~ + u~,~, 'y~ = 6. + u3,~, 

3'3 = 6, x . .  = 6.,~, K3. = fi,~, (2.3) 

where a comma followed by the index a denotes partial differ- 
entiation with respect to x..  From a physical standpoint, e . ,  
represents the strain at a point on the midsurface, "y~ is the 
transverse shear strain, 6 is the transverse normal strain, and 
Ki. represents the variation of 6t on the midsurface, 

Relative to the basis { e~ }, components of the contact force 
are denoted by N.t, those of the contact director couple by M.~ 
and those of the intrinsic director couple by ki .3 We assume 
that there are no body forces and body couples, The kinetic 

Greek indices range from 1 to 2 while Latin ones from 1 to 3. Also, the usual 
summation convention is adopted for both Greek and Latin indices. 

2 We refer to the surface defined by x3 = 0 as the midsurface and take it to 
also be the material surface defining the Cosserat plate. 

3 The director displacement 6 is chosen here to be dimensionless and hence 
the quantities k~ have physical dimensions of couple per unit area. For an elabora- 
tion of this point, see p. 482 of Naghdi (1972). 
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quantities just introduced are integrated versions of the three- 
dimensional stress tensor T = T0e~ @ ej: 

12 If~ /2 

Noel = To~idx3, M~,t = x3Toddx3, 
hi2 hi2 

f 
h/2 

ki = Z3idx3,  (2.4) 
-h/2 

where h is the uniform initial thickness of the plate. The equilib- 
rium equations governing the infinitesimal deformations of the 
Cosserat plate are 

N~,. = 0, Ua3,a = k3, (2.5) 

i . ~ , .  = k~, N.3,. = 0, (2.6) 

along with the restrictions 

N,~ = Np,, Na3 = k,. (2.7) 

The basic idea behind the constitutive theory is to first define 
a two-dimensional complementary energy function by integrat- 
ing its three-dimensional counterpart through the thickness of 
the plate. The constitutive equations for the plate then follow 
from appropriate relationships involving the two-dimensional 
complementary energy. We refer the reader to Green, Naghdi, 
and Wenner ( 1971 ) and Section 20 of Naghdi (1972) for details 
and simply record the following constitutive relations: 

g ~  (1 u ) C [ 1  v - - -~u  = - err~,~ + e,~ 

v 6 ~ y 3 ] ,  (2.8) 
+ 1 - 2v 

M(,~) = B[v6,~t:,~ + (1 - v)6,wf~6]K(v~ ), (2.9) 

M~,~ = 0, (2.10) 

5 Eh 
N . 3  = - -  y, ,  (2.11) 

12 (1 + v) 

M~3 = 2~ (1 - u)BK3~, (2.12) 

1 - u  
k3 - - -  C[(1 - v)y3 + verdi, (2.13) 

1 - 2v 

where 6,,  is the two-dimensional Kronecker delta, v is Pois- 
son's ratio, E is Young's modulus, the symbols ( ) and [ ] 
in (2.9) and (2.10) denote the symmetric and skew-symmetric 
parts of M,~, respectively, and 

Eh 3 Eh 
B = C = - -  (2.14) 

12(1 - v 2) ' 1 - u 2 '  

Equations (2.5), (2.8), (2.12), and (2.13) are associated with 
extensional deformations of the plate while Eqs. (2.6), (2.9), 
(2.10), and (2.11 ) characterize flexural deformations of the 
plate. In the linear theory, the extensional equations are decou- 
pled from the flexural ones. The flexural Eqs. (2.6) along with 
constitutive Eqs. (2.9), (2.10), and (2.11 ) are identical to those 
of Reissner's plate theory (1945). 

The extensional Eqs. (2.5), (2.8), and (2.13) correspond to 
the static counterpart of those used by Kane and Mindlin (1956) 
provided 6 in (2.2) is identified with 2w/h of their paper and 
the ratio of resultants in (2.4) to the corresponding ones in 
Kane and Mindlin's work is identified as the plate thickness. 
As regards (2.12), Naghdi (1972, p. 574) indicates the proce- 
dure by which the constant 7/20 is obtained and also comments 
on its reasonableness. Jin and Hwang (1989) have indicated 
that for static problems, the value of the constant K in Kane 

and Mindlin's paper be taken as 1; this corresponds to a value 
1/2 in (2.12) rather than 7/20. The slight difference in our 
final results from those gotten by utilizing the static counterpart 
of the Kane-Mindlin theory (see Fig. 3) can be attributed to 
the value of the constant in (2.12). In a recent paper, Naghdi 
and Rubin (1995) utilize a third procedure which results in a 
value 1/2 for the aforementioned constant. This indicates that 
the choice 1/2 in (2.12) may perhaps be more accurate. How- 
ever, we shall see in Section 3 that the two choices produce 
almost identical results for both the stress concentration problem 
of uniaxial tension and pure shear. We note that (2.5)~ and 
(2.8) are the equations of generalized plane stress or alterna- 
tively, they may be regarded as those governing extensional 
deformations in the classical Kirchhoff-Love plate theory. 

