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Summary 

The analog of Toupin's version of Saint-Venant's principle is proved for an isotropie, 
linear elastic mieropolar body of arbitrary length and of uniform cross-section which 
in the unstressed state is helical. That is, when such a body is loaded by self-equilibrated 
stresses and couple stresses at one end only, we show that the elastic strain energy stored 
in the part of the body beyond a certain distance from the loaded end, decreases expo- 
nentially with the distance. 

Introduction 

In  1965 Toupin [1] gave a precise mathematical  formulation and proof of 
Saint-Vepant 's  principle for non-polar elastic bodies. He showed tha t  for a linear 
elastic homogeneous cylindrical body of arbi trary length and cross-section loaded 
on one end only by  an arbi trary system of self-equilibrated forces, the elastic 
energy U(s) stored in that  par t  of the body which is beyond a distance s from the 
loaded end satisfies the inequality 

U(s) = U(0) exp ( - ( s  - -  1)/8~). (1) 

The characteristic decay length so(l) depends upon the maximum and the minimum 
elastic moduli for the material  and the smallest nonzero characteristic frequency 
of free vibration of a slice of the cylinder of length 1. For isotropic materials, he 
proved tha t  the inequality (1) implies the exponential decay of stresses with the 
distance from the loaded end. An inequality of the type (1) for a homogeneous 
isotropic micropolar linear elastic cylindrical body has been obtained by  Berg- 
lund [2]. By  using an estimate, due to Ericksen [1, p. 88], for the norm of the 
stress-tensor in terms of the strain-energy density, Berglund showed that  so(l) 
depends on the maximum elastic modulus. 

The statements and proofs of other mathematical versions of Saint~Venant's 
principle due to Sternbcrg, Knowles, Zanaboni, and l~obinson and of Toupin's 
version of the Saint-Venant principle are given in Gurtin 's  monograph [3]. 

Recently, Batra  [4] proved an inequality similar to (1) for a linear elastic 
anisotropic helical spring of arbi trary but  constant cross-section. Herein we 
generalize that  to the case when the helical body is made of a micropolar material 
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but is isotropic. We assume that  the cross sections are materially uniform in the 
sense that  one cross section can be obtained from the other by  a rigid body 
motion. Thus the material properties do not depend upon the axial coordinate 
of the point. This idea of material uniformity is due to Ericksen [5] who has 
discussed this concept in more general terms. 

We describe the deformation of the helical body with respect to suitably 
selected coordinate axes and use equilibrium equations in the form of Euler- 
Lagrange equations derived by extremising a functional. The characteristic decay 
length is found to depend upon the maximum elastic modulus and the charac- 
teristic frequency of free vibration of a slice of the helical body of axial length l. 
This agrees with the result obtained by Berglund for a straight prismatic micro- 
polar body. Thus relatively large elasticities associated with the microdeformation 
will reduce the rate of decay of the energy. 

Formulation of the Problem 

Consider an isotropic linear elastic micropolar body B of arbi trary but  constant 
cross-section which in the unstressed state is a clockwise helix. Introduce two 
coordinate systems, one a fixed rectangular coordinate system X with Xa-axis 
coincident with the axis of the helix, the plane X a = 0 containing one end cross 
section of the helix with X 3 > 0 for points in the body and the other a curvilinear 
coordinate system Y related to the former by the transformation 

01[ 1 
y3 0 1 X a 

The coordinate transformation (2.1) is invertible, the inverse being 

I X  1 ] [ cosbya  sin b ya !] [yl] 
X 2 = - - s i n b y 3  cosbY3 y2 . (2.2) 

X a 0 0 y3 

Here b equals the angle of twist of the helix. Under the coordinate transformation 
(2.1), ya = X a and the y1, yZ_coordinate curves are obtained by  rotating clock- 
wise the X*, X2-coordinate axes through an angle bX  a, the axis of rotation being 
parallel to Xa-axis. In  index notation, we write (2.1) as 

yi  = R iX~. (2.3) 

Throughout this paper we use a mixture of direct and index notation. Repeated 
indices imply summation over the range of indices, dlj = (~ii = ($ff is the Kronecker 
delta. The Greek indices refer to components with respect to X-axes and both the 
upper case and lower caseLatin indices refer to components with respect to Y-axes. 
The upper case Latin indices take values 1, 2 ; other indices assume values 1, 2, 3. 
A comma followed by an index ] indicates partial  derivatives with respect to yi.  

