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Summary. We study the development of shear bands in a thermally softening viscoplastic prismatic 
body of square cross-section and containing two symmetrically placed thin layers of a different 
viseoplastic material and two elliptical voids with their major axes aligned along the vertieM eentroi- 
dM axis of the cross-section. One tip of each elliptical void is abutting the common interface between 
the layer and the matrix material. Two eases, i.e., when the yield stress of the material of the thin 
layer in a quasistatic simple compression test equals either five times or one-fifth that  of the matrix 
material are studied. The body is deformed in plane strain compression at an average strain-rate of 
5,000 sec -1, and the deformations are assumed to be symmetrical about the centroidal axes. 

I t  is found that  in each ease shear bands initiate from points on the vertical traction free surfaces 
where the layer and the matrix materials meet. These bands propagate horizontally into the layer 
when it is made of a softer material and into the matrix along lines making an angle of + 45 ~ with the 
vertical when the layer material is harder. In the former case, the band in the layer near the upper 
matrix/layer interface bifurcates into two bands, one propagating horizontally into the layer and the 
other into the matrix material along the direction of the maximum shear stress. The band in the 
layer near the lower matrix/layer interface propagates horizontally first into the layer and then into 
the matrix material along the direction of the maximum shear stress. Irrespective of the value of the 
yield stress for the layer material, a band also initiates from the void tip abutting the layer/matrix 
interface. This band propagates initially along the layer/matrix interface and then into the matrix 
material along a line making an angle of approximately 45 ~ with the vertieM. 

1 Introduction 

J o h n s o n  [1] has r ecen t ly  po in ted  out  t h a t  Tresca [2] in 1878 and  Massey [3] in 1921 ob- 

served  hot  lines, now referred to  as shear  bands ,  in the  form of a cross dur ing  the  hot  

forging of a meta l .  There  has been a surge of a c t i v i t y  in this  a rea  since the  t ime  Zener and  

Ho l lomon  [4] r epor ted  32 ~m wide shear  bands  dur ing  the  punching  of a hole in a steel  

p la te .  They  asser ted  t h a t  the  hea t  genera ted  because of the  p las t ic  working sof tened the  

ma te r i a l  and  t h a t  the  ma te r i a l  became uns tab le  when t he rma l  sof tening equal led the  

combined  effects of s t ra in  and  s t r a in - ra t e  hardening.  The exper imen ta l  observa t ions  of 

Moss [5], Cost in et  al. [6], H a r t l e y  et  al. [7], Giovanola  [8], and  Marchand  and  Duf fy  [9] 

have  a d d e d  enormous ly  to  our  unde r s t and ing  of the  phenomenon  of shear  s t r a in  local izat ion.  

M a r c h a n d  and  Duf fy  have  po in t ed  ou t  t h a t  for t h in  steel  tubes  sub jec ted  to  a pure  to rque  

a t  t he  ends,  the  local iza t ion  of de fo rmat ion  into shear  bands  consists of th ree  stages.  I n  

s tage  I ,  the  b o d y  deforms homogeneously .  I n  s tage  I I ,  s t ipu la t ed  to  in i t ia te  when the  shear  

s t ress  a t  a po in t  a t t a in s  its m a x i m u m  value,  the  de format ion  becomes non-homogeneous.  

I n  s tage  I I I ,  t h a t  occurs much  later ,  the  shear  stress drops prec ip i tous ly  and  the  defor- 

m a t i o n  localizes into a shear  band.  These expe r imen ta l  observa t ions  agree wi th  the  humeri= 

cal work  of W r i g h t  and  W a l t e r  [10], Molinar i  and  Clif ton [11], and  B a t r a  and  K i m  [12] to  
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[15]. We note that  there have been numerous other numerical [16]--[24] and analytical 
studies [25]--[32] aimed at increasing our understanding of factors that  affect the initiation 
and development of shear bands. These works have analysed the simple shearing defor- 
mations of a viscoplastie body containing a defect. 

