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Summary - Zusammenfassung 

Decay of the Kinetic and the Thermal Energy of Compressible Micropolar Fluids. 
We consider a heat conducting compressible micropolar fluid at rest and filling a closed 
stationary rigid container. We show that tim energy of arbitrary disturbances of the fluid 
eventually decays. 

Abnahme der kinetischcn und der thermischen Energie kompressibler mikropolarcr 
Fliissigkeiten. Betrachtet wird eine ruhende, w~rmeleitende, kompressible, mikropolare 
Fliissigkeit und das Fiil]en eines geschlossenen station~ren starren Beh~lters. Es wird gezeigt, 
dal3 die Energie beliebiger St6rungen der Flfissigkeit unter Umst~nden abnimm~. 

1. Introduction 

In 1949, Kamp6 de F6riet [1] showed that  the energy of arbitrary disturbances 
of a rest state of an incompressible viscous fluid filling a closed rigid container 
decays to zero exponentially. Since then, similar results have been proved for heat 
conducting incompressible fluids [2], [3], fluids whose thermomechanical defor- 
mations are governed by Boussinesq equations [4], [5], heat conducting com- 
pressible fluids [6], incompressible micropolar fluids [7] and compressible micro- 
polar fluids [8]. In [7] and [8] the linear theory of micropolar fluids developed by 
Eringen [9] is used. Here, using the same linear theory of micropolar fluids, we 
show that  the total energy of arbitrary disturbances of the rest state of a heat 
conducting compressible mieropolar fluid filling a closed rigid container eventually 
decays to zero. Thus the present work generalizes the work of Shahinpoor and 
Ahmadi [8] on compressible micropolar fluids to heat conducting compressible 
micropolar fluids. 

2. Formulation of the Problem 

The thermo-mechanical deformations of a linear micropolar fluid are governed 
by the following equations [9]. 

+ ev~,~ : 0, 

�9 (1) 
Q]iJr = mkr.r + srk~t~s + el~, 
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where 

qk = --~O,k @ fiekrs'Pr,s, 

(2) 

b~s = vs,k - -  e k s : r .  

Throughout this paper, we use rectangular cartesian coordinates and the Cartesian 
tensor notation wherever convenient. In  the preceeding equations, o is the present 
mass density, v is the velocity of a material particle X that  presently is at  place x, 
a superimposed dot indicates material t ime derivative, p is the pressure field, 
a comma followed by  an index k indicates partial differentiation with respect to 
xk, tk~ is the Cauchy stress tensor, t9 is the potential  of body forces and is assumed 
to be a non-negative bounded function of position x only, ] is the microinertia, 
v is the microrotation of the flow, 1 is the supply density of the mierorotation, 
s is the internal energy density, q is the heat flux per unit present area, h is the 
supply density of the internal energy, and 0 > 0 is the absolute temperature  of a 
material particle that  currently is at place x. The viscosity coefficients 2, #, 7, cr 
fi, y and the heat conduction coefficient ~, ~ and fi are functions of ~ and 0. This 
implies tha t  the fluid is homogeneous. 

We assume that ,  in the reference configuration in which the fluid is at rest, the 
fluid occupies a bounded region R with a boundary ~R which is smooth enough to 
apply the divergence theorem [10], the Poincard inequality [11] and the Korn 
inequality [11]. Once the fluid is disturbed from its rest state, we assume that  the 
container is subsequently held stat ionary and that  the following boundary con- 
ditions are maintained during the deformations of the fluid. 

v ( x ,  t) = O, v ( x ,  t) = 0 ,  ( x ,  t) C x(~R, t) X (0, t), 

o(x,  t) = Oo, (x, t) ~ z(~R(t) ,  t) • (o, t), (3) 

q~(x, t) n~(oe, t) -= --b(O, 0o) (0 - -  0o), ( x ,  t) C X(~2R(t), t) X (0, t). 