We note tha t  when the helix angle b equals zero, the body is straight prismatic 
and the coordinate systems X and Y coincide with each other. In  the Y coordinate 
system, the helical body of axial length L occupies the cylindrical region CoX[0 , L] 
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X3= y3 

bs 

.X l 

Fig. i 

where C0 is the end  cross-section of the body  contained in the plane X ~ = 0. The 
covariant  base vectors  g~ directed tangent ia l ly  along the Y~-coordinate curves 
are given b y  

8X 
g i  - -  8 y i  - -  (Ri~ + ~ R ~ .  3 yK)  e~,  

in which e~ are base vectors for the Cartesian coordinate axes X. The base vectors 
at  a typical  point  are shown in Fig. 1. The base vectors gl do no t  form an ortho- 
gonal set. This becomes obvious when we look at  the explicit expression, give n 
below, for the metric tensor  G defined as 

8X ~ 8X ~ 

[Oij] = 0 1 b y l  . (3) 

- - b Y  2 b Y  1 1 ~- b~[(Y1) ~ -]- (y2)2] 

The metric tensor  Gii is obta ined by  invert ing (3)�9 One can raise or lower Lat in  
indices by  using G. Since det  [Gij] z 1, the volume element d V  given by  d X  1 d X  2 

�9 d X  ~ equals d y1 d y2 d y3. 

I n  micropolar cont inuum mechanics [6], to  each point  P of the continuum, we 

have a director P Q  a t tached (see Fig. 2) tha t  can only  rotate,  its rota t ion being 

x ~, x ~ 

Q 

~ 2 2 D x~X 

Fig. 2 
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independent of the deformations of the continuum surrounding P.  Setting 

O P  = X = X~e~ = ( R d  y i )  e . ,  

P Q  = X = 2~e~ = ( R i ~  i) e~, 

0-5=*= X e,,  
we have 

2 ~ = X ~ + 2 ~ = Rd(Y~ + 2 q .  

(4) 

(5) 

Due to the application of loads to the body, let the point P deform into P '  and 

the director P Q  into P ' Q '  = g. Letting 

p p ,  *~ = = u e~ (R~"u i) e~, 

P ' Q '  = ~:e~ = ( R i ~  i) e , ,  
(6) 

O P '  = x"e~ = (X"  + ~ )  e .  

OQ - ~ '  = ~ e ~  = (x ~ + ~ )  e . ,  

~" = 2" + ~ 2 ~ ,  ~)e ~ = - - ~ , z ,  (6.9, 6.10) 

we have 

with 

e.  = X ~ + ~ + ~ = R~( Y~ + u ~ + 2: ~ + r  (7) 

q~/ - -  R ffq~e~Rj~ -- --+~J. (8) 

Note that  u ~ equals the displacement of a point along the axis of the helix and, 
u 1 and u 2 equal components of displacement ~ along y1 and YS coordinate curves. 
Thus u 3 is not a component of ~ along t h e  ya-coordinate curve. A similar inter- 
pretation applies to ~a. The use of ~ and ~ instead of u and ~ simplifies considerably 
the algebraic work. The assumptions (6.9) and (6.10) imply that  the director can 
undergo infinitesimal rotation independent of the deformation of the continuum 
around P.  