I~ecently, LeMon@ and Needleman [33], [34], Needleman [35], Zbib and Aifantis [36], 
Anand et al: [37], Batra and Liu [38], [39], Zhu and Batra [40], and Batra and Zhang [41] 
have studied the phenomenon of shear banding in plane strain deformations of a viseo- 
plastic solid. These works have generally used different constitutive relations and have 
assumed that  the entire body or the portion of the body whose deformations were analyzed 
had only one defect in it. The prismatic body whose plane strain thermomechanieal defor- 
mations are studied herein is of a square cross-section and has two thin layers made of a 
viseoplastie m~.terial different from that  of the body and placed symmetrically about and 
parallel to the eentroidal horizontal axis. These horizontal planes may be thought of as 
representing planes of chemical inhomogeneity. The material of the layer differs from tha t  
of the body only in the value a0 of the flow stress in a quasistatic simple compression test.  
Two cases, namely when a0 for the layer material equals five times or one-fifth tha t  of the 
matrix material are studied. Also, there are two elliptical voids with major axes aligned 
with the vertical centroidal axis of the square cross-section and with tips touching the 
layer/matrix interfaces. The other ends of the ellipsoidal voids are towards the center of 
the cross-section. The points on the free edges where the thin layer and the matrix materials 
meet as well as the void vertices on the major axes of the ellipsoid act as nuclei for the 
initiation of shear bands. I t  thus becomes an interesting excercise to investigate the 
initiation and propagation of various bands and the interaction amongst them. We add 
that  we do account for the effect of inertia forces, strain-rate sensitivity of the materials, 
their thermal softening, heat conduction, and the heat generated because of plastic working. 

2 Formulation oi the problem 

The cross-section of the prismatic body containing two ellipsoidal voids and two thin 
layers of a different viscoplastic material is shown in Fig. 1. The deformations of the body 
are assumed to be symmetrical about the two centroidal axes. Thus, the deformations of 
the material in the first quadrant are analyzed. With respect to a fixed set of rectangular 
Cartesian coordinate axes, equations governing the plane strain thermomechanical defor- 
mations of the body are: 

(~J)" = 0, 

~0~i =: T~. , ,  

T~, = (e0/e) ~ox=,s, 

2 .  = (1 + bi>,o (1 - s0>, 

12 -- (1/2) D~iD~i, 

D 0 = D~ --  (1/3) Dkk(~j, 

Q= = (+o/e) qix=,i, q~ - -  - -kO, i ,  

= cO + n ( ~ l e o  - 1) ~/e ~. 

a~ s = --B(0/O 0 -- 1) ~o @ 2~uDis, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 



Dynamic shear band development in a bimetallic body 33 

b 
I 
o4 

1 
0.001 H O 

x2,X 2 

A 

E•" 
E:) 

2H "l 

B 
- r  

a T 

C 

X l ,X  1 

Fig. 1. The cross-section of the prismatic 
body studied 

Equations (2.1), (2.2) and (2.3), written in terms of the referential description of motion, 

express respectively the balance of mass, balance of linear momentum and the balance of 
moment  of momentum.  Equations (2.5), (2.9) and (2.10) are the constitutive assumptions. 
In  these equations xi gives the position at t ime t of the material particle X,, v~ ---- $i is its 
velocity in the xi-direction, ~ is its present mass density, Q0 its mass density in the reference 
configuration, J -  det [xi,~,], xi,~ ~ax~/OX~, T~ is the first Pio]a-Kirchhoff stress tensor, 
e is the specific internal energy, Q~ is the heat flux measured per unit area in the reference 
configuration , and D is the strain-rate tensor. Furthermore,  a superimposed dot indicates 
material  t ime derivative, a comma followed by index a(]) implies partial  differentiation 
with respect to X~ (x~), and a repeated index implies summation over the range (1, 2) of 
the index. In  the constitutive relations (2.5), (2.9) and (2.10), the material parameter  B 
m a y  be regarded as the bulk modulus, a0 is the yield stress in a quasistatic simple compres- 
sion test, parameters  b and m describe the strain-rate hardening of the material, ~ is the 
thermal  softening parameter,  0 equals the temperature  change of a material particle from 
tha t  in the reference configuration, k is the thermal conductivity and c is the specific heat. 
Both k and c are taken to be constants and we have neglected stresses caused by the thermal 

expansion. 
Equations (2.1) through (2.10) hold in the regions occupied by the matrix and the layer, 

the only difference being either 

~o layer ~ 5~o matr ix ,  (2.11.t) 

o r  

ao layer = (1/5) ao mat r ix .  (2.11.2) 

The values of other material  parameters  are the same for the matr ix  and the layer. 