Here ~IR ~ OR, ~2R = 3 R  - -  ~ IR  and x(X, t) - -  x ( X ,  t). The seboundary condi- 
tions correspond to the ease in which the fluid adheres to the walls of the con- 
tainer, the fluid is in perfect thermal contact with the walls in the sense tha t  the 
temperature  of the fluid particle and the point of the container to which it is 
presently adhering is same, a par t  or all of the boundary of the container is 
maintained at a uniform temperature 00 and the rest, if any, is exchanging heat 
with the surroundings according to the law (3)4. In  order tha t  heat may  flow 
from the container walls into the surroundings when the former is at  a higher 
temperature,  b should be positive. 

The various coefficients 2, # etc. appearing in (2) cannot assume all possible 
values. Rather,  these and the pressure function p should satisfy the following in 
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order that  every solution of (1) and (2) satisfy the Clausius-Duhem inequality [9]. 

32-[- 2# + ~ ~ O, 2 # + ~ 0 ,  ~ / ~ 0 ,  ~ 0 ,  

3 ~ x + f l + y  >--0, y - - l f i ] > O ,  

~ Q ,  ~ - -  ~ - v 0 ,  ~ = r 0 ) ,  

e = e(o, 0), V = ~0 

Here qb is the Helmholtz free energy and ~ is the entropy density. Using (4)7-11, we 
obtain 

i - - 0 0 / l =  1- -  i + 0 e ~ 0. (5) 

To evaluate the left-hand side of (5), we introduce a finite Taylor expansion in the 
temperature for r obtaining thereby 

e - Oo~ = ~(e) + K(O --  0o) ~, 

~ r  (~, 0") - -  ~(e, 0.) 
~(e)  ~ r  0o), K - -  2 ~0 ~ 20* 

(6) 

C is the specific heat and 0* is a value of temperature between O and 0o. Combining 
(5) and (6), we arrive at  

d 

In (7), and henceforth, the integration is over the region occupied by the fluid. 
The function ~b is normalized so as to assume only non-negative values. 

Taking the inner product of (1)2 with v~, of (1)a with v~, integrating the resulting 
scalar equations over the region occupied by the fluid, simplifying the right- 
hand sides of these equations by using the divergence theorem, boundary condi- 
tions (a), and adding these equations, we obtain 

f Ex + " ~  o~ ~ d V  = - -  (tk~b~e + mkrvr,x) d V ,  (8) 

where we have set 1 = 0 and 

E1 = T O(v" + J#)  d V .  (9) 

Adding (7) and (8), substituting for ~ from (1)a into the resulting equation, 
and simplifying by using the divergence theorem, boundary conditions (3) and the 
constitutive relation (2)a , we get 

E + & = -- f -~ [tk,bk~ + ~nk,v~.k -- -~ O] dv  -- j ' -~  (O -- OoV dA 
(10) 
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in which 

E = E~ @ f e K ( O  --  Oo)~dV, 

E2 = f (~ § ~)~dV. 

Thus E equals the sum of the kinetic energy, the energy of microrotation and the 
temperature  deviation of the fluid from that  of its environment.  E equals zero if 
and only if the fluid is at  rest, there is no microrotation, and the temperature  is 
uniform throughout the fluid and has a value equal to the temperature  of the 
environment.  

We assume tha t  the initial disturbances v(x, 0 ) =  ~(x), v(x, 0 ) =  ~(x), 
~o(x, 0) = ~(x) and 0(x, 0) = 0(x) belong to the set S and are such that  there 
exists a classical solution for t > 0 of (1) satisfying these initial conditions and the 
boundary conditions (3). The problem of existence of solutions of (1) seems not 
to have been studied so far. Lunge [12] recently studied the existence of solutions 
of initial-boundary value problems for the equations which describe the homo- 
thermal flow of incompressible mieropolar fluids. 

We now state the theorem we wish to prove below. 

Theorem: Every  solution of (1) under the boundary conditions (3) and initial 
conditions belonging to the set S exhibits the behavior 

provided tha t  

~ 0 ~ s u p Q  < co, 

E - - > 0  US t - ~ o c ,  

lira E2(t) exists, 
t-+co 

C l ~ i n f  2 + - ~ - #  ,2~t > 0 ,  

~176 / C 2 ~ i n f ~ -  c ~ @ - ~ @ - ~ - ,  7 - ~ / ~  > 0 ,  
0,0 

C a ~ i n f  0 ~  z >  0 
e,o 0" 

c4  - b(~ > o ,  

Q ~ s u p K <  c~, 
o,0 

~/--~ > 0 ,  ,7>0 ,  h(O - Oo) < o. 

