ACTA MECHANICA

Acta Mechanica 92, 9—27 (1992) © Springer-Verlag 1992

Steady state penetration of elastic perfectly
plastic targets

R. Jayachandran and R. C. Batra, Rolla, Missouri

(Received March 5, 1991; revised May 7, 1991)

Summary. Steady state axisymmetric deformations of an elastic perfectly plastic target being penetrated by
afast moving rigid cylindrical rod have been analyzed by the finite element method. The target is assumed to
obey the von Mises yield criterion and the associated flow rule. Contact between target and penetrator has
been assumed to be smooth. A mixed formulation, in which two components of the velocity and four
components of the deviatoric stress tensor at each node point, and the hydrostatic pressure at the centroid of
an element are taken as unknowns, is employed. This should give a better estimate of tractions acting on the
penetrator nose, and hence of the axial resisting force experienced by the penetrator. The effect of the
penetrator speed, its nose shape and the elasticity of the target material on the target deformations, and the
axial force experienced by the penetrator has been studied. The consideration of elastic effects helps delineate
the elastic-plastic boundary in the target.

1 Introduction

An outstanding problem in penetration mechanics is to find, within reasonable resources,
whether or not for the given penetrator and target geometries, materials, target support
conditions, penetrator speed, and the angle of attack, the target will be perforated or not. If the
target is perforated, the speed of the penetrator when it ejects out of the target is of interest. And if
the target is not perforated, one will like to know the shape and size of the hole made in the target.
This problem has defied a complete solution for many years. We refer the reader to review articles
by Backman and Goldsmith [1], Wright and Frank [2], Anderson and Bodner [3], and the books
by Zukas et al. [4], Blazynski [5], and MaCauley [6] for a summary of the available literature on
ballistic penetration. Awerbuch [7], Awerbuch and Bodner [8], Ravid and Bodner [9], Ravid et al.
[10], Forrestal et al. [11], and Batra and Chen [12] have proposed engineering models of different
complexity.

In recent years, emphasis has been placed on kinetic energy penetrators, which for terminal
ballistic purposes may be regarded as long metal rods travelling at high speeds. For impact
velocities in the range of 2— 10 km/s, incompressible hydrodynamic flow equations can be used
to describe adequately the impact and penetration phenomena, because large stresses occurring
in hypervelocity impact permit one to neglect the rigidity and compressibility of the striking
bodies. Birkhoff et al. [13] and Pack and Evans [14] have proposed models which require the use
of the Bernoulli equation or its modification to describe the hypervelocity impact. At ordnance
velocities (0.5—2 kmy/s), the material strength becomes an important parameter. Allen and
Rogers [15] represented the material strength as a resistive pressure. Alekseevskii [16] and Tate
[171, [18] have considered separate resistive pressures for the penetrator and the target and
proposed that these equal some multiple of the uniaxial yield stress of the material. However, the
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multiplying factor was not specified. Tate [19], [20], Pidsley [21], Batra and Gobinath [22],
Gobinath and Batra [23], and Batra and Chen [12] have estimated these multiplying factors.
Whereas Tate used a solenoid fluid flow model to simulate the steady state penetration process,
other investigations relied on a numerical solution of the problem.

We recall that the one-dimensional penetration theories [15] —[18] ignore the lateral motion,
plastic flow and the detailed dynamic effects. In an attempt to understand better these
approximations, Batra and Wright [24] studied the problem of a rigid cylindrical rod with
a hemispherical nose penetrating into a rigid/perfectly plastic target. The target deformations as
seen by an observer moving with the penetrator nose tip, were presumed to be steady.
Subsequently, Batra and his co-workers [25]—[30] studied the effect of nose shape, strain
hardening, strain-rate hardening and thermal softening characteristics of the target material.
Batra and Gobinath [22]—[23] have analyzed the steady state penetration problem in which both
the target and the penetrator deform.

When the target material is modeled as rigid/perfectly plastic it is likely that the hydrostatic
pressure at target points adjoining the penetrator/target interface is increased because of the
rigidity of the surrounding target material. Also, computations of stresses and hence tractions on
the target/penetrator interface from the finite element solution in which velocities at nodal points
are taken as unknowns is less accurate as compared to the nodal velocities. We alleviate these
concerns here by including the effect of material elasticity in the problem formulation, and using
amixed finite element formulation in which both the nodal velocities and nodal stresses are taken
as unknowns.

2 Formulation of the problem

We use a cylindrical coordinate system with origin attached to the center of the penetrator nose,
moving with it at a uniform speed vy, and positive z-axis pointing into the target, to describe the
deformations of the target. These deformations appear to be steady to an observer situated at the
origin of this coordinate system, and are governed by the following equations:

Balance of mass: divy =0, o
Balance of linear momentum: dive = g(v- grad) v, 2)
Constitutive relations: 6= —pl+s, (3)
§=2G(D — D?), )
s =2u(l) D*, (5)
where
2= 1/‘;0 - 207 = tr (D7), 6.1.2)
§=(v-grad)s + sW — Ws, (7)
2D = grad v + (grad v), 2W = grad v — (grad »)". (8)