With s defined by  

s = ~ q- [B(~o/~0 - -  1) - -  (2#/3) t r  D] 1, (2.12.1) 

= 2FD, (2.12.2) 
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equations (2.12), (2.5) and (2.6) give 

( 1 / 2 t r s ~ ) l / 2 =  (a0/V3-) ( 1 - - a 0 )  (1 ~-bI) m. (2.13) 

This can be viewed as the equation of a generalized yon Mises yield surface when the flow 
stress, given by the right-hand side of (2.13), at a material particle depends upon its 
strain-rate and temperature. 

For the initial conditions we take 

Q(x, O) ~- 1, v ( x ,  0) ~ 0, 0(x, 0) = 0. (2.14) 

That  is, the body is initially at rest at a uniform temperature and has constant mass 
density. We also assume that  the body is initially stress free. The pertinent boundary condi- 
tions for the material analyzed in the first quadrant are 

v2 = - -h ( t ) ,  TI~  = 0 and Q2 = 0, on the top surface A B ,  (2.15) 

Tll ~ 0, T~I ~-- 0 and Q1 = 0, on the right surface BC, (2.16) 

v~ = 0, T12 ~- 0 and Q~ = 0, on the bottom surface CO, (2.17) 

vl = 0 ,  T2~ = 0  and Q~ = 0 ,  on parts OD and EA of the left surface OA, (2.18) 

TI,~V: ~-- 0 and Q~N, = 0, on the surface D E  of the void. (2.19) 

These boundary conditions simulate the situation when the top surface is moving downward 
with a speed h(t), there is no friction between it and the loading device, the right surface is 
traction free, the void has not coalesced and the entire boundary is thermally insulated. If 
during the deformations of the body, any point on the void surface touches the vertical 
axis, the boundary condition on it is changed to (2.18). The boundary conditions (2.17) and 
(2.18) arc due to the presumed symmetry of the deformations about the 11 and x~ axes. For  
the loading function h(t) we take 

h(t) -~ vot/tr, 0 <~ t <-- tr, 
(2.20) 

-= Vo, t > tr, 

where 2H is the height of the block and v0 is the steady speed of the top surface. The 
steady speed is reached in time t~. 

At the common interface between the matrix and the reinforcing layer, the velocity 
field, surface tractions, the temperature and the normal component of the heat flux are 
assumed to be continuous. 

3 Computational considerations 

Substitution for T, Q and e from Eqs. (2.5) through (2.10) into the balance laws (2.2) and 
(2.3) results in coupled nonlinear partial differential equations which along with initial 
conditions (2.14) and boundary conditions (2.15) through (2.19) are to be solved for ~, v 
and 0. We use the updated Lagrangian method [42] to solve the problem. That  is, in order 
to find the fields of ~, v and 0 in the body at  time t -4- At, the configuration of the body at 
time t is taken as the reference configuration. The governing nonlinear partial differential 
equations are first reduced to a set of coupled nonlinear ordinary differential equations by 
using the Galerkin approximation [42] and the lumped mass matrix. Figure 2 depicts the 
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Fig. 2. The finite element discretization of the domain in the stress free reference configuration 

discretization of the stress free reference configuration into 4-noded isoparametric quadri- 
lateral elements tha t  has been used to analyze the problem. The mesh is very fine in the 

region surrounding the void and gradually becomes coarse as we move away from it. The 
layer as well as a small matr ix  region adjoining it has been divided into a fine mesh too. 
We add tha t  the coordinates of the nodes are updated after each time increment. Thus, the 
spatial domain occupied by  the body and the shapes of these elements vary with time. At 
each node the mass density, two components of the velocity and the temperature are 
unknown. The coupled nonlinear ordinary differential equations are integrated by  using the 
Gear method [43] for stiff differential equations. We use the subroutine LSODE taken 

from the package ODEPACK, developed by  Hindmarsh [44], and employed the option of 
using the full Jacobian matrix.  The subroutine adjusts the t ime step adaptively until a 
solution of the coupled nonlinear ordinary differential equations has been computed to the 
desired accuracy. The finite element code developed earlier by  Batra  and Liu [3S] was 
modified to s tudy the present problem. 

