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Beam-Based Vibration Energy
Harvesters Tunable Through
Folding
We present a novel beam-based vibration energy harvester, and use a structural tailoring
concept to tune its natural frequencies. Using a solution of the Euler–Bernoulli beam
theory equations, verified with finite element (FE) solutions of shell theory equations, we
show that introducing folds or creases along the span of a slender beam, varying the fold
angle at a crease, and changing the crease location helps tune the beam natural frequen-
cies to match an external excitation frequency and maximize the energy harvested. For a
beam clamped at both ends, the first frequency can be increased by 175% with a single
fold. With two folds, selective frequencies can be tuned, leaving others unchanged. The
number of folds, their locations, and the fold angles act as tuning parameters that provide
high sensitivity and controllability of the frequency response of the harvester. The analyt-
ical model can be used to quickly optimize designs with multiple folds for anticipated
external frequencies. [DOI: 10.1115/1.4040576]
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1 Introduction

Vibrational energy harvesters extract electrical energy from
ambient vibrations to power stand-alone wireless microelectronic
devices [1,2]. These harvesters reduce our dependency on envi-
ronmentally hazardous chemical batteries and can be used for
remote health monitoring of structures and machinery with mini-
mal maintenance costs [3]. They use either electrostatic [4] or
electromagnetic [5] or piezoelectric (PZT) [6] transduction mech-
anisms to convert mechanical energy of ambient vibrations to
electrical energy. Irrespective of the conversion technique, the
harvester delivers maximum power when its natural frequency
closely matches the environmental excitation frequency. Small
deviations from this resonance condition may severely reduce the
harvester performance and efficiency.

Two primary approaches commonly used to optimize the power
output of these harvesters under time-dependent external vibra-
tions [7] are: widening the operational bandwidth of the harvester,
and tuning its resonant frequency to match the ambient excitation
frequency. Broadband energy harvesting can be accomplished by
using either an array of cantilever beams [8], or a tuned auxiliary
structure [9], or nonlinear systems [10], and is suitable when the
ambient excitation contains multiple frequencies with large
amounts of spectral content around the resonant frequencies of the
harvester. However, their efficiency is low when only one domi-
nant external frequency is present. For such situations, a harvester
with an adjustable resonant frequency is generally more efficient.

Active tuning with either an external mechanism or an active
material continuously matches the resonant frequency of the
harvester with the external frequency, and passive tuning mecha-
nisms, which operate only intermittently, have been demonstrated.
Common mechanical tuning methods involve applying axial pre-
loads [11,12], changing the area moment of inertia of the beam
[13], and moving a tip mass back and forth along its span [14].
These techniques require external attachments to facilitate the tun-
ing process which are bulky and are unsuitable for self-tuning
applications. Magnetic [15] and electric [16] tuning approaches

have also been proposed but require additional sources of input
power and complex circuitry.

Here, we propose a novel structural tailoring concept for a pas-
sive beam-based vibration harvester. By introducing simple topo-
logical folds or creases in slender beams, we show, using the
Euler–Bernoulli beam theory equations, that beam’s natural fre-
quencies can be tuned over a wide range by varying fold angles,
fold locations, and number of folds. The dynamics of L-shaped
[17,18] and Z-shaped [19] beams have been investigated for appli-
cations as robotic arms, swing-arm cranes and as morphing wing
designs for aircrafts. We follow the mechanics of materials
(MoM)-based discrete modeling approach proposed for stiffened
plates [20,21] and sandwich panels [22–24]. Results of the analyt-
ical formulation agree well with those computed by the finite ele-
ment (FE) studies using the commercial software ABAQUS/EXPLICIT

and modeling beam’s deformations with a shell theory.
For a beam clamped at both ends, the first natural frequency

doubled by using a single fold with the fold angle, a, varying from
0 to 30 deg, while selective frequencies could be tuned leaving
others unchanged, by using two folds. By changing the fold angle
in situ for precreased beams, the harvester can match its resonant
frequencies with varying external conditions. The analytical for-
mulation can be used for multiple folds and for optimizing har-
vester designs.

2 Concept and Analytical Formulation

Figure 1 shows a slender beam of length L, width B, and thick-
ness H clamped at both ends, x¼ 0 and x¼ L, with n folds (n¼ 3
for the sketch in the figure) at x¼ gi (i¼ 1, 2,…, n) along the
beam length. A crease or a fold is defined as a straight line seg-
ment along the width of the beam across which the beam has
zeroth-order geometric continuity, i.e., the tangent to the beam
centroidal axis is discontinuous at the fold line. The beam subsec-
tions abutting each fold are called arms. A beam with n folds is
comprised of (nþ 1) arms with the ith fold flanked by the ith and
the [iþ 1]th arms. The zeroth [(nþ 1)] fold corresponds to the left
(right) edge of the beam. A folding motion by an angle a (positive
in the clockwise direction) is a rigid rotation of the adjacent arms
about the fold line which changes the dihedral angle between
them by a while maintaining a constant in-surface distance
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between any two points of the beam. Hence, it is assumed that
during folding, the deformation is restricted to rotations along the
fold line and the length, Li, of each arm remains constant (see
Fig. 2 for rigid folding, by a deg, of a beam with one fold).