In  order to calculate the expressions for appropriate strain tensors, we calculate 

ds 2 - -  d S  2 ~-- d~ ~ d~ ~ - -  d X "  d X  ~ 

and retain terms linear in u and qb, obtaining thereby 

i (ds2 _ dS~) = (Ai j  + B~jkZ~) d Y  i d Y J +  (s 0 + DOkZ  ~) d Y  ~ d2JJ, 
2 

in which 

ei] -'~ (~]k uk, i ~- bS]p3(~3i ~p ~- (~ik~)j k -~ bSpq3~ai~)kP(~J k y q '  (9) 

Di]k = (~ipq~)P,i @ bejpa(~ai~)k p -~- b%kaOai~iv. (10) 

We omit writing the lengthy expressions for Ai~- and Biik. s~ik is the permutat ion 
symbol tha t  assumes values 1 or - -1  according as i, ], k form an even or an odd 
permutat ion of 1, 2, 3, and is zero otherwise. 1%r mieropolar media [6], % and Dijk 
are measures of infinitesimal strain. When b = 0, their expressions (9) and (10) 
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reduce to the rather familiar expressions used in the linear micropolar theory. 
Henceforth, we work with the axial vector ~ related to the skew-symmetric matrix 
~i~ by 

1 (11) 
(~k ~-- - - ' ~  ~kqn~m n~mq" 

For ~ linear elastic micropolar body that  is stress free in the reference con- 
figuration, the strain energy density W per unit volume can be assumed to be a 
positive definite homogeneous quadratic form in the infinitesimal strains eij and 
Dij  k. When the body is also isotroFic, W can be written explicitly as 

with 
2 W = A4ikleijekl + B4~kl'~Di~kDzm,~, (12) 

2W1 ~ A4~kteiiek~, (13) 

2 W 2 - -  Ri iklmn D.  1~ �9 ~ ~ ~#k.L. ' lmn (14) 

being positive definite. There is no mixed term in (12) because of the assumption 
of isotropy. The assumption that  in the unstressed reference configuration various 
cross-sections are materially uniform implies that  the elasticities A ~k~ and B ~ik~" 
are functions of atmost y1, y2. The elasticities satisfy the symmetry relations 

Aiikl ~ Akl i i ,  Biiklmn ~ B~mn4ik. (15) 

Substitution from (11) into (9) and (10) and of the resulting expressions for eij 
and Di~.k into (12) gives 

W ~- W(u4,j, u 4, c~%, r yg) .  (16) 

W is a homogeneous quadratic function of the indicated variables except Yg. The 
requirement that  W be unaltered by a superimposed rigid body motion yields 

where 
W(u%, ur ~%, yK) = W(v%, v4, T%, T 4, yK), 

V i z ~t i ~ -  wi~  

0 7 ) 

(18) 

w t ~_ R , j ( a  '~ + b~'Rj ~ Y i ) ,  

1 R4(s~ybpy) ,  T~ = r  T 

(19) 

(20) 

b2 = --ba ~. (21) 

The vector w represents the superimposed rigid body motion, its components 
w 1 and w 2 are measured along Y1 and y2 coordinate curves and w 3 is measured 
along the axis of the helix. An explicit expression for w is given in [4]. 

Equilibrium equations governing the static deformations of a micropolar 
helical body B in the absence of body forces obtained by  taking the extremum of 

fW av -  f /~*dU~aU~-- f ~ # d ~ d ~  
B aB ~B 
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a r e  

( O ~ ) , i  au ~aW - - 0  in B,  (22) 

a W )  aW __0 in B, (23) 

aW aw 
n i = / i ,  - - n i = m ~  on ~B, (24) 

~yi ~yk 
ni = • aU~ au~ (25) 

dSi : ni dU  1 dU ~. (26) 

Here ~B, the boundary of the body B, is assumed to be given parametrically by 
Y = Y ( U  1, U 2) and the sign in (25) is selected so that  n points out of ~B. Also[  is 
the applied force and m the applied couple stress vector, each being measured 
per unit coordinate area dU 1 dU2; dSi is the vector element of area on the surface. 
For a traction boundary value problem in which the body is loaded only at  the 
end X 3 = 0, Eqs. (22)--(24) have a solution only if 