4 Computation and discussion of results 

We used the following values of various material and geometric parameters to compute 
results tha t  are discussed below: 

b = 10,000 see, o0 = 333 MPa, k = 49.22 W m  -1 ~ m = 0.025, 

c = 473 J k g  -1 ~ -i, e0 = 7,860 k g m  -3, B = 128 GPa, (3.1) 

H = 5 mm, v0 = 25 msec 1, c~ = 0.0025 ~ -1. 
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Fig. 8a.  T~te maximum principal logarithmic strain versus the average strain at  points 5 through 10 
and 16 when the layer material  is softer than  the matr ix material. Coordinates, in the stress free 
reference configuration, of these points are: 5 (0.0200, 0.4650), 6 (0.0i0, 0.4650), 7 (0.0200, 0.4700), 
8 (0.010, 0.4700), 9 (0.0200, 0.4749), 10 (0.010, 0.4749), 16 (0.010, 0.8000) 

Fig. 8b. The maximum principal logarithmic strain versus the average strain at points 1 through 4 
and 16 when the layer material  is softer than the matrix material. Coordinates, in the stress free 
reference configuration, of these points are: 1 (0.0010, 0.445 0), 2 (0.0010, 0.455 0), 3 (0.0141, 0.450 9), 
4 (0,0071, 0.4579) 
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~ig'. Be. The maximum principal logarithmic strain versus the average strain at points 11 through 15 
and 17 when the layer material is softer than the matrix material. All of these points are in the soft 
layer. Coordinates, in the stress free reference configuration, of these points are: 11 (0.0200, 0.4751), 
12 (0.0100, 0.4751), 13 (0.01614, 0.4891), 16 (0.0071, 0.4821), 15 (0.0010, 0.5), 17 (0.5, 0.5) 

Fig. 3d. The temperature rise versus the average strain at points 11 through 15 and 17 when the 
layer material is softer than the matr ix material 
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Thus the average applied strain-rate 9ava equals 5,000 see -i,  00 --= (Yo/(OoC) = 89.6 ~ and 
~, =-- Oovo~/ao = 0.015. The nondimensional number v determines the effect of inertia forces 
relative to the flow stress of the material. For the simple shearing problem, Bat ra  [21] noted 
tha t  the inertia forces play a noticeable role when v = 0.004. Hence, the inertia forces will 
very likely play a significant role in the present problem. 

We discuss below results in terms of the following nondimensional variables indicated by  
a superimposed bar. 

= S/~o, 6 = 0/0o, ~ = at~H, i = I / ~ .  (3.2) 

Henceforth, we drop the superimposed bars. To measure the deformation at a point, we use 
the maximum principal logarithmic strain e given by  

s = In ,ll ~ - - ln  ,t=, (3.3) 

where ~1 ~ and ~ are eigenvalues of the right Cauchy-Green tensor C~e = x~.~x~.a or the left 
Cauchy-Green tensor Bij = xi,:xs.:. The second equality in Eq. (3.3) holds because the 
deformations of the body are nearly isochoric. 

4.1 Layer material softer than the matrix material 

Recall tha t  one tip of the elliptical void is at  the interface between matr ix  material  and the 
relatively softer layer and the other tip is in the matrix. In  order to find out where the 
shear bands form and their directions of propagation, we plot the evolution of the max imum 
principal logarithmic strain e at several points surrounding the void and at  points near the 

common interface between the ]aver and the matr ix  material. Figure 3a depicts the growth 
of ~ at  points 5 through 10 and point 16. Point 10 in the matr ix  is near the void tip tha t  
touches the common interface, point 9 is near the interface and on a horizontal line through 
point 10, point 8 is near the midsurface of the void and point 7 on a horizontal line through 
point 8, point 6 is near the other tip of the void and point 5 on a horizontal line through 

point 6. Point 16, not shown in the figure, is the near the vertical centroidal axis but  is far 
removed from the void and the layer/matrix interfaces. Coordinates of these points in the 
stress free reference configm'ation are given in the figure caption and their approximate  

