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Summary  

Thermomechanical deformations of a body made of two different materials and under- 
going simple shearing deformations are studied with the objectives of finding out when and 
where adiabatic shear bands will initiate and how they will subsequently grow. Each 
material is modeled as strain and strain-rate hardening but thermally softening. A shear 
band is presumed to have formed if the introduction of a temperature perturbation centered 
around the common interface between the two materials results in an eventual localization 
of the deformation into a region of width considerably smaller than the width of the initial 
temperature bump. For a fixed set of material properties the effect of the applied overall 
strain-rate, and for a fixed applied strain-rate the effect of varying the shear modulus, 
thermal conductivity., and the coefficient of thermal softening of one material relative tO 
the other have been examined. I t  is found that a shear band forms in the material that 
softens more rapidly. 

1. Introduction 

Adiabat ic  shear banding is t h e n a m e  given to  a localization phenomenon  
t h a t  occurs in high strain-rate plastic deformation,  such as machining, meta l  

f o r m i n g ,  and ballistic penetrat ion.  Pract ical  interest  in the  phenomenon  derives 

f rom the  fact  t h a t  once a shear band  has f o rmed ,  mos t  of the subsequent  de- 

format ions occur in the  narrow region of the band  and the  load carrying capaci ty  

of the  b o d y  is severely impaired. These shear bands  are often precursors to  

shear fractures.  
Since the t ime Zener and Hol lomon [1] observed shear bands  in a steel plate  

punched b y  a s tandard  die and postulated t h a t  a negative slope of the  stress- 

s train curve implies an intrinsic instabi l i ty of the  material,  there have been 
m a n y  analyt ical  (e.g. Rech t  [2], Staker  [3], Clifton [4], Clifton and Molinari [5], 

Burns  [6], Wr igh t  [7], Anand  et al. [8], Bai  [9], Coleman and Hodgdon  [10]), 

experimental  (e.g. Moss [11], Costin et al. [12], Marchand and Duf fy  [13]) and 
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numerical (e.g. Clifton et a]. [14], Merzer [15], Wu and Freund [16], Wright 
and Batra  [17], [18], Wright and Walter [19], Batra  [20]--[22]) studies aimed 
at understanding the factors tha t  enhance or inhibit the shear strain localization. 
l%ogers [23], [24] has elegantly summarized in his review articles the works 
dealing with adiabatic shear banding that  were completed until 1982. All of the 
works enumerated above have studied adiabatic shear banding in monolithic 
materials. In some of the analytical and all of the numerical works, a material 
inhomogeneity/flaw has been modeled by introducing a perturbation, say in 
the temperature field, and studying the subsequent growth of all of the field 
variables. 

Here we study the initiation and growth of adiabatic shear bands in a body 
made of two different materials and undergoing simple shearing deformations. 
The material of each layer exhibits strain and strain-rate hardening and thermal 
softening. A temperature perturbation symmetrical about the common interface 
is introduced and the body is presumed to be placed in a hard loading device 
in the sense that  the velocity of points on the end faces is prescribed. The re- 
sulting nonlinear initial-boundary-value problem has been solved numerically 
by the Crank-Nicolson-Galerkin method. In every case studied, the deformation 
is found to localize completely within the material for which the peak value of 
the shear stress occurs at a lower value of the average shear strain. 

2. Formula t ion  of the Problem 

We study thermomechanical deformations of a bimetallic body undergoing 
simple shearing motion. With respect to a rectangular Cartesian set of axes, the 
deformations of the body are assumed to be given by 

x = X d- u ( Y ,  t) ,  y = Y ,  z = Z ,  0 = O(Y, t) (1) 

where (x, y,  z) is the current position of a material particle tha t  occupied the 
place (X, Y, Z) in the stress free reference configuration, 0 denotes the tempe- 
rature change and u gives the x-displacement of a material particle. The de- 
formations of material points that  are not on the common interface between 
the two materials are governed by 

Qe ~- --q,v + sv,y, 

(2.1) 

(2.2) 

where v = �9 is the x-velocity of a material particle, s is the shear stress, q is 
the heat flux in the y-direction, a superimposed dot indicates material time 
differentiation, and a comma followed by y implies partial differentiation with 
respect to y. Equations (2.1) and (2.2) express, respectively, the balance of linear 
momentum and the balance of internal energy. We presume that  the strain 
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rate has an additive decomposition into elastic ~ and plastic parts 2p, i.e., 

~, = v,,, = ~ + ~ .  (3) 

~'or the constitutive relations we take 

= ~ ,  (4.1) 

q : --k0;u , (4.2) 

e ~-- cO + -~ --~ 7e 2, (4.3) 

{ = 0 for elastic deformations, 
pp = A s ,  A (4.4) 

0 for plastic deformations. 