In the analytical formulation, the planar deformations (in the
xz-plane) of each arm of the beam are modeled separately using
the kinematic assumptions of the beam theory with the continuity
of forces, moments, and displacements enforced at the folds. As
shown in Fig. 3 for a candidate arm i of length Li, two interface
forces, Pd

i ðtÞ (along the x-direction; d¼ l, r) and Qd
i ðtÞ (along the

z-direction), and an interface moment Md
i ðtÞ (about the y-axis) are

considered at the left edge (the (i� 1)th fold) and at the right edge
(the ith fold) of the ith arm. The superscript d takes values l and r
to denote, respectively, the left and the right edge of the arm.

In order to facilitate the analysis of deformations of each arm, a
local rectangular Cartesian coordinate system ð�x; �zÞ is used that is
related to the global rectangular Cartesian coordinate axes (x, z) as

�x
�z

� �
¼ cos /i �sin /i

sin /i cos /i

� �
x
z

� �
(1)

where /i (i¼ 1, 2,…, n) is the inclination angle of the arm, meas-
ured counter-clockwise from the positive x-axis as shown in Fig. 1.

The transformed interface forces �P
d
i ðtÞ (along the �x-direction) and

�Q
d
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d
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Based on assumptions of the EB beam theory, i.e., plane cross
sections of the undeformed arm remain plane, undistorted, and
normal to the deformed arm axis, and that the beam undergoes
free harmonic oscillations with a circular frequency x, the time-
dependent displacement field of the ith arm is given by

�wi �x; �z; tð Þ ¼ �w0
i �xð Þ exp ixtð Þ

�ui �x; �z; tð Þ ¼ �u0
i �xð Þ � �z

d �w0
i

d�x

� �
exp ixtð Þ

(3)

where �u0
i and �w0

i are the centroidal displacements of a point of the
arm along the �x- and the �z-directions, respectively, and t is the
time. Ignoring the rotational inertia of the cross section, equations
of motion for the arm are

d2 �u0
i

d�x2
þ k2

u
�u0
i ¼ 0 (4)

d4 �w0
i

d�x4
� k4

w
�w0

i ¼ 0 (5)

Here, ku ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qx2=EA

p
; kw ¼ ð�qx2=EIÞ1=4

, E is Young’s modulus
of the beam material, A and I are, respectively, the area and the
moment of inertia about the y-axis of the beam cross section, �q is
the mass per unit length of the beam and a superimposed dot indi-
cates differentiation with respect to t. In Eqs. (4) and (5), we have
assumed that the axial strain, e�x ¼ ðd �ui=d�xÞ, is infinitesimal,
j@2 �w0

i =@�x2j � 1, and Hooke’s law, e�x ¼ ðr�x=EÞ, holds for the
beam material where r�x is the axial stress.

The solution of Eqs. (4) and (5) is

�u0
i ð�xÞ ¼ U1

i cosðku�xÞ þ U2
i sinðku�xÞ

�w0
i ð�xÞ ¼ W1

i cosðkw�xÞ þW2
i sinðkw�xÞ þW3

i expðkw�xÞ
þW4

i expð�kw�xÞ (6)

where the six constants, U1
i ; U2

i ; W1
i ; W2

i ; W3
i , and W4

i , can be
determined in terms of the unknown interface forces and moments
from the boundary conditions
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(7)

Fig. 1 Schematics of an unfolded beam and of a beam with three folds

Fig. 2 Rigid folding, by a deg, of an initially flat beam with a
single fold (n 5 1). The total length of the beam, L 5 L1 1 L2,
remains constant.
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The displacements uið�x; �z; tÞ and wið�x; �z; tÞ can then be found in
terms of loads Pd

i ; Qd
i and the moment Md

i by using the transfor-
mation rules for vectors.