locations are shown in Fig. 3a. Results plotted in this figure clearly indicate tha t  a t  a 
nominal strain of nearly 0.015, the values of s at  points 7, 8 and 10 increase sharply with 
the rate of growth of e at point 10 being higher than tha t  at  points 7 and 8. Note tha t  the 
value of e at point 16 is very close to the average strain, and the values of s at  points 5, 6 and 
9 are higher than tha t  at  point 16 but  considerably smaller than those at  points 7,8 and 10. 
Thus the small region containing points 7, 8 and 10 undergoes severe deformations. In  
Fig. 3b, we have plotted the growth of z at  points 1, 2, 3, 4 and 16. Point 2 is near the void 
tip D, point 1 is on a vertical line through point 2, and the line joining points D, 4 and 3 
makes an angle of 45 ~ with the vertical. At an average strain of approximately 0.015, the 
values of e at  points 3 and 4 increase sharply, t{owever, the peak va]ues at tained at  points 
1, 2, 3 and 4 are much lower than  those at  points 7, S and 10. Thus in the matr ix  material  
surrounding the void, more intense deformations occur near the void tip E at  the matr ix/  
layer interface. In  an a t tempt  to assess the deformations of the layer, we have plotted 
versus the average strain in Fig. 3 c at  points 11, 12, 13, 14, 15 and 17 in the layer. Points 11 
and 12 are near the matrix/layer interface and correspond respectively to points 9 and 10 in 
the matrix,  the line joining points E, 14 and 13 makes an angle of 45 ~ with the horizontal, 
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point 15 is near the vertical centroidal axis, and point 17 in the layer is far removed from 
the void tip. The approximate  location of these points is given in Fig. 3 a and their coordi- 
nates in the stress free reference configuration are given in the figure caption. Even though 
the values of s at  points 11 and 12 increase sharply in the beginning, they eventually match 
those at  points 13, 14 and 15. Recalling tha t  a0 for the layer material equals one--f i f th  tha t  
for the matr ix  material, we may  imagine the void to be in a rigid material as far as the 
deformations of the layer are concerned. Thus the deformations of the layer near the void 

tip need not be excessively large as compared to its average deformations. This is borne out 
by  the results plotted in Fig. 3e which show tha t  the peak values of e a t  points 13, 14 and 
15 are nearly twice the average. Because of the continuity of the displacements and tem- 
peratures across the layer/matr ix interface, initially points 11 and 12 undergo essentially the 
same deformations as points 9 and 10. The rise in the temperature at  points 11 and 12 makes 
the material there softer. The surrounding relatively hard layer material results in redistri- 
bution of the deformations. Note tha t  points 9, 10, 11 and 12 are a little bit away from the 
layer/matr ix interface. Thus one may  conclude tha t  no localization of the deformation 
into a shear band occurs within the layer material near the void tip. That  the temperature 
rise at  points 11 and 12 is much larger than  tha t  a t  points 13, 14, 15 and 17 becomes clear 
from the results plotted in Fig. 3 d. The plots of the temperature  rise at  other points con- 
sidered are not included herein. However, we note tha t  the temperature rise at  points 7, 
8 and 10 where severe deformations of the matr ix  material occur was considerably more 
than tha t  at  point 16 which is far away from the void. 

We now focus on the deformations of the layer and the matr ix  materials near points P 
and Q on the right traction free surface. Points P and Q are also oil the layer/matr ix inter- 
faces. Figure 4a  shows the plot of s versus the average strain at  points 18 through 25 near 
the upper matr ix/ layer  interface. Points 18 through 21 are in the layer and points 22 
through 25 are in the matrix. I t  is clear tha t  deformations of points 18 and 19 are signi- 
ficantly more than  the deformations of other points considered in this plot. Also intense 
deformations of the layer material surrounding point 18 propagate horizontally to point 19. 
The deformations of points 21 through 25 are very small as compared to the deformations 
of points 18 and 19. The value of e at  point 20 is nearly four times tha t  at point 21. I t  is 
possible tha t  the intense deformations initiating at  point 18 propagate to point 20 too. In  
an a t t empt  to shed some light on what happens to the shear band initiating from point 18, 
we have plotted in Fig. 4b values of e versus the average strain at points 24 through 30 
in the matrix. Points 20, 24, 27 and 29 are on the same vertical line with points 20 and 24- on 
the opposite sides of the matr ix  layer/interface. Points 24, 27 and 29 are in the matrix.  
Points 24, 26 and 25 are on a horizontal line and points 24, 28 and 30 are on the line that  
makes an angle of 45 ~ with the horizontal. Relatively large values of s at  points 24, 26, 27, 
28 and 30 seem to suggest tha t  the region surrounding points 24, 26 and 27 deforms severely 
anti tha t  these severe deformations propagate along the line joining points 24, 28 and 30. 
Since points 20 and 24 are very near to each other, it is reasonable to conclude tha t  the 
localization of deformation initiating a t  point 18 within the soft layer propagates towards 
point 20 and then along the line joining points 20, 28 and 30. Results plotted a t  similarly 
situated points near the other interface between the layer and the matr ix  reveal tha t  a 
shear band initiating from point Q propagates horizontally within the layer too and then 
into the matr ix  along a line tha t  makes an angle of 45 ~ with the vertical. 