Co Co 

i.e., the applied loads must be self-equilibrated. 
With the definitions 

C s ~ - { Y : Y ( B ,  y a : s } ,  

: cross-section of the body lying in the plane Y~ : s, 

Cs, t = - - { Y : Y C B ,  s G  Y3 g s +  l}, 

portion of the body between the planes 

y a = s  and y a = s + l ,  

U(s) ~ f w  d yl  d y2 d ys, Ya >--_ s 

am ~ the supremum of the eigen values of Aqkl regarded as a linear transformation 
on the space of second order tensors, 

bm ~- the supremum of the eigen values of B ijk~n regarded as a linear trans- 
formation on the space of third order tensors, 

2o ~ the smallest non-zero characteristic value of free vibration of a slice of the 
helical body of axial length l and mass density as well as the density of 
microinertia equal to one, 

(28) 

we state and prove the theorem below. 
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Statement and Proof of the Theorem 

Theorem. I f  for an isotropic linear elastic micropolar body which in the 
unstressed state is helical, the loads applied at  the end X a = 0 satisfy (27) and 

then 

where 

li = 0 = mi on OB -- Co, (29) 

u(~) __< u(0) ex~ ( - ( s  - z)/~Xz)), (30) 

1 (so(l)) 2 = ,--~ max (am, bm). (31) 

Proo] o/the Theorem. Since W is a homogeneous quadratic form in u~,j, u ~, r 
and r by  Euler 's  theorem, 

u(8) = f W dv ,  
Cs,l 

= -~ k ~hj  uD § au---7 ~ q)',j + -g-~ 4' dA 
Cs3, 

C. 

(32) 

In  order to obtain (32)a from (32)=, we used the divergence theorem, equilibrium 
Eqs. (22) and (23), the boundary  condition (29) a, nd that  on Ca, 

dSk= -- d yl d Y~3k = --dAd3k. 

Because of (17) we can replace u and ~b by v a n d  h~respectively. Recalling Eqs. (18) 
to (20) we see that  v and ~" differ from u and ~b only by  a rigid body motion. Thus 

l f [ OW ow ] U(s) -- 2 [Ovi,3 § ~Ti,---~* g/i dA. (33) 

Physically this expresses the fact that  any self-equilibrated force system does no 
work during a rigid motion of the body. From (33) and (9) we obtain 

f aVV vl dA = [" oW - - j  0vl,3 - - j  ~% v 1 dA 
C~ Cs 

L c , 

(34) 

wherein we used the inequality 

2 / ] h d V  <=vo f /~dV+~o f h2dV (35) 
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which is a consequence of the Schwarz and geometric-arithmetic mean inequalities 
(e.g. see Toupin [1, p. 93]). In  (35) vQ > 0 is an arbi trary constant and / and h 
are scalar fields defined on B. Thus v in (34) is a positive constant still to be chosen. 
Writing inequality (34) with the index 1 replaced everywhere in turn by  2 and 3 
and adding the respective sides of these three inequalities, we conclude that  

if o-.- ,f ] _ OW v e d A  < _ ~  ~ - - - - d A + - -  v i v J d A  . (36) 
- -  2 8e3i ~e~j ~, 

C,~ L Cs C8 

Now ~ aw aw _< 8-aw aw ~k~, 
Oeai Oe3 i - -  ~ 8eki Oel i 

g ~i~A~'kie~,AlinPe,~pdkz, (37) 

g 2a,~ W1.  

Details of deducing (37.3) from (37.2) are given by  Berglund [2]. Substitution 
from (37) into (36) results in 

fOWvCdA~ Ir,..mfWxdA@lfviv,,i, dA ] (38, - = T  . �9 

Cs L " Cs C, 

Similarly, we can show that  

;0" 'I ; -:J ] 
- -  ~ T ~ d A  ~ - -  2#b~ W 2 d A  - -] -  T ~ T J S ~ d A  (39) 

- -  2 L c .  c .  

in which/~ > 0 in an arbi trary constant. From (38), (39), and (33) and choosing 
r = /* ,  we obtain 

u(8) =< -~ 

§ 

Integrat ing both sides of this 
ya = a + I for some 1 > 0 and 

-~ f g(s') ds' = Q(s, l) 
8 

(40) 

inequality with respect to Us from ya___ s to 
setting 

s§  

(41) 

we arrive at the following 

Q(s, l) < ~ a W1 dV + b,~ W2 dV 
Ct~,! 