To ensure continuity of the interface forces and moments as
well as of displacements and rotations at the folds, the following
six conditions are specified at each fold i, assuming no external
loads are applied there

Pr
i þ Pl

iþ1 ¼ 0

Qr
i þ Ql

iþ1 ¼ 0

Mr
i þMl

iþ1 ¼ 0

wi Li; 0ð Þ ¼ wiþ1 0; 0ð Þ
ui Li; 0ð Þ ¼ uiþ1 0; 0ð Þ

@wi

@x
Li; 0ð Þ ¼ @wiþ1

@x
0; 0ð Þ

(8)

The boundary conditions at the clamped left edge of the first arm
and the clamped right edge of the (nþ 1)th arm are

u1 0; 0ð Þ ¼ w1 0; 0ð Þ ¼ @w1

@x
0; 0ð Þ ¼ 0

unþ1 Lnþ1; 0ð Þ ¼ wnþ1 Lnþ1; 0ð Þ ¼ @wnþ1

@x
Lnþ1; 0ð Þ ¼ 0

(9)

Imposing continuity conditions (8) and boundary conditions (9)
results in an equation for the natural frequencies, x, of the beam.

It should be noted that other boundary conditions at the beam
edges can be easily accommodated.

3 Example Problems

We consider an Aluminum beam with L¼ 80 mm,
B¼H¼ 1 mm, q¼ 2700 kg/m3, E¼ 70 GPa, and �¼ 0.3. A fold
is introduced at g¼ 40 mm creating two arms of equal length,
L1¼ L2¼ 40 mm. The fold angle a is varied from 0 to 30 deg,
which varies the inclination angles of the arms, (/1, /2), from (0,

0) to (15, 165) deg, aþ/2�/1¼ 180 deg, and the horizontal dis-
tance, �L, of the folded beam between the clamped edges is given
by �L ¼ L1 cos /1 þ L2 cos /2. We note that for a¼ 0, the beam is
flat and has no folds.

For comparison with the solution of the shell theory equations,
we analyzed free vibrations of the clamped folded beam by the
finite element method using the commercial software ABAQUS/
EXPLICIT [25]. Each arm of the beam is meshed using eight-node
shell elements with reduced integration (element S8R) and is dis-
cretized into 50 uniform elements along the length and three uni-
form elements along the width. The FE mesh used was found to
give converged natural frequencies within 0.1% tolerance.

Figure 4 shows variation with the fold angle a of the first three
nondimensionalized natural frequencies, �x ¼ xðL2=HÞ

ffiffiffiffiffiffiffiffi
q=E

p
, of

the folded beam as obtained from the MoM or the EB theory for-
mulation and the finite element method using ABAQUS. The nondi-
mensionalization aids in comparing the vibrational frequencies of
linearly elastic beams of different dimensions and material proper-
ties. Also depicted are the first three mode shapes of the beam,
normalized with respect to the value of the peak displacement, as
derived from the MoM approach. The maximum difference in the
frequencies from the two approaches is 0.66% in �x3 for
a¼ 26 deg. Thus, the MoM model accurately determines at least
the first three natural frequencies. Results presented in the remain-
ing figures are with the MoM approach.

The gap between the first two nondimensionalized natural fre-
quencies, �x2 � �x1, reduces from 11.34 for a¼ 0 to 1.23 for
a¼ 10 deg, and subsequently increases to 6.1 and 7.2 for a¼ 20 deg
and 30 deg, respectively. This could be useful for harvesting energy
from rotating machinery or air conditioning equipment where the
external excitation has multiple closely spaced frequencies. Most
conventional beam-based energy harvesters are designed to match
their first resonant frequency with the external frequency, while
ignoring higher modes since the spacing between modes is wide. By
reducing the gap between specific modal frequencies, our design
has the capability to provide broad-band energy harvesting.

For the beam with one fold, the first mode shape for a¼ 10 deg
and 20 deg is similar to the second mode shape of the flat beam,

Fig. 3 Interface forces and moments on the ith and the (i 1 1)th arms of the folded beam
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which could explain why the increase in �x1 with the fold angle a
saturates as it approaches the value of �x2 . However, mode shapes
corresponding to �x2 and �x3 are quite different for the folded
beam as compared to those for the flat beam. For a¼ 10 deg and
20 deg, the crease locations remain nearly at the beam center, and
the mode shapes for the first three frequencies are qualitatively
similar to each other.

Figure 5 depicts the percentage change in the first five nondi-
mensional frequencies, defined as ð�xa � �x0Þ=�x0 � 100, where
�xa is the frequency for the fold angle a. The first five frequencies
correspond to the bending modes of vibration, and their values for
the flat beam (a¼ 0) equal 6.46, 17.80, 34.90, 57.68, and 86.19.
Increasing the fold angle from 0 to 20 deg increases by 175%,
34%, and 58%, respectively, the first, the second, and the third fre-
quencies, indicating the sensitivity of the frequency to the fold
angle. Furthermore, the percentage change in the frequency is not
monotonic with the frequency order since the percentage change

in the second frequency is less than that in the first and the third
frequencies.

