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Summary. We study the plane strain thermomeehanical deformations of a viscoplastie body contain- 
ing a rigid non-heat-conducting ellipsoidal inclusion a t  the center. Two different problems, one in 
which the major axis of the inclusion is parallel to the axis of compression and the other in which it 
is perpendicular to the loading axis are considered. In  each case the deformations are presumed to be 
symmetric about the two centroidal axes and consequently deformations of a quarter of the block are 
analyzed. The material of the block is assumed to exhibit strain-rate hardening, but thermal softening. 
The applied load is such as to cause deformations of the block at an overall strain-rate of 5000 see -1. 
The rigid inclusion simulates the presence of second phase particles such as oxides or carbides in a 
steel and acts as a nucleus for the shear band. 

I t  is found that  a shear band initiates near the tip of the inclusion and propagates along a line 
inclined at 45 ~ to the horizontal axis. At a nominal strain of 0.25, the peak temperature rise near the 
tip of the vertically aligned inclusion equals 75% of that  for the horizontally placed inclusion. The 
precipitous drop in the effective stress near the inclusion tip is followed somewhat later by a rapid rise 
in the maximum principal logarithmic strain there. 

1 Introduct ion 

A phenomenon  which is commonly  observed dur ing high s t ra in  ra te  inelast ic  de fo rma t ion  

of meta ls  is the  fo rmat ion  of nar row bands  of intense shear  s t ra in  usua l ly  called ad i aba t i c  

shear  bands.  These shear  bands  form dur ing  high speed mate r i a l  processing, me ta l  forming,  

and  ball is t ic  pene t ra t ion .  This is an  i m p o r t a n t  mode of deformat ion  as these  shear  zones 
of ten become the  si tes for even tua l  fai lure of the  mater ia l .  

Since the  t ime  Zener  and  Hol lomon  [1] recognized the  destabi l iz ing effect of t h e r m a l  

sof tening in reducing the  slope of the  s t ress-s t ra in  curve in nea r ly  ad iaba t i c  deformat ions ,  

there  have  been m a n y  ana ly t i ca l  (e.g. R e c h t  [2], S t ake r  [3], Clif ton [4], Clif ton and  Moli- 

nar i  [5], Burns  [6], W r i g h t  [7], A n a n d  et  al. [8], Ba i  [9], Coleman and  H odgdon  [10]), 

expe r imen ta l  (e.g. Moss [11], Costin et  al. [12], Marchand  and  D u l l y  [13]) and  numer ica l  

(e.g. Clif ton et  al. [14], Merzer  [15], W u  and  F r e u n d  [16], W r i g h t  and  B a t r a  [17], [18], 

W r i g h t  and  W a l t e r  [19], B a t r a  [20]--[22],  LeMonds  and  Need leman  [23], [24], Need leman  

[25], B a t r a  and  L iu  [26], [27], A n a n d  et  al. [28]) s tudies  a imed  a t  under s t and ing  the  factors  
t h a t  enhance or inhib i t  the  shear  s t ra in  localizat ion.  

Al though  i t  is well  recognized t h a t  dynamic  f rac ture  is s ignif icant ly  inf luenced b y  

gra in  boundar ies ,  p rec ip i t a tes  and  inclusions,  inheren t  voids and  flaws, t ex ture ,  subs t ruc-  

ture ,  and  impur i t ies  [29], ve ry  l i t t le  is known abou t  how such mic ros t ruc tu ra l  fea tures  

inf luence shear  band  nuc lea t ion  and  growth.  Most  compu ta t iona l  shear  band  models  are  
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based on the relative ability of a material to work harden and thermal soften, and metal- 
lurgical influences are taken into account only implicitly as they influence the stress-strain 
and strength-temperature curves. The presence of a material defect has usually been 
modeled by  introducing either a temperature perturbation [19]--[22], [26]--28] or assum- 
ing tha t  the material  at  the site of the defect is weaker than the surrounding material  
[25], [27]. Of the numerical studies cited above, LeMonds and Needleman [23], [24], Needle- 
man [25], Batra  and Liu [26], [27] and Anand et al. [28] have analyzed the development 
of a shear band in plane strain problems. Of these, only Needleman and Batra  and Liu 
have considered the effect of inertia forces. Whereas Batra  and Liu assumed tha t  the 
material  softens because of its being heated up, Needleman studied a mechanical problem 
and accounted for softening mechanisms through the use of an internal variable. 