The picture of the development of shear bands outlined above is reinforced by  the plots 
of contours of s shown in Fig. 5 at  three values of the average strain. One shear band 
initiates within the matr ix  surrounding the void tip near the matr ix/ layer  interface and 
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Fig. 4a. The maximum principal logarithmic strain versus the average strain at points 18 through 25 
when the layer material is softer than the matrix material. Coordinates of these points in the stress free 
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Fig'. 4b. The maximum principal logarithmic strain versus the average strain at points 24 through 30 
and 16 when the layer material is softer than the matrix material. Coordinates of points not given 
earlier are: 26 (0.82, 0.532), 27 (0.87, 0.582), 28 (0.8346, 0.5674), 29 (0.87, 0.632), 30 (0.7993, 0.6027) 
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propagates into the matrix material below the common interface, the direction of prop- 

agation being nearly 45 ~ to the vertical axis. The shear bands initiating at points of inter- 

section of the matrix/layer interfaces with the right traction free surface propagate into the 
soft layer and then bifurcate into the matrix material along lines making an angle of 

approximately 45 ~ with the vertical. The band in the layer near the upper matrix/layer 
interface bifurcates into the matrix prior to that  near the lower interface. Also the band in 

the layer near the upper matrix/layer interface continues to propagate horizontally into 

the layer too while that  near the lower surface does not. In order to elucidate upon the 
differences between these two bands within the soft layer, we have plotted in Figs. 6a, 6b 

and 6e contours of e and in Figs. 6d, 6e and 6f contours of the temperature rise 0 in a 
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small region surrounding the layer and near the right traction-free surface. We note that 

the layer material near the upper interface undergoes more severe deformations than the 

layer material near the lower interface. This could be due to the differences in the reflection 
and refraction of waves at the two interfaces, and the interaction of these waves with the 

loading wave. The bands near the upper and lower interfaces propagate both horizontally 

in the layer and laterally towards each other. Had the computations been carried further, 
it is clear that  the two bands will merge with each other. The computations could not be 

carried further because we had exhausted the computing resources available to us. Because 

of the stiff equations and the nonuniform mesh, the time step required to integrate the 
equations is extremely small. The contours of 0 indicate that  the matrix material is also 

being heated up. Since the layer is softer than the matrix material, the stress in it is low 

and higher values of e in the layer give rise to nearly the same value of the energy dissipated 

as the lower values of e in the matrix because the stress in it is higher. The temperature rise 

makes the matrix material softer and the bands propagating in the layer bifurcate into 

two, one travels horizontally into the layer and the other into the matrix material along the 

direction of the maximum shear stress. 
~'igure 7 shows the distribution of the vertical component of the velocity at an average 

strain of 0.017 5. In  our work the velocity field is assumed to be continuous throughout the 

VY 
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Fig. 7. Distribution of the vertical component of the velocity in the cross-section when the layer 
material is softer than the matrix material at ~avg ~ 0.0175 

Fig. 6. Contours of the maximum principal logarithmic strain and temperature rise within a small 
region enclosing the soft layer near the right traction-free surface at three different values of the 
average strain, a~ d 7avg = 0.0135, b~ e 7avg = 0.0163, and e~ f 7avo = 0.0175 
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Fig'. 8a.  The m ax i m um  principal  logari thmic s t ra in  versus the  average s t ra in  a t  points  5 th rough  10 
and  16 when the  layer mater ia l  is s t ronger  t h a n  the  ma t r ix  material .  Coordinates of these points  in the  
stress free reference configurat ion are the  same as for points  in Fig. 3a  and  are given in the  capt ion 
of Fig. 3 a. 

Fig. 8b.  The m ax i m um  principal  logari thmic s t ra in  versus  the  average s t ra in  at  points  9, 10, 11 a n d  
12 when the  layer mater ia l  is s tronger t h a n  the  ma t r ix  material .  Coordinates of these points  in the  
stress free reference configurat ion are given in the  captions of Figs. 3 a and  3 c. 
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Fig. So. The maximum principal logarithmic strain versus the average strain at points 11 through 15 
and point 17 when the layer material is stronger than the matrix material. See Figs. 3a and 3c for 
the coordinates of these points in the stress free reference configuration. 

Fig. 8d, The maximum principal logarithmic strain versus the average strain at points 1, 2, 3 and 16 
when the layer material is stronger than the matrix material. See Fig. 3 a and 3 b for the coordinates 
of these points in the stress free reference configuration. 
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region. However, the plotted velocity field does show that  the value of v2 increases sharply 
as one crosses the severely deforming region thus supporting the assertions made by 
Tresea [2] and Massey [3]. 