We now obtain the equations of extensional deformations of 
the Cosserat plate in terms of an Airy function ~. The exten- 
sional equations for the static counterpart of the Kane-Mindlin 
theory have been given by Jin and Hwang (1989) in terms of 
an Airy function. In the Cosserat theory, the procedure is identi- 
cal and we briefly describe it below. From Eq. (2.5)1, it may 
be deduced that there exists a scalar function ~o(x~) such that 

N,~ = V2qot~ - qo.~p, (2.15) 

where V2qo denotes the two-dimensional Laplacian of qo. Now, 
we use the compatibility condition 4 

e11,22 + e22,11 -- 2elz12 = 0 (2.16) 

of the linear theory of a Cosserat plate and the constitutive Eqs. 
(2.8) and (2.13) to deduce that the Airy function tp satisfies 
the differential equation 

(1 -- //)2) ~4~ t9 -- ~2~  = 0, (2.17) 
Ev 

where ~ 74 is the two-dimensional biharmonic operator. The re- 
maining constitutive Eq. (2.12) may be used in conjunction 
with (2.13) to obtain 

7 h 2 /) 
- -  V26  - 6 - - -  Vzqo = 0.  ( 2 . 1 8 )  

240 (1 + u) Eh 

The two differential Eqs. (2.17) and (2.18) for qo and 6 may 
be rewritten as 

V 4 6  -- GV26 = 0, (2.19) 

V2~o = GiV26 - G26, (2.20) 

where 

7 Eh 3 Eh 240 1 
Gt 240v(1 + v ) '  G2 = - - ' u  G 7h z (1 - v) . (2.21) 

Once (2.19) has been solved for 5, we can solve (2.20) for tp. 

3 A B o u n d a r y  V a l u e  P r o b l e m  

Consider an infinite plate with uniform initial thickness h. 
The plate contains a circular hole of radius R and is loaded in 
far-field tension as shown in Fig. 1. We introduce polar coordi- 
nates (r, 0) and record the boundary conditions below. 

r ~ oo, Nrr N ( 1 + cos 20), Nro 
N 

As . . . .  sin" 20, 
2 2 

N 
Noo = ~ (1 - cos 20), (3.1) 

A t r = R ,  N r r = 0 ,  Nro=O, Mr3=0.  (3.2) 

The quantities appearing in (3.1) and (3.2) represent the physi- 

4 See Section 6 of Naghdi (1972).  
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N 

x 2 

N h ', N 

Fig. 1 Plate loaded in tension at infinity 

7 O__6 
Mo~ = = (1 - ~ ) B  

0 0 '  20 
(3.9) 

Using (3.5) and (3.6) to calculate the derivatives appearing 
above, we record expressions for all the resultants: 

("2 
N ' r =  7 7 + 2  '[Gr) + L - 2 q i - 7 + r - 5  

d ( 4K, ~/-GK, 2Ko 4K2'~ l 
G \~/ar 3 + - - r  2 + r 2 r= ] j  cos 20, (3.10) 

I 6q2 ~- 2d  ( 4Ki '/'GKi 
N,o = 2q, - - 7  + 2r--- Z - --~ \ ~-fir 3 + .  r 

cal components N<<~n) and M(a3). That the solution to the bound- 
ary value problem defined by (2.6) - (2.8) and (3.1) - (3.2) is 
unique (upto a rigid motion) follows from the discussion in 
Section 26 of Naghdi (1972). 

Keeping in mind the form of the boundary conditions (3.1), 
we seek a solution to (2.19) of the form 

6(r,  O) = G(r )  + 6b(r) cos 20. (3.3) 

Substitution of (3.3) into (2.19) results in a pair of ordinary 
differential equations for 6, and 6b, whose solutions involve 
modified Bessel functions I0, K0 of order zero and 12, K2 of 
order 2. The solution procedure being straightforward, we 
merely present the result for ~ below: 

6(r,  O) = al + a2 in r + a31o(~/-Gr) + a4Ko(~/-Gr) 

+ blr 2 + 77 + b3h(~/Gr) + b 4 K 2 ( ~ r )  cos 20, (3.4) 

where al, aa, a3, a4, ba, b2, b3, and b 4 are constants to be 
determined from the boundary conditions. Since the director 
displacement 6 must remain bounded at infinity, the constants 
a2, a3, b3, and b~ vanish so that 

~5(r, O) = al + a 4 K o ( ~ r )  

+ 77 + b4K2(,lGr) cos 20. (3.5) 

We now substitute (3.5) into (2.20) and observe that qo satisfies 
the Poisson equation. The solution for ~o is 

~p(r, 0) = Pl + P2 in r + if-- r 2 + 6 Ko('[Gr) 
4 

[ q2 ~ - + d  ] 
+ air2 + 7 7 -  ~ ~ K2 ( ' ~ r )  cos 20, (3.6) 

where 

i f =  -alG2, -b = a4(GGi - G2), 

~'= -b2G2, J = b4(GGi - G2), (3.7) 

and p~, p2, ql, q2 are constants to be determined from the 
boundary conditions. Expressions for the resultants in polar 
coordinates are 