In  this paper, we study the thermomechanieal plane strain deformations of a thermally  
softening viscoplastic solid and model the material inhomogeneity by  introducing a rigid 
perfectly insulated cylindrical inclusion at the center of the block. The inclusion can be 
viewed as precipitates or second phase particles in an alloy. These particles, such as oxides 
or cairbides, are usually very strong relative to the surrounding material, and their defor- 
mat  ons can be neglected. Here we also take the inclusion to be non-heat conducting. 
Whereas Batra  and Liu [26], [27] modeled the thermal softening of the material by a 
linear relation, we assume that  the flow stress decreases exponentially with a rise in tem- 
perature. Thus, the material never looses its strength entirely even though it becomes quite 
small at  very high temperatures.  The problem formulation incorporates the effect of 

inertia forces, strain-rate sensitivity and heat conduction. The coupled nonlinear equations 
expressing the balance of mass, linear momentum and internal energy are solved numeri- 

cally for a prescribed set of initial and boundary conditions. 

2 Formulation of the problem 

We study plane strain thermomeehanical deformations of a cylindrical body having a 
square cross-section and presume that  there is a rigid inclusion whose eentroidat axis 
coincides with tha t  of the body. The cross-section of the inclusion is taken to be elliptical 
with the major axis either parallel to or perpendicular to the axis of loading. 

We use an updated Lagrangian description [30], where in order to solve for the defor- 
mations of the body at  t ime (t Jr At), the configuration at t ime t is taken as the reference 
configuration. However, the deformations of the body from time t to t ime (t ~- At) could 
be finite. With respect to a fixed set of rectangular Cartesian coordinates axes, we denote 
the position of a material particle in the configuration at t ime t by  X~ and in the configura- 
tion at t ime (t 4: At) by xi. In  terms of the referential description, the governing equations 

for the deformable matrix can be written as 

(~oJ)" : O, (2.1) 

~o5~ = T ~  .. . .  (2.2) 

(2.3) 

which ought to be supplemented by  appropriate constitutive relations, and initial and 
boundary conditions. Equations (2.1), (2.2), and (2.3) express, respectively, the balance of 
mass, the balance of linear momentum, and the balance of internal energy. Here ~ is the 
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mass density of a material particle in the current configuration at t ime t + A t ,  ~o its mass 
density in the reference configuration at  t ime t, a superimposed dot expresses a material 
t ime derivative, J == ~0/~ equals the determinant of the deformation gradient F i .  ~- x~,. ,  v l  

is the velocity of a material particle in the xi-direction, Ti. is the first Piola-Kirchhoff stress 
tensor, a comma followed by c~(i) implies partial differentiation with respect to X . ( x d ,  the 
usua summation convention over repeated indices has been used, e is the specific internal 
energy, and Q~ is the heat flux measured per unit area in the reference configuration. In  
plane strain deformations in the x~ - -  x~ plane, the subscripts cr and i range over 1 and 2. 

The following constitutive equations are employed to describe the matr ix  response: 

Qo = - ( e o / e ) k x ~  

2D~s = v~,s + vL~, 

1 
2 I  ~ = D~sD~s, D~s = D~S - -  - ~  D~kd~S, 

P(e)  = B ( e / e ~  - -  1), 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.s) 

(2.9) 

(2.1o) 

(2.11) 

where aii is the Cauchy stress tensor, a0 is the stress in a quasi=static simple tension or 
compression test, ~ is the coefficient of thermal softening,/)is is the deviatoric strain rate 
tensor, D n. is the strain-rate tensor, dis is the Kroneeker delta, B may  be interpreted as the 
bulk modulus, ~, is the mass density in the stress free reference configuration, c is the speci- 
fic heat, k the thermal conductivity, and parameters  b and m describe the strain-rate sensi- 
t iv i ty  of the material. Here v, ~0, k, c, b and m are taken to be independent of the tempera- 
ture. Equation (2.7) is the Fourier law of heat conduction, referred to the reference con- 
figuration. 
Introducing non-dimensional variables 