(42) 
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In  an effor t  to bound the last  two integrals  on the r igh t -hand  side of (42) by  an 
integral  of W1 and W2, we consider the free v ibra t ion  prdblem of the helical body  
of uni t  mass  dens i ty  and  uni t  dens i ty  of mieroinert ia.  Define a characterist ic  
solution (e.g. see Gur t in  [3, section 75] and  Anderson [7]) as the ordered tr iplet  
[~, u, ~] such t ha t  ~ is a scalar and  u and  ~ are fields on B, and 

(~w/ - ~ •  inB, \ #uq~] ,~ 8u i 

,J - -  04--- 7 + 2q~i = 0 in B ,  
(43 )  

O~j f (uiu j + T~TJ) dV = 1, 
B 

Ou% ~ dSk = 0 o n  ~ B .  

B y  proceeding in the same way  as t h a t  given in [3] we ver i fy  t ha t  

2 f W d V  

Thus  the lowest  non-zero characteris t ic  value 20 corresponding to the free v ibra t ion 
of Q,~ satisfies the inequal i ty  

2 f W d v  
20 ~< c . . . . .  (44) 

- -  (~,:i f ( v~v~ + T~T~) dV 
Cs,t 

for  every  smooth  fields v and  ~"  on C~,l such t ha t  

~,j f v,r av + o, f v, d v  = f ~ j Jvk  a v  = o. (45) 
C~,~ Cs,z Cs,z 

Following Toupin  [1], for a given u, we can choose v such t h a t  (45) is satisfied; 
the  corresponding !F  is ob ta ined  f rom the given ~b b y  using (20). Inequa l i ty  (44) 
when combined with (42) gives 

in which 

~(l) {" 
Q(8, l) <=--i-2 W dV 

Cs,l 

8c(1) = -~ v~ + , 

a = m a x  (am, bin). 

(46) 

(47) 

We choose v = 1 / ~  so t ha t  so(l) t a k e s  the m i n i m u m  value 

8~(i) = ~l/-s ( 48 )  
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Differentiation of (41) with respect to s yields 

. dQ 1 

ds l 
- - -  - -  [ U ( s  + t )  - u ( s ) ]  - fwdv, 

Csj 

and this together with (46) and (48) result in 

so(t) dQ ~s + Q G 0. (49) 

Integrating (49) and using 

U(s + l) < Q(s, l) g U(s) 

which follows from the observation that U(s) is a noninereasing function of .s, we 
arrive at 

U(82 ~- ~) < e x p  ( - - ( 8 2  - -  81)/8r 
V(sl) = 

The choice el = 0 and s2 + 1 = s gives the desired inequality (30). 

Remarks 

For the micropolar helical body the decay rate (31) is of the same form as that 
obtained by Berglund for a straight prismatic mieropolar body and has no explicit 
dependence upon the helix angle b. Of course, the value of 20, the lowest non-zero 
characteristic value of a slice of the helical body of axial length l does depend, 
among other quantities, upon b. For nonpolar helical bodies [4], the decay rate 
has an explicit as well as implicit dependence upon the helix angle b. Equation (48) 
implies that the decay rate is inversely proportional to the squareroot of the 
maximum elasticity. Thus a rather large value of one of the elasticities associated 
either with macrodeformation or microdeformation will result in a very low 
decay rate of the energy. 

We remark that in the definition of the characteristic solution, we have taken 
the mass density and the density of microinertia as unity. As was the case with 
straight prismatic micropolar body, the decay constant neither depends upon mass 
density nor on the density of microinertia. Whereas for a nonpolar helical body ,  
inorder to prove a similar result, we did not have to assume that the body is 
isotropic, here the assumption of isotropy is used in writing the expression (12) 
for the strain energy density. 
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