Here # is the shear modulus, k the thermal conductivity, and c the specific heat. 
A material point is presumed to undergo plastic deformations if at that  point 

/(s, 0, p~) > ~, (5) 

where / is the yield function and ~ describes the work hardening of the material  
The thermal softening and strain-rate hardening characteristics of the material 
are embodied into / by requiring that  

- ~ > 0  and ~ < 0 .  (6) 

We presume that  

/(s, O, pp) = s/[(1 -- aO) (1 + bpp)m], (7.1) 

= Uo(1 + ~b/r (7.2) 

g~b --~ s~p, (7.3) 

where a, b, m, n, and ~bo are material constants and ~0 is the yield stress of the 
material in a quasi-static isothermal simple shearing test. Equation (7.3) specifies 
the rate of evolution of the work-hardening parameter ~O. Equations (4.4), (5), 
(7.1) and (7.2) imply that  a material point is deforming elastically if 

( s ~ 0  1 + ( l - - a 0 ) .  (8) 

For elasto-plastic deformations of the material point, the plastic strain-rate pp 
satisfies 

s----n0 1 +  ( 1 - - a 0 ) ( l + b , p p )  m. (9) 
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The constitutive relation (9) is a slight generalization of that  proposed by Litonski 
[25] and has been used by Burns [6], Wright and Batra [17], [18], and Batra 
[20], [21]. Substitution from Eqs. (3), (4.1), (4.2) and (4.3) into Eq. (2.2) gives 

ecO = kO,~y § s~,p. (10) 

Thus all of the plastic working is presumed to be converted into heat. We note 
that  Farren and Taylor [26] found that  in tensile experiments on steels, copper 
and aluminum, the heat rise represented 86.5, 90.5--92, and 95%, respectively, 
of the plastic work. 

At points on the interface y ---- 0 between the two materials, 

Is] - - 0 ,  Iv] ----0, (11.1) 

[q] = o ,  [o] = o ,  (11.2) 

where [s] denotes the difference in the limiting values of s as the point on the 
common interface is approached from the two sides. Thus Eqs. (11.1) and (11.2) 
ensure the continuity of the shear stress and the heat flux across the interface 
between the two constituents of the body. 

We consider the case when the body is placed in an insulated hard loading 
device and accordingly impose the following conditions on its top Y ---- H and 
bottom y ~ - -H faces. 

v - ~  :j=vo at y ~  :J=H, 

q ~ 0  at y : = l = H .  
(12) 

:For the initial conditions we take 

v(y, o) = y ,  ~(y, O) ~ O, O(y, 0) ~--- 0.1(1 -- y2)9 e-5y~ 

~(y, 0) = ~o(1 - ~0(y, 0)). 
(13) 

Thus initially each material point is assumed to lie on i~s yield surface that  
corresponds to its prescribed temperature and zero plastic strain-rate. 

3. Computation and Discussion of Results 

Batra [20] has given the detMls of the Crank-Nicolson-Galerkin method 
used to integrate Eqs. (2) and (4) subject to the boundary conditions (12) and 
initial conditions (13). That computer code based on the non-dimensional form 
of the equations, was modified to use the present dimensional form of equations. 
The advantage of using the dimensional form of equations is that  the continuity 
conditions' (11) are easily built into the Galerkin formulation of the problem. 
The domain [ - -H, -~H]  was divided into 400 uniform elements (cf. Fig. l a) 



Adiabatic Shear Banding in a Bimetallic Body 285 

-i.0 

I 

L 
I- 

! : 

+1,0 

�9 ! 

400 uniform elements I 
I 

7 (a) 

-I .0 

I 

k I00 uniform 

I-  elements 

-0.i 0.i +i.0 

"'H " " " '  // I 1" -  d l  ~ ' !  ! I 

I I lO0. iform J 
elements 7 

O0 u n i f o r m  e lements  

(b) 

Fig. 1. Finite elemen~ meshes used 

and the t ime increment ~It = 5 • lO-6H/Vo was used to integrate the governing 

equations. ~ 
We first list the values of material  and geometric parameters  tha t  were 

assigned the same values for both constituents of the body. 