= a/~o ,  7o = p /~o ,  ~ = s/~0, 

i = tVo/fI ,  T = T /~o ,  ~ = x / H ,  

= b v o / t i ,  ~ - -  vOo, ~ = e / e , ,  

0 = e,Vo2/~o, ~ = ]c/(e,CVoli), Oo = ~o/(e,c) ,  

the governing equations become 

+ evi,~ = 0, 

Q~ - flXo,~O s, 

cri, - --B(o~ - -  1) dii  + [1/(~/5I)] (1 + b l )  m e -~~  

~-  V / V  0 , 

= 0/0o, 

H ~ B/O" 0 

m 

X = X / H ,  
(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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where the superimposed bars have been dropped. In  Eq. (2.12), 2H is the height of the 
block and Vo the imposed velocity on the top and bot tom surfaces. In  Eqs. (2,13)--(2.17) 
all of the differentiations are with respect to non-dimensional variables. 

For the simple compression problem, we restrict ourselves to deformations that  remain 
symmetricM about both X, = 0 and X~ = 0. With the nondeformable and non-heat- 
conducting inclusion, the boundary conditions for the material in the first quadrant are: 

V 1 = 0 ,  T~i = 0, Q~ = 0 

v~ = 0, ~rt~ = 0, Q~ = 0 

T~2V~ = 0,  Q.3r.  = 0 

v~ = - u ( t ) ,  ~ = o ,  Q~ = o 

v~ = O, v~ = O, Q~2g~ = 0 

a t x i : X i  = 0 ,  

a tx2 = X 2 = 0 ,  

on the right surface, 

on the top face, 

at the interface 1"o between the 
inclusion and the matrix. 

(2.18) 

That  is, boundary conditions resulting from the assumed symmetry  of deformations are 
applied on the left and bot tom faces, the right face of the block is taken to be traction 
free, and a prescribed normal velocity and zero tangential tractions are applied on the top 
face. All four sides of the block are assumed to be perfectly insulated. The zero velocity and 
the zero heat flux at  interface F0 implies that  the second phase particle is rigid and non- 

heat-conducting. 
The interface F0 between the inclusion and the matrix has the parametric represen- 

tat ion 

X1 ~' X22 xl  2 x2 ~ 
a--- T + - ~ -  = 1  or ~-~-1- -~  = 1 ,  (2.19) 

where 2a and 2b are the major and minor axes of the ellipse respectively. 
For the initial conditions we take 

e(X, O) = 1.0, v~(X, O) -~ O, 

and the loading path  is 

| t/0.005 0 < t ~< 0.005, 
U(t) ! 1 t > 0.005. 

v~(X, O) = O, O(X, 0) = 0, (2,20) 

(2.21) 

3 Finite element formulation of the problem 

Because of our inability to solve the coupled nonlinear partial differentiM equations (2.13) 
to (2.16) anMyticMly, we seek an approximate numerical solution of the problem by  the 
finite element method. By using the GMerkin method and the lumped mass matr ix  (e.g. 
see Hughes [31]), we obtain the following semi-discrete formulation of the problem from 
Eqs. (2.13) - -  (2.16), boundary conditions (2.18), art ~1 initiM conditions (2.20). 

d = F ( d ,  ~, fl, b, m ,  ~), (3.1) 

d(o) = do. (3.2) 

Here d is the vector of nodal values of the mass density, two components of the velocity 
and the temperature.  The number of ilonlinear ordinary differential equations (3.1) equals 
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four times the number  of nodes. These differential equations are solved by  using the back- 

ward difference Adams method  included in the IMSL subroutine LSODE.  The subroutine 

adjusts the t ime increment  adapt ively until  it can compute  a solution of (3.1) and (3.2) 

to the prescribed accuracy.  
Ba t ra  and Liu [26], [27] initially used 9-noded quadrilateral elements. Their subsequent  

work [32] revealed tha t  4-noded quadrilateral elements provide a bet ter  resolution of the 
intense deformation within the region of localization. Thus, we use here 4-noded quadri-  

lateral elements. The finite element code developed by  B~tra  and Lin [26] was modified 

to include the exponential  thermal  softening of the material.  