(~2) 

(T3) 

I t  should be noted tha t  some of the inequalities in (13) are stronger than those in 
(4). Also the last inequality in (13) is satisfied by the choice h = 0, tha t  is, there 
is no supply of the internal energy. Otherwise, it requires that  the supply density h 
of the internal energy depend upon 0 and 00 in a specific way. The definitions of 
various constants in (13) can be sharpened by  taking the infimum or the supremum 
over those values of e and 0 which are ever realized at any fluid particle. 
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3. Proof of the Theorem 

t~ecalling (2), (1)1 and using the definitions 

] 
v(~,~)- T (vk,~ + v~,k), 

1 
vLk,~ 1 =-- ~ (v~,~ - v ~ , ~ ) ,  

d 1 
Vk, s =-- Vk, s - -  -~  Vr, rrJks~ 

we note tha t  

[ ~176 . . . .  2#V(s,k)V(s,k ) 0 o 

(14), 

00 

We have used (13h, 2 to obtain the preceeding inequality. By using the divergence: 
theorem and (3), we can show tha t  

f 0o Y~-~- ek~,O ,.v~,e d V  = O, 

and hence by  integrating (14) over the region occupied by the fluid and using 
1)oincarg's inequality and Korn 's  inequality (of. [2]), we obtain 

where 
>~ C6E1, 

(15) 

2pl C 6 ~-- rain (C1, Ce/~) , (16} 
~0 

and Pl is a positive valued function of R. From (13)a,~,5,9 and by  using the Poin- 
ear6 inequality (el. [2]) we conclude tha t  

(17) 

in which C7 = P2 min (C3, C4)/(QOo) and p~ is a positive valued function of R 
and ~1/?. For the ease when ~IR ~ ~R, P2 varies with t ime t and we assume t h a t  
it is bounded and denote its supremum also by P2. 

4 ~ 
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Substituting from (15) and (17) into (10), we arrive at 

)~ + ~2 < - -GE,  " ( 1 8 )  

with Ca = rain (Ca, C7). I t  follows from (18) tha t  

E(t) + E2(t) _--< E(0) + E2(0), lira [E(t) + E~(t)] exists. (19) 
5-+00 

Integration of (18) over (0, T), T being an arbitrary real positive number, gives 

T 

Ca f E(t) dt <= E(O) -t- E2(O) 
0 

which implies tha t  E(t) C LI(O, ~z). ~rom (18), by  using E2(t) < E(0) + E2(0), we 

conclude that  E(t) E LI(0, co). This together with E(t) E Ll(0, oo) implies that  
E(t) --> 0 as t -+ oc. (12)2 now follows from (19)v 

4. Remarks 

The result (12)1 is not as strong as one would like to obtain. I t  would be 
desirable to show that  the energy of the fluid decays monotonically and obtain 
the decay rate of the energy. However, for compressible micropolar fluids, (12) is 
the best I can prove now. In view of (12)2 it seems plausible that  there exists a 
time t o such that  

E2-----0 for t ~ t  o . (20) 

We remark that  for homogeneous incompressible micropolar fluids whose density 
does not depend upon temperature, (20) holds with to = 0. Whenever (20) holds, 
it follows from (18) and (19)1 that  

E(t) <_ (E(0) + E2(0)) e-C8 t, t >= t o. (21) 

We recall that  Shahinpoor and Ahmadi [8] make an assumption analogous 
to (20) and obtain a result of the type (21) for homothermM deformations of 
compressible mieropolar fluids. I t  is not quite clear under what circumstances (20) 
holds. Mainly because of this, we made no a t tempt  to obtain the best possible 
estimate of the value of Cs. I t  depends upon the shape of the container and the 
range of values of viscosity coefficients and heat conduction coefficients. 

The assumption that  a classical solution of (1) under the boundary conditions 
(3) and initial conditions belonging to set S is made here to keep the analysis 
simple. For the purpose of proving the theorem it suffices to assume that  a 
suitably defined weak solution (e.g. see [2]) of (1) exists. 
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