4.2 Layer material stronger tha~ the matrix materitd 

Figures 8a, 8b and 8c depict the growth of the maximum principal logarithmic strain s 
at  several matrix points near the void. The coordinates of these points in the stress free 
reference configuration are given in the figure captions and their approximate locations are 
shown in Fig. 3a. Results plotted in Fig. 8a clearly indicate that  at  a nominal strain of 
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Fig. 9. The maximum principal logarithmic strain versus the average strain at points 18 through 34 
when the layer material is stronger than the matrix material. Coordinates of these points in the stress 
free reference configuration are: 18 (0.999, 0.535), 19 (0.993, 0.5321), 20 (0.990, 0.5251), 21 (0.999, 
0.545), 22 (0.9859, 0.5391), 23 (0.980, 0.5251), 24 (0.990, 0.5249), 25 (0.98, 0.5249), 26 (0.99, 0.4751), 
27 (0.98, 0.4751), 28 (0.99, 0.4749), 29 (0.98, 0.4749), 30 (0.993, 0.4679), 31 (0.9859, 0.4609), 32 (0.999, 
0.465), 33 (0.999, 0.455), 34 (0.999, 0.5) 

0.06, the values of e at  points 5, 8, 9 and 10 increase sharply, with the rate of growth of e 
at  points 8 and 10 being much greater than  tha t  at  points 5 and 9. Thus the small region 
containing points 8, 9 and 10 undergoes intense deformations which propagate towards 
point  5. This will become transparent  when we subsequently plot the contours of e. Recall 
t ha t  point 10 is near the void tip tha t  touches the matrix/ layer interface, point 9 is near 
the interface and on a horizontal line through point 10, point 8 is near the midsurfaee of 
the void, points 7 and 8 are on a horizontal line, point 6 is near the other void tip, and 
point 5 on a horizontal line through point 6. Because the layer material is harder than 
the matr ix  material, the max imum principal logarithmic strain e a t  points 11 and 12 
adjoining points 9 and 10 respectively is considerably less than tha t  at  points 9 and 10. 
The values of s versus the average strain at  these four points are shown in Fig. 8b. In  
Fig. 8c, we have plotted the evolution of s at points 11 through 17 in the layer. Points 13 
and 14 are on a line through the void tip tha t  makes an angle of 45 ~ with the horizontal, 
point 15 is near the vertical centroida] axis, and point 17 is on the midsurface of the layer 
but  far removed from the void tip. At an average strain of 0.06, the values of s at  points 
11 through 15 are nearly 40~o higher than tha t  at  point 17 and this difference increases 
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with increase ill the average strain. Since points 11 through 15, distributed in the layer 
region surrounding the void tip, have undergone the same amount  of deformation, i t  is 
reasonable to conclude tha t  no loca]izatiort of deformatiort has occurred in the layer. The 
plot of e versus the average strain at  points 1, 2, 3 and 16, depicted in Fig. 8d, reveals 
that  at  an average strain of approximately 0.06, the small region surrounding point 2 
deforms severely and these deformations propagate towards point 1. We note tha t  point 2 
is near the void tip away from the matrix/ layer interface, and points 1 and 2 are near 

the vertical centroidal axis. 
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In the previous case when the layer material was weaker than the matrix material, a 

shear band formed at an average strain of 0.016. In that case, the layer material underwent 

severe deformations. However, because of the small thickness of the layer, the overall 

deformations of the body stayed small. 

We now explore deformations of the layer and matrix materials surrounding points P 

and Q on the right traction-free edge of the block. The coordinates of the selected points in 

the stress free reference configuration are given in the figure captions, and their approxi- 

mate locations are shown in Fig. 9 c. Results plotted in Figs. 9 a, 9 b and 9 c reveal that the 

growth of e at any one of these points is not phenomenal as compared to the average strain 

either in the layer (e.g. at point 17), or in the block (e.g. at point 16), or the overall average 

strain. At an average strain of 0.06, the values of ~ at points 26 and 27 in the layer equal 

2.5 times that at point 17, but that at layer points 24 and 25 which are near the upper layer 

interface, are comparable to the value of ~ at point 17. The values of e at matrix points 

situated below the matrix/layer interface are higher than those at similarly situated 

matrix points above the matrix/layer interface. Thus the shear band initiating from point Q 

and propagating into the matrix material will involve more severe deformations than that 

initiating from point P and propagating into the matrix. Unlike the case of the soft layer, 

the deformations within the layer do not localize into a shear band. 