4 N u m e r i c a l  r e s u l t s  

The following values of material  and geometric parameters  used in the calculations are 

representat ive of a typical  hard steel. 

b ~ 10,000 sec, o0 ~ 333 MPa,  ]c ~ 49.22 W m - l ~  -1, m -~ 0.025, 

c ~ 473 J K g  1 oC-1, @, - 7,860 K g  m -a, B ~ 128 G P a ,  
(4.1) 

H = 5 ram, v0 = 25 msec -1, ~ ---- 0.0025 ~ -1, 

a ~ - 0 . 2 ,  b ~ 0 . 0 2  or a ~ 0 . 0 2  and b = 0 . 2 .  

FINITE ELEMENT MESH FOR SHEAR BAND 

I 

A 

l 

I n  

t l  

q 
I 

Fig. 1. The finite element mesh used for the analysis of the problem when the rigid elliptic inclusion is 
placed horizontally 
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For values given in (4.1), 00 = 89.6 ~ and the average applied strain-rate equals 5 000 see-1, 

Figure 1 depicts the finite element mesh used in the computations when the major axis 
of the elliptic inclusion is along the xl-axis. The aspect ratio of the elliptical inclusion is 

taken to be large so as to increase the stress concentration near the vertex of the major 
axis and reduce the CPU time required to solve the problem. The finite element mesh used 

is very fine in the region surrounding the edge of the inclusion and gradually becomes 
coarser as we move away from it. A similar mesh is used when the major axis of the in- 

clusion is vertical. We note that we have not made any attempt to align the element sides 

along the direction of maximum shearing. Needleman [25] has used a mesh with the ele- 
ment sides aligned along the expected direction of development of the shear band. 

The isotherms at five different values of the average strain are plotted in Figs. 2a 

through 2e for the horizontally placed elliptic inclusion, and Figs. 3a through 3e for the 
vertically oriented elliptic inclusion. Due to the high stress concentration at the tip of the 

inclusion, the material near the tip is severely deformed and gets heated up faster than the 

rest of the block. The built up heat makes the material softer but the softer material cannot 
deform very rapidly because of the constraints imposed on it by the surrounding material. 

Also the heat slowly conducts out of this relatively warmer region. With continued further 

straining of the block, the material near the inclusion tip becomes sufficiently hot that  
thermal softening effect exceeds the hardening due to the straining of the material. Even 

though the material point near the inclusion tip may become unstable, a shear band need 

not initiate at this time. For example, the one-dimensional numerical studies [19]--[22] 
make it clear that  a shear band usually initiates at a value of nominal strain far in excess of 

the value at which the shear stress attains its peak value. Once a shear band initiates, the 

material within the band gets heated up very fast. As the shear band grows, the rate of 

temperature rise at the inclusion tip slows down. We have plotted in Figs. 4a and 4b the 
temperature rise at six points within the deforming region as a function of the average 

strain for each of the two eases considered. In  each ease, the temperature rises at a point 
near the inclusion tip much faster than that  at points away from it. The rate of temperature 
rise at points near the inclusion tip decreases gradually and eventually attains a constant 

value. At points far removed from the inclusion tip, the rate of temperature increase is 
essentially uniform implying thereby that the small regions surrounding these points are 

deforming homogeneously. Even though the results for the horizontally and vertically 

aligned inclusions are similar in nature the temperature rise near the inclusion tip for the 

vertically aligned inclusion is considerably less as compared to that for the horizontally 
placed inclusion. In  each ease, the contours of constant temperature propagate along lines 

inclined at 45 ~ to the horizontal axis. In  the absence of an inclusion, this will be the direc- 

tion of the maximum shearing stress. 
The variat/on of the effective stress se defined by 

s~ ~ = -~ S i jS i j ,  S ~  - -  ~is ~- P - -  -~ ~Dk~ d~s, (4.2) 

t- 

Fig. 2. Isotherms plotted in the reference configuration at different values of the average strain with 
the horizontally placed inclusion 

(&) 7'avg ~ 0 .0536,  0max ~ 5.17 . . . .  1; . . . .  2; 3, ~; - -  5. 
(b) Yavg = 0.148 6, 0me x = 8.63. See part (a) for values of 0 corresponding to different curves. 
(c) 7avg ~ 0.1887, 0me x = 9.62 . . . . .  2; . . . .  4; 6; 8; - -  10. 
(d))r = 0.2008, 0mat = 9.82. See part (c) for values of 0 corresponding to different curves. 
(e) 7avg = 0.2478, 0ma x = 10.46. See part (c) for values of 0 corresponding to different curves 
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10.0- A 