H ---- 2.58 m m ,  ~ = 7,860 kg m -~, ~0 = 333 MPa,  

c = 473 J kg -1 ~ -1, 

m = 0.0245, n = 0.09, ~b0 ---- 0.017, b = 104 sec 

The material  properties of the body occupying the region [0, H]  are labeled 
by  subscript 2 and tha t  of the other par t  of the body by  subscript 1. For  material  

1 we took:  

#1 -~ 80 GPa ,  kl = 49.216 W m -1 ~ al = 0.00552 ~ 

and studied the effect of varying the properties of material  2. The chosen values 
of parameters  for material  1 are for a typical  hard steel, except tha t  the value 
of the thermal  softening coefficient a is nearly seven times what  it ought to be. 
This is done to reduce the computat ional  t ime needed to solve the  problem, 
and Should not affect the results qualitatively. In  the first set of numerical 
experiments, the overall applied strain-rate was kep~ fixed at  500 see -1 and 
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only one out of three variables ~, k and a was changed. In  the second set of 
computations, the effect of changing the average strain-rate to 5,000 sec -1 and 
50,000 sec - i  for a fixed set of material  properties was analyzed. 

To ensure tha t  the computer code had been correctly changed, we solved 
the problem for a homogeneous body studied earlier by  Bat ra  [20]. For the test  
problem, results identical to those computed previously were obtained. Sub- 
sequently we set /~2/#i = 0.9, k~/kl = 1.0, a2/al = 1.0 and then tt2//~ = 1.0, 
k~/kl = 0.8 and a~/a~ ---- 1.0 but  did ne t  introduce any temperature  perturbation. 
There was no localization of the deformation observed in either case. 

Before discussing the computed results we note tha t  the emphasis here is 
to see where the band forms and its possible shape. Bat ra  [21], [22] has studied 
the effect of various material  parameters  and the applied strMn-rate on the 
initiation and growth of a shear band in a homogeneous body. In  keeping with 

the aforementioned objective the variation of the field variables within the 
domain (--0.1H, d-0.1H) is plotted. We first discuss results when the prescribed 
velocity at  the top and bot tom faces is kept  fixed at  ~ 1.20 m/see. This corresponds 
to an average strain-rate of 500 see -1. 

Figures 2 and 3 show the variations of the temperature,  plastic strain-rate 
and the particle velocity within the specimen at  two different times and for 
four different values of a2/al. Soon after (see Fig. 2) the symmetric temperature  
perturbat ion is introduced, the temperature  becomes nonsymmetrieal  about  
the centerline. This asymmet ry  is more pronounced for a~/al ---- 0.5 and 1.2 as 
compared to tha t  for a2/a~ ---- 0.8 and 0.9. Also the velocity gradient is dis- 
continuous at  the center. The plastic strain-rate is also nonsymmetrieal  about  
the centerhne and follows a pat tern  somewhat akin to tha t  of the temperature  
except tha t  it exhibits oscillatory behavior near the centerline. 

The plastic strain-rate at  the center suffers a jump because the shear stress 
becomes essentially uniform throughout the specimen soon after the temperature  
perturbat ion is introduced and stays uniform until the t ime results are presented 
here. Since the temperature  is continuous across the centerline, the higher vMue 
of the thermal  softening coefficient a lowers the flow stress for the material  point 
y = 0- as compared to tha t  at  y = 0 + if a2/al < 1.0. According to our constitutive 
assumptions the plastic strMn-rate at  a point is proportional to the amount  by  
which the stress at  the point exceeds the flow stress. Thus the plastic strMn-rate 
at the point y = 0- should exceed tha t  at  the point y ---- 0 + if a,/ct~ < 1.0. 

The values of Y~vg or the t ime when the deformation seems to have localized is 
different for the four cases (see Fig. 3). For a2/al ---- 1.0, the deformation localized 
when Y,vg = 0.0745. For all four values of a:/al the shear band formed within the 
material  having the higher value of the thermal softening coefficient. For a,/a, 
= 0.5, 0.8, 0.9, and 1.2, the peak plastic strain-rate occurred at  y/H ---- --0.0040, 
--0.035, --0.030, and d.0.030, respectively. Thus the higher the difference between 
the values of a2 and al, the larger the shift of the center of the band away from 
the center of the specimen. Note tha t  for every value of a,/a~ considered herein, 
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the peak value of the plastic strain-rate occurs at a point where the t~mperature 
is maximum rather than where the particle velocity is zero. 