Figure i0 depicts contours of s at ;%v~ = 0.0388, 0.05, and 0.0572. These reveal that a 

shear band initiating from the void tip abutting the matrix/layer interface propagates 

initially along the interface and then into the matrix material along a line making an angle 

of nearly 45 ~ with the vertical. The shear band initiating from the lower void tip also 

propagates into the matrix material along a line making an angle of approximately 45 ~ 

with the vertical. Two shear bands also initiate from points P and Q on the right traction 

free surface and these propagate into the matrix material along lines making an angle of 

45 ~ with the vertical. Even though it seems that near the vertical centroidal axis a shear 

band has propagated into the layer, there is no localization of the deformation occurring 

in the layer material. This is evidenced by the plots of ~ versus the average strain at several 

points in the layer that are included in Fig. 8 c. Even though the strain within the layer is 

small, the values of stress are not and the total energy dissipated at a layer particle may be 

comparable to that at a matrix particle. The contours of the temperature rise, not included 

in the paper, support the picture laid out above for the development of four bands, two 

from the void tips and two from points on the right traction free surface where the layer 

and the matrix materials meet. 

5 Conclusions 

We have studied plane strain thermomechanical deformations of a thermally softening 

viscoplastic body of square cross-section and containing two elliptical voids and two thin 

layers placed symmetrically about the horizontal centroidal axis. The major axes of the 

voids are aligned with the vertical centroidal axis of the cross-section and one tip of each 

void touches the matrix/layer interface. Two cases, namely when the flow stress in a 

quasistatie simple compression test for the layer material equals one-fifth or five times that 

of the matrix material, are studied. When the layer material is weaker than the matrix 

material, two bands initiate from points on the vertical traction free surfaces where the 

layer and the matrix materials meet. These bands propagate horizontally into the layer and 

also spread out laterally towards each other. The band near the upper layer/matrix inter- 
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face is s t ronger  t h a n  the  one near  the  lower l a y e r / m a t r i x  in ter face  in the  sense t h a t  the  peak  

va lue  of t he  m a x i m u m  pr inc ipa l  logar i thmic  s t r a in  in i t  is higher  t h a n  t h a t  in t he  band  

near  the  lower l a y e r / m a t r i x  in ter face .  These bands  even tua l ly  cross the  in terface  and  prop-  

aga t e  into the  m a t r i x  ma te r i a l  a long the  d i rec t ion  of the  m a x i m u m  shear ing  stress.  The  

band  near  the  upper  l a y e r / m a t r i x  interface cont inues to  p ropaga t e  hor i zon ta l ly  too. The 

m a t r i x  ma te r i a l  sur rounding  the  void t ip  touching  the  l a y e r / m a t r i x  in ter face  undergoes  

severe deformat ions  also. This b a n d  in i t ia l ly  p ropaga tes  hor izon ta l ly  along the  in terface  for 

a smal l  d i s tance  and  then  p ropaga tes  into the  m a t r i x  ma te r i a l  in the  d i rec t ion  of t he  

m a x i m u m  shear ing stress.  

W h e n  the  layer  ma te r i a l  is s t ronger  t h a n  the  m a t r i x  mater ia l ,  two bands  in i t i a te  f rom 

poin ts  on the  vert ieM t r ac t ion  free surfaces where the  l a y e r / m a t r i x  interfaces in te r sec t  

them.  These bands  p ropaga t e  into the  m a t r i x  a long the  d i rec t ion  of the  m a x i m u m  shear ing  

stress. Also bands  in i t ia te  f rom each of the  void  t ips.  The bands  in i t i a t ing  f rom the  vo id  

t ips  touch ing  the  m a t r i x / l a y e r  interfaces in i t ia l ly  p ropaga t e  hor izon ta l ly  and  t hen  into the  

m a t r i x  ma te r i a l  in the  d i rec t ion  of the  m a x i m u m  shear ing stress.  The  bands  in i t ia t ing  f rom 

the  o ther  void  t ips  also p ropaga te  into the  m a t r i x  ma te r i a l  in t he  d i rec t ion  of the  m a x i m u m  

shear ing stress. I n  this  ease no loeMizat ion of de format ion  occurs wi th in  the  layer .  The  

average  s t r a in  a t  which a shear  band  forms in this  ease is nea r ly  four  t imes  t h a t  in t h e  

previous  ease of softer  layer  mater ia l .  
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