7.5  

B 

5.o- 

2.5- /'" D 

O.C - 

co  0:1 0:2 0:3 
AVERAGE STRAIN 

Fig. 4a .  Var ia t ion of the  t empera tu re  rise wi th  the  average s t ra in  a t  six different points  for the  hori- 
zontal ly aligned inclusion. Coordinates of these points  in the  reference configurat ion are: A (0.2052, 
0.000218), B(0 .1782 ,  0.01625), C(0.009525, 0.02621), D(0 .4044,0 .00345) ,  E(0 .0951 ,  0.2952), 
F (0.006907, 0.04353) 8 

6 

4 

2 

A 

~ c 

0.0 0:1 0:2 0:3 
AVERAGE STRAIN 

Fig. 4b.  Var ia t ion  of the  t empera tu re  rise wi th  the  average s t ra in  a t  six different points  for the  verti-  
cally aligned inclusion. Coordinates of these points  in the  reference configuration are: A (0.0002176, 
0.20523), B(0 .01625,  0.17824), C (0.02621, 0.009525), /9(0.00345, 0.4044), E(0 .2952 ,  0.0951i),  
F (0.043 53, 0.006907) 

Fig. 8. Isotherms plot ted in the  reference configuration a t  different values of the  average strain witb 
the  ver t ical ly  placed inclusion 

(a) Yavg ~ 0.095, Omax ~ 6.11, - - - -  2; - -  - -  --  4; - - - -  6. 
(b) Yavg = 0.131, Omag ~ 6.85. See pa r t  (a) for values of 0 corresponding to different curves. 
(c) Yavg = 0.167, Omax ~ 7.14. See pa r t  (a) for values of 0 corresponding to different curves. 
(d) ;%vg = 0.193, Omax ~ 7.24. See pa r t  (a) for values of 0 corresponding to different curves. 
(e) Yavg = 0.248, Omax ~ 7.74, - -  2; . . . .  4;  - -  --  --  6 
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STRESS 

0,00 

0.40 

0.00 

1.~ 

STRESS 

0.60 

0.30 

0.00 

1., 

U4 ~ 

0 m O0 

1.00 

Fig. 5. Dis t r ibut ion of the  effective stress within the  body at  two different values of the  average 
s t ra in  wi th  the  inclusion aligned along the  xi-axis. (a) Yavg = 0.0536, (b) Yavg = 0.2479 
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STRESS 

1.0 

0 . 5  

0 . 0  

1.1 

0 . 0 0  

1.00 

STRESS 

0 . 7 0  

0 , 3 5  

O.O0 

1 

1 ,00  

0 . 0 0  

Fig. 6. Distr ibut ion of the stress wi th in the body at ~wo different vMues of the average strain wi~h ~he 
inclusion aligned along the x~-axis (a) Yavg = 0.095, (b) Yavg = 0.2479 
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1,00- 

o.5o  I',. ", ,  - - - .  

0.25 

.... F ................................. 

0.00 A 

0.0 011 0[2 0[3 
AVERAGE STRAIN 

Fig. 7 a. Variation of the effective stress with the average strMn at six different points for the hori- 
zontally aligned inclusion. See Fig. 4a for the coordinates of the six points 

1.00 

0.75 ~ . .  "~ 

" E ' V ' w W -  
0.50 \ ~"x._ \\~i~..i,~, 

0.25- 

0.00- A 

0,0 011 012 013 

AVERAGE STRAIN 

Fig. 7b. Variation of the effective stress with the average strain at six different points for the verti- 
cally aligned inclusion. See Fig. 4b for the coordinates of six points 