Figure 6 shows effects of changing the location of the fold
along the beam span on the first three natural frequencies and
mode shapes for L1/L2¼ 5/3, 3, and 7 when the total length of the
beam, L¼ 80 mm, is kept constant. Moving the fold from the cen-
ter of the beam toward the right end with L1/L2¼ 7 and introduc-
ing a fold angle a¼ 30 deg can increase �x1 ; �x2 , and �x3 ,
respectively, by 232%, 140%, and 101%, thereby broadening the
tuning range. Thus, the location of the fold can also be varied to
tune the natural frequencies. Varying the fold location signifi-
cantly changes deformations of the beam as depicted by the mode
shapes.

For a beam with L¼ 60 mm and B¼H¼ 1 mm, Fig. 7 shows
effects of increasing the number of folds, from one central fold,
L1¼ L2¼ 30 mm, to two folds, L1¼ L2¼ L3¼ 20 mm, on the first
three nondimensional natural frequencies. We note that the num-
ber of folds and the fold angles can be independently varied; how-
ever, results here are depicted only for ja1j ¼ ja2j ¼ a. For the
two-folds’ case, results are presented for both, symmetrical fold-
ing, a1¼ a2¼ a, wherein the sense of the fold angles a1 and a2 are
the same, and antisymmetrical folding, a1¼�a2¼ a wherein a1

and a2 are of opposite sense. In the two-fold antisymmetrical case,
going from an initially flat beam to a¼ 30 deg does not change �x1

but increases �x2 and �x3 by 92% and 32%, respectively, indicating
that selective frequencies can be tuned, leaving others unchanged.
The results of the symmetrical folding case are consistent with
earlier observations of a nonmonotonic increase in frequencies
with the fold angle. Thus, increasing the number of folds provides
an additional tuning parameter.

Whereas the first mode shape is relatively unaffected in going
from one fold to two folds, the second and the third mode shapes
are noticeably changed. For the beam with two folds, the second
and the third mode shapes for the symmetric (a1¼ a2) and the
antisymmetric (a1¼�a2) cases are quite different.

4 Remarks

The frequencies found in the test cases studied here correspond
to the bending mode of vibration primarily because the aspect
ratio of each segment, length/thickness, is very large. As shown in

Fig. 4 Variation of the first three nondimensionalized natural
frequencies, �x 5 x(L2/H)

ffiffiffiffiffiffiffiffi
q/E

p
, and mode shapes with the fold

angle a obtained from the FE solution and the MoM formulation
for L1 5 L2 5 40 mm

Fig. 5 Percentage change in the first five nondimensionalized
frequencies with the fold angle a for L1 5 L2 5 40 mm

Fig. 6 Effects of changing the location, L1/L2, of the fold on the
natural frequencies and mode shapes
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Refs. [26–29] for thick beams and plates, the first few frequencies
can include the frequency of an in-plane mode of vibration with
null deflections or bending.

The energy harvested from a vibrating structure depends not
only upon the frequency of vibration but also on the mode shape,
the PZT patch shape and location, and the electromechanical cou-
pling coefficients of the PZT material. The location of the PZT
determines its deformation modes and their magnitudes. It sug-
gests that for a given PZT material, shape, and size, one should
find a combination of frequencies of the tunable harvester, mode
shapes, and PZT patch locations to optimize the energy harvested.
We will study this optimization problem in the future.

Realizing that energy harvesting is closely related to controlling
structural vibrations using PZTs, we note that there is an extensive
literature on the latter topic, including some papers by Batra’s
group. For example, Batra et al. [30] found that, for the first four
modes of vibration, the PZT patches excited with the minimum
voltage to control deflections of all points of a simply supported
plate should have their centroids at points of the maximum ampli-
tude of initial vibrations of a simply supported plate. Vel and
Batra [31] found the polarization direction for the extension-shear
bi-morph to be most effective. Ghosh and Batra [32] found, for a
plate, the voltage to be applied to the PZT actuators as a function
of the surface area covered by them to control plate’s deflections.

5 Conclusions

We have developed a passive tuning strategy for beam-based
vibrational energy harvesters wherein the introduction of folds or
creases along the beam considerably changes its vibrational fre-
quencies. The location of the folds along the span, the number of
folds, and the fold angles provide a diverse space to tune the fre-
quency response of an energy harvester to a wide range of exter-
nal excitations. We have shown that with a single fold, the first,
the second, and the third natural frequencies increase by 175%,
34%, and 58%, respectively, when the fold angle is increased
from 0 to 30 deg. The gap between two consecutive natural fre-
quencies can also be tuned to account for external excitations with
multiple closely spaced frequencies. Furthermore, in certain fold
configurations, selective frequency tuning can be achieved,

wherein only prespecified frequencies are tuned by changing the
fold angles. By changing the fold angle for precreased patterns in
situ, the harvester can extract the maximum power in environ-
ments with varying spectral content. The model developed, results
of which have been verified by the FE solutions of shell theory
equations, can be used to quickly optimize designs.
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