In  order to see if the mesh size had any effect upon the computed results and 
in particular the shift in the center of the band away from the center of the 
specimen where the initial perturbed temperature was maximum, we recomputed 
results for a2/al -~ 0.8 but  with a finer mesh. In  the new mesh (Fig. 1 b) the 
intervals I - -H , - -H / IO] ,  [ - -H/ IO,  H/10] and [H/IO, H] were divided,  respec- 
tively, into 100, 200, and 100 uniform elements. Thus within the region [--H/10,  
H/10] the new mesh was five times as fine as the previous one. With this mesh 
the peak plastic strain rate still occurred at  y / H  ~ --0.035 and Yav~ = 0.068. 
Previous work (Kwon and Batra  [27]) on a related problem revealed that  the time 
increment used herein gave results virtually identical to those obtained with 
At=-2 .5  • 10-6v0/H. These numerical experiments ensure that  the results 
computed with the uniform mesh of 400 elements and presented herein are 
reliable. 

Figure 4 depicts the particle velocity, plastic strain-rate and the temperature 
for k2/kl -~ 0.01, 0.5, 0.8, 0.9 and 7avg = 500 sec -1. Note that  for all four values 
of ks/k1 the deformation localizes at the same value of the average strain. How- 
ever, the peak plastic strain-rate and the maximum temperature occur at  
y / H  = 0.005, 0.005, 0.0, 0.0 for/c~/kl = 0.01, 0.5, 0.8, 0.9, respectively. Thus the 
shift of the center of the band away from the centerline of the specimen is not as 
pronounced as it  was in the previous case. The lower value of the thermal con- 
ductivity should result in higher temperatures locally because of the less amount 
of heat being conducted away from the point. The higher temperature lowers the 
flow stress which gives rise to higher values of the plastic strain rate since the 
shear stress becomes uniform soon after the temperature perturbation is intro- 
duced. This is evident from the plots for the case k2/kl = 0.01. The average strain 
at which the localization occurs essentially equals tha t  (e.g. 0.0745) for the 
homogeneous body. 

The results plotted in Fig. 5 for #2//~ ----- 0.5, 0.8, and 0.9 reveal tha t  the 
deformations of the bimetallic body are symmetrical about the centerline when its 
two constituents have only differing values of the shear modulii. This is not 
surprising since, for a homogeneous body, the change in the value of the shear 
modulus affects little the value of the average strain at which the pea~ in the 
shear stress-shear strain curve occurs. 

We now study the effect of the applied strain-rate or the prescribed velocity 
at the top and bottom faces of the specimen. In Fig. 6 is plotted the temperature, 
plastic strain-rate and the particle velocity for k~/kl ~ 0.5 and ~'0 = vo/H 
= 500see -1, 5,000see -1, and 50,000see -I. Whereas for ~o = 500see -1 and 
5,000 sec -~ the maximum plastic strain-rate occurs where the temperature is 
maximum such is not the case for ~0 = 50,000 see -1. A possible explanation for 
this lies in the distribution of the shear stress, plotted in Fig. 7, within the spe- 
cimen. For  ~0 = 500 sec -1 and 5,000 sec -1 the shear stress becomes uniform 
throughout the specimen shortly after the temperature perturbation is introduced 
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Fig. 8. Distribution of the l~article velocity, plastic strain-r~te and temperature for 

a J a  I = 0.8 a n d  ~)o = 500 see -1, 5,000 see -1 a n d  50,000 sec -1 a t  t h e  i n s t a n t s  of l o c a l i z a t i o n  

of t h e  d e f o r m a t i o n .  ( - - - - - -  ~)o = 50,000 sec -1, 7avg = 0 .108;  ...... ~o = 5,000 see -1, Yavg 
= 0.064;  ~o = 500 sec -1, Yavg = 0.068) 
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and stays so at least through the initiation and some growth of the locahzation of 
the deformation. At P0 = 50,000 see -1 the shear stress becomes uniform after the 
perturbation is introduced but  becomes nonuniform once the deformation starts 
to localize. This probably is due to the inertia forces playing a significant role at  
P0 = 50,000 see -1 and a negligible role at  ~0 = 500 sec -1. Batra  [22] earlier 
studied the response of a homogeneous body at ~o ---- 50 sec -1, 500 see -x, 5,000 see -~, 
and 50,000 see - i  and concluded that  the inertia forces become significant at  
~0 > 5,000 see -1. Because of the nonuniformity of the shear stress at ~0 ---- 50,000 
sec -1 the heat produced due to plastic working is not necessarily maximum where 
p~ is highest thus causing the maximum temperature and the peak plastic strain- 
rate to occur at different points. 