is plot ted in Figs. 5 a and 5 b, and Figs. 6 a and 6 b for the horizontally and vertically placed 
inclusions, respectively. I n  both  cases, the stress drops noticeably near the tip of the in- 
clusion and as the band  propagates along the 45 ~ direction, the shear stress drops. The  
rather small drop of the shear stress near the other ext remity  of the 45 ~ line indicates t h a t  
the deformation there has not  localized as much as it has near the inclusion tip. Ba t ra  and 
Liu [26], [27] used linear thermal  softening law with a ra ther  large value of the  thermal  
softening coefficient and found tha t  once the deformation localized near the site of the  
defect, it propagated quickly along the 45 ~ direction to the other  edge. Here the thermal  
softening is represented by  an  exponential  function and the band  propagates  slowly leading 
one to conjecture tha t  the speed of propagat ion of the shear band  is strongly influenced by  
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F i g .  8.  C o n t o u r s  o f  t h e  m a x i m u m  p r i n c i p a l  l o g a r i t h m i c  s t r a i n  ( a )  h o r i z o n t a l l y  a l i g n e d  i n c l u s i o n ,  

Ya~g = 0 . 3 4 4 ;  - -  0 .2 ,  - - - -  0 .4 ,  0 .6 ,  0 .8 ,  - - -  ~ 1.0, ( b )  v e r t i c a l l y  

a l i g n e d  i n c l u s i o n ,  Yavg ~ 0 . 2 4 8 ;  0 .3 ,  - - - -  0 .5 ,  - -  - -  - -  0 .7 ,  0 .9 ,  - - - -  1.1 

the thermal softening law and the value of the thermal softening coefficient used. In Figs. 7 a 
and 7 b, we have plotted the variation of the effective stress with the average strain ~t six 
points for the horizontally and vertically aligned inclusions. We note that  the temperature 
rise at these points was plotted in Fig. 4. As for the one-dimensional case, the initiation and 
development of a shear band is accompanied by a rapid drop of the effective stress. The 
stress drop at the inclusion tip is significantly more than that  at the adjoining point con- 
sidered. At points far removed from the inclusion tip, the stress drops only slightly. The 
oscillations in the value of the effective stress at points far away from the inclusion tip is 
possibly due to the fact that  the rate of deformation there is small and the stress compu- 
tations involve the division of one small number by another small number. For each case 
studied, the effective stress near the inclusion tip reaches a plateau after the rapid drop. 
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Fig. 9 a. Variation of the maximum principal logarithmic strain with the average strain at six differ- 

ent points for the horizontally aligned inclusion. See Fig .  4 a  for the coordinates of the six points 
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F i g .  9 b .  Variation of the maximum principal logarithmic strain with the average strain at six differ- 
ent points for the vertically aligned inclusion. See Fig. 4b for the coordinates of the six points 

This was not observed in the one-dimensional computations with the linear thermal soften- 
ing, but was found to be the case [33] when the material behavior was modeled by the 
Bodner-Partom law. 

Figures 8 a and 8 b depict the contours of the maximum principal logarithmic strain 

e = In 2t (4.3) 

where 21 ~ is the maximum eigenvalue of the right Cauehy-Green tensor 

C,p  = x~,~x~,~. (4.4) 
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Let  ~,22 and 1 be the other two eigenvalues of U~. Since the deformations are nearly iso- 
choric, 

In ~1 ~ - - ln  2o. (4.5) 

I t  is clear from these plots that  severe deformations occur in a narrow region. For the 
horizontally aligned inclusion, the shear band is rather well defined. For the vertically 
aligned inclusion, contours of higher values of e have not propagated farther into the de- 
formable block. Note that  the nominal strain at  which these results are plotted is different 
in the two eases. However, the variation of e with the nominal strain at six points plot ted 
in Figs. 9 a and 9 b reveal that  near the inclusion tip e attains higher values for tae  vertically 
aligned inclusion as compared to that  for the horizontally aligned elliptic inclusion. For the 
former case, the curves of e vs. average strain coincide for points E and F. In  each ease, e 
increases slowly first near the inclusion tip. Subsequently, the rate of growth of e picks up 
sharply and the region surrounding the inclusion tip is deformed more intensely as com- 
pared to the rest of the body. Note that  the values of the nominal strain at which 8~ drops 
sharply and e increases rapidly at  the same point near the inclusion tip are different; the 
stress drop occurs first. Thus, even though the material in a small neighborhood of the 
inclusion tip has weakened, the surrounding material  contributes significantly to the load 
carrying capacity of the member  and constrains the weaker small region from deforming 
severely. Thus, if one adopts the view point tha t  a shear band initiates when the maximum 
logarithmic strain at  a point increases sharply, then the initiation of the shear band in this 
case occurs considerably after the shear stress has dropped precipitously. This differs from 
the results of the one-dimensional computations [19], [33] in which the precipitous drop 
of the shear stress and the sharp increase of the plastic strain at  a point occur simultane- 
ously. 