Nr~ 1 0 ~  + 1 02~ N~o =Nor = 1 0p ~ 0 2 ~  (3.8) 
r Or r 2 O02' r 2 O0 r OrO0' 

Noo= 02~ 
Or2 ' 

Mr3 = 2 ~ ( 1  - u)B  06 
Or 

+ " 7  + 7 sin 20, (3.11) 

(; 6q__ r4 Not= + bKo + ~ "-; + 2ql + 

+ --G \ , /Gr  ~ + r + 7 + GKo cos 20, (3.12) 

M . 3  = ( 1  _ _ 1-262 464K, 
/ r ,  

cos 20 , (3.13) 

Mo3 = - ~ 1 - u )B  + sin 20, (3.14) 

where the argument , ~ r  of the functions K0, K~, and K2 has 
been suppressed. The boundary conditions (3.1) and (3.2) yield 
the following values for the constants: 

= N ,  ~ = 0, ( 3 . 1 5 )  

~-= -2NR2(2K2 + pKl) 1)+ 12., oo,, 
(3.16) 

- 4 N  
d =  , ( 3 . 1 7 )  

16K2 12Ki 2K2 pKj - - +  + + 

NR z N 
p2 = 2 ' ql 4 '  (3.18) 

R4[.~ c dI~1 2K2~1 
q2 = -~- + ~ 5 +  ~ - ] j ,  (3.19) 

where p = d R .  We note that the constant pl in (3.6) does not 
influence the value of any of the resultants and hence can have 
any arbitrary value. 

The ratio Noo/N at r = R is given by 
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I ' ' I h ® N ®  : , ® N @  

Fig. 2 Plate subjected to pure shear at infinity 

• N 

N 

Noo( R, 0________~)= 1 - r e 
N L NR2 

+ 7 ; .  + ' +K0 cos 20 , (3.20) 
P 

The stress concentration C.t (the subscript ut denotes uniaxial 
tension) is defined as the maximum value of the expression 
(3,20), which occurs at both 0 = 7r/2 and 0 = 37r/2: 

Noo( R, 7r/2) 
C u  t - 

N 

= 1 -  : : z - ~ + = . p Z  + P + K o  . (3.21) 

In the limit when p ~ 0% which for a given R, corresponds 
to a vanishingly thin plate, we expect to recover the stress 
concentratiofi in the generalized plane-stress problem. Indeed, 
from (3,21), wehave 

lim C., = 3, (3.22) 
p-,~ 

and the limiting value (3.22) is independent of the material 
parameters, hole radius and plate thickness, as it should be. The 
stress concentration factor C.t depends on the material parame- 
ters p and the ratio GG1/G2 occurring in (3.16) and (3.17). 
From (3.21) and (2.21) it is clear that C,, only depends on 
Poisson's ratio u of the material. We plot the variation of C,,, 
as a function of R/h in Fig. 3 for u = 1/3. The result from the 
static counterpart of the Kane-Mindlin equations is also depicted 
here. It may be deduced from (3.21) that in the limit when R~ 
h approaches zero, Cut equals 2. 

Finally, we discuss the stress concentration factor Cp, when 
the plate is subjected to pure shear as shown in Fig. 2. It is 
clear that the solution to this problem may be obtained by 
suitably superposing the solution for uniaxial tension in the x~ 
direction and that for uniaxial compression in the x2 direction. 
We do not present expressions for the resultants but note that 
the stress concentration factor is 

Noo( R , 7r/2) 
Cps-  N 

" : - : ~ + = - p 2  + p + K o  . (3.23) 

It is clear from (3.23) that the remarks pertaining to C,, apply 
to Cp., as well. In the limiting case when p -) 0% Cps equals 4, 
Which corresponds to the generalized plane-stress value. For u 
= 1/3, the variation of Cps with R/h is shown in Fig. 3. 

The stress concentration factors C,, and Cp, do not vary appre- 
ciably from their generalized plane stress counterparts of 3 and 
4, respectively; for R/h > 1. Also, there is very little difference 
between these factors using the Cosserat versus the Kane-Min- 
dlin theory. However, it is possible that in other equilibrium 
problems involving extensional deformations, the effect of 
transverse normal strain may be more pronounced; we mention 
the paper by Naghdi and Rubin (1989) who have emphasized 
the importance of this effect for contact problems of beams. 

2 

0 1 2 

R/h 

Fig. 3 Variation of stress concentration factors with RIh 
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The procedure outlined in Section 2 is general and may be 
used to solve other problems where thickness effects play an 
important role. 

We note that for values of R/h < 1, the inclusion of trans- 
verse normal strain lowers the stress concentration factor. Al- 
though we have plotted these factors for very small R/h, we 
caution the reader that neither the Cosserat theory nor the Kane- 
Mindlin theory may be very accurate in this regime since these 
theories, in general, are not valid for very thick plates. 
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