In  Fig. 8 we have plotted the particle velocity, plastic strain-rate and the 
temperature for a2/al = 0.8 and ~0-----500 sec -i ,  5,000 sec -i ,  and 50,000 see -i.  
For  all three values of ~0 considered the band forms within the material having 
higher value of the thermal softening coefficient. The peak plastic strain-rate 
occurs at y/H------0.035, --0.015, and 0.0, respectively, for ~0 = 500 see -x, 
5,000 sec -1, and 50,000 see -~. At P0 = 50,000 sec -~ the localization occurs at 
~/av~ = 0.108 whereas i t  occurred at ?av~ ---- 0.208 for the homogeneous body [22]. 

Batra  and Kim [28] have used the Gear method to integrate the coupled non- 
linear ordinary differential equations obtained by  applying the Galerkin approxi- 
mation to Eqs. (2.1) and (10) and the pertinent boundary conditions. They 
analyzed the initiation and growth of adiabatic shear bands in a homogeneous 
body and used the same values of material parameters as those used herein for 
material 1. Their calculations show that  as the deformation localizes the shear 
stress within the band collapses and an unloading elastic wave emanates out- 
wards from the shear band. When the stress begins to collapse, the temperature at 
the' center of the band equals 79.6% of the presumed melting temperature of the 
material. I t  rises to 97% of the melting temperature within 0.9 ~see. Note that  it  
takes 0.807 ~sec for the wave to travel to the edge of the specimen. Marchand and 
Duffy [13] estimated the maximum temperature within the band to be nearly 
75% of the melting temperature of the steel tested. Since there was no failure or 
fracture criterion considered by  Batra  and Kim, they may have carried their 
computations too far in time. 

As pointed out by  Wright and Batra  [17], implicit in this problem are two 
length scales, namely a thermal length (k/~cpoH2) 1/2 and a viscous length (b/H) 
�9 (n0/e) i12. Here we have varied the thermal length of material 2 relative to tha t  of 
material 1 in the first set of calculations and of both materials in the second set 
when the applied strain-rate was changed. Computed results for the monolithic 
body (Batra [18]) seem to indicate tha t  the thermal length has little effect, if any, 
on the initiation of the localization of the deformation. Since the calculations in 
[18] and also herein could not be carried far enough in time, the effect of either 
the thermal length or the viscous length on the width of the shear band cannot be 
ascertained. 
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4. Conclusions 

F o r  t he  b imeta l l ic  b o d y  the  difference in  the  values  of the  t h e r m a l  sof tening 

coefficients for the  two cons t i tuen t s  of t he  b o d y  has a p r e d o m i n a n t  effect  on the  

loca t ion  of t he  shear  band .  The  shif t  in t he  center  of t he  shear  b a n d  a w a y  f rom 

the  center  of t he  spec imen is more  for  larger  values  of a2/al. The b a n d  lies com- 

p l e t e ly  wi th in  the  cons t i tuen t  hav ing  the  h igher  va lue  of t he  t h e r m a l  sof tening 

coefficient.  The  difference in  t he  values  of  t he  t h e r m a l  conduct iv i t i es  shif ts  t he  

center  of the  band  a l i t t le .  W h e n  one of the  cons t i tuen t s  has  v e r y  low t h e r m a l  

conduc t i v i t y  as compared  to  t he  o the r  one, p las t i c  s t r a in - ra tes  in  i t  a re  higher  a t  

po in t s  equ id i s t an t  f rom the  center  l ine of t he  specimen.  

The  shif t  in  the  center  of t he  b a n d  decreases  wi th  t he  increase  in t he  app l i ed  

s t r a in - r a t e  for  a~/al = 0.8 b u t  s t ays  t he  same for k~/kl = 0.5. The  bands  become 

na r rower  as the  app l ied  s t r a in - ra t e  is increased.  
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