Figure 10 depicts the velocity field within the deforming material at an average strain 
of 25% and when the major  axis of the inclusion is along the z~-axis. There is a noticeable 
change in the velocity field across the ~B ~ line along which a shear band has formed. John- 
son [34] has recently pointed out that  Tresca [35] and Massey [36] observed shear bands 
in the form of a cross with sides inclined at  ~ 5  ~ to the direction of loading during hot 
forging of certain metals. They asserted that  the tangential velocity is discontinuous across 
these bands. The velocity field plotted in Fig. 10 supports this to some degree. We add 
tha t  the velocity field plotted in Fig. 3 of Batra  and Liu's paper [26] vividly demonstrates 
tha t  the tangential  velocity suffers a jump across the shear band. The velocity field for the 
vertically aligned inclusion exhibits a behavior similar to that  shown in Fig. 10 and the 
plots are not included herein. 

The average compressive force/vy given by 

1 

F U = - - f  a22 dxl (4.6) 
0 

versus the nominal strain is plotted for the two cases in Fig. 11. The curve of dash lines 
represents the ease when there is no inclusion present. The integral in Eq. (t.6) is evaluated 
by  using values of a~2 at  quadrature points on the top loading surface. Initially, the applied 
force increases almost linearly in each ease due to the linear increase of the applied veloc- 
ity. The presence of the inclusion necessitates initially a larger force as compared to tha t  
required to deform the homogeneous block. Due to the heating of the block caused by the 
ensuing plastic deformation, the material softens and the load required to deform it de- 
creases. This decrease in the load is more for the block with an inclusion because of the 
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Fig. 11. Load-average strain curves for (a) horizontally aligned inclusion (solid line), 
(b) vertically aligned inclusion (solid line). The dash line represents the load-displacement curve 
when there is no inclusion present in the block 

nucleation of a shear band near the tip of the inclusion. However, subsequent to the ini- 

tiation of a shear band, the applied force stays lower than that  for the homogeneous block 
signifying the lower load carrying capacity of the member once a shear band develops in 

it. The oscillations in the applied force are more for the vertically aligned inclusion. These 
can be attributed, at least partially, to the fact that  the deformation in the top row of 
elements is not homogeneous and the computations of tractions at the boundary points 

is less accurate as compared to the solution within the block. Note that  contours of differ- 
ent values of e and 0 arrive at some elements in the top row at different instants and thus 
affect the stress distribution in the elements. We believe that  the use of a finer mesh would 
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decrease the  oscil lat ions in F~, bu t  this  could not  be verif ied because of the  l imi ted  com- 

p u t a t i o n a l  resources avai lable  to  us. Also, a finer mesh would improve  the  resolut ion of 

t he  deformat ion  wi th in  the  band.  

5 Conclusions 

The  p rob lem of the  in i t ia t ion  and  subsequent  growth  of a shear band  in plane s t ra in  thermo-  

mechanica l  deformat ions  of a viscoplast ic  block conta ining an  el l ipt ical  inclusion has been 

s tud ied  b y  the  f ini te  e lement  method .  I t  is found t h a t  a shear  band  nucleates  a t  the  t ip  of 

the  inclusion and  p ropaga tes  along the  d i rec t ion  of m a x i m u m  shearing.  As the  s t ra in  ra te  

wi th in  the  band  increases, the  effective stress in i t  drops  and  the  t e m p e r a t u r e  continues to 

increase. The m a x i m u m  computed  t e m p e r a t u r e  when the  effective stress had  d ropped  to 

nea r ly  zero equal led 937 ~ A t  a po in t  near  the  inclusion t ip  the  effective stress drops 

r ap id ly  first.  This  is followed, much  later ,  b y  a sharp increase in the  m a x i m u m  pr inc ipa l  

logar i thmic  s t ra in  a t  the  same point .  This de lay  is poss ib ly  due to the  const ra ining effects 

of the  re la t ive ly  s t rong mate r i a l  surrounding the  weakened  mate r i a l  near  the  inclusion t ip .  
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