Equations (1) and (2) are written in the Eulerian description of motion. The operators grad and
div denote the gradient and divergence operators on fields defined in the present configuration.
In Egs. (1) —(8), vis the velocity of a target particle relative to the penetrator, ¢ the Cauchy stress
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tensor, s its deviatoric part, p the hydrostatic pressure not determined by the deformation history,
and an open circle on s indicates the Jaumann derivative defined by Eq. (7) for the steady stress
field. Furthermore, G is the shear modulus, D* the plastic strain-rate, y defined by Eq. (6.1) may be
interpreted as the shear viscosity of the target material, o, is the yield stress in a quasistatic simple
compression test, D the strain-rate tensor and W is the spin tensor. Equation (4) expresses
Hooke’s law written in the rate form and is based on the tacit assumption that the strain-rate has
additive decomposition into elastic and plastic parts. We note that Pidsley [21] used the ordinary
time derivative rather than the Jaumann rate in Eq. (4). Equation (5) follows from the assumption
that the target material obeys von Mises yield criterion and the associated flow rule. However, in
Eqs. (3)—(5) we have assumed that a material particle is undergoing elastic and plastic
deformations simultaneously. Substitution from Egs. (5) and (7) into Eq. (4) gives the following
differential equation for s:

(v-grad)s + sW — Ws + (G/p) s = 2GD. 9)

‘We non-dimensionalize variables as follows:

6 =6/cy, §=S8/oy, P=plog, V=vvg, FT=rlrg,
(10)
_ - o
Z=12zfrg, Tu=Tufte, I=1—7,
Do

where the superimposed bar indicates the non-dimensional variable, the pair (r, z) the cylindrical
coordinates of a point, v, the uniform penetrator speed, ro the radius of the cylindrical part of the
penetrator, and 2ry and 2r, equal the length of the principal axes of the ellipsoidal nose in the
r and z directions, respectively. Equations (1), (2), and (9), when written in terms of
non-dimensional variables become

divy =0, (11)
—grad p + divs = o(v- grad) v, (12)
s + By((v-grad) s + sW — Ws) = D, (13)
where
2

Qvo Co 1
o= , 7=—, and f= 14

o G 21/31 (14

are non-dimensional numbers, and we have dropped the superimposed bars. Henceforth, we
will use only non-dimensional variables. Note that o and 7y are constants for the given problem,
but 8 varies from point to point in the deforming region. The value of « signifies the importance
of inertia forces relative to the flow stress of the material, and that of y gives the effect of
material elasticity. For most metals y is of the order of 1073, For a rigid perfectly plastic
material y equals zero. The value of the Weissenberg number (8y) varies from 1072 to 10* in
the deforming region.

We assume that the target/penetrator interface is smooth, and impose on it the following
boundary conditions:

t-(on) =0, (15)

v-n=0. (16)
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Here n and ¢ are, respectively, a unit normal and a unit tangent vector to the surface. Equation
(15) implies that there is no frictional force acting at the contact surface, and the boundary
condition (16) ensures that there is no interpenetration of the target material into the penetrator
and vice-versa. A partial justification for boundary condition (15) is that a thin layer of material
at the interface either melts or is severely degraded by adiabatic shear. At points far away from
the penetrator, we impose

p+e -0, a (F+z29)Y?2500, z>-—0mw, (17)
|on] — 0, as z—o—o0, r=1, (18)

where e is a unit vector in the positive z-direction. The boundary condition (17) embodies
the assumption that target particles far from the penetrator and not on the bounding back
surface appear to be moving at a uniform velocity with respect to it. Equation (18) implies
that when a target particle has moved far to the rear of the penetrator, the surface tractions
on it vanish.

The problem formulation outlined above differs from that studied earlier by Batra and
co-workers [25]—[30] because of the consideration of elastic deformations here. In earlier work
substitution for s in Eq. (12) resulted in non-linear field equations for v. Here, Eq. (13) can not be
solved easily for s; accordingly we solve Eqgs. (11)—(13) for p, v and s. This necessitates that the
boundary conditions for stress components be prescribed at the entrance region. Shimazaki
and Thompson [31] have studied a simple problem whose governing equations are similar to
Egs. (11)—(13), and have justified prescribing p and s at the entrance region.

3 Finite element formulation of the problem

Unless we use special infinite elements, a numerical solution of the problem requires that we
consider a finite region. Accordingly, we study deformations of the region R shown in Fig. 1, and
replace boundary conditions (17) and (18) at the far surfaces by the following conditions (19) and
(21) on the boundary surfaces of the finite region being analyzed:

v, =0, wv,=—10 on the bounding surface EF A4, (19)
g,=0, 01=0 on the axis of symmetry DE, (20)
6,,=0, v,=0 on the surface AB. (21)

Conditions (20) follow from the assumed axisymmetric nature of deformations. The validity of
replacing (17) by (19), (18) by (21), and the accuracy of the computed results depend upon the size
of the region R. Since Eq. (13) can not be solved explicitly for s, but is to be solved simultaneously
with Egs. (11) and (12), we need to specify the state of stress of the material entering the control
volume (e.g. see Shimazaki and Thompson [31]). Accordingly we set

p=0, s5,=0, 56=0, 5,=0 ands,=0 on the boundary surface EFA. (22)

The first step in analyzing the problem numerically is to obtain a weak formulation of the
problem. Let ¢ and ¢ be smooth and bounded vector and tensor-valued functions defined on the
region R that vanish on the surface EFA, and ¢, =0 on AB and DE, ¢-n=0 on the
target/penetrator interface BCD. Also, let # be a bounded, scalar valued function defined on R.
Taking the inner product of both sides of Egs. (11), (12), and (13) with ¢, ¢ and ¥, integrating the
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resulting equations over R, using the divergence theorem, the traction boundary conditions (15),
(19) and (20), and the aforestated boundary conditions on ¢ and ¥, we arrive at the following
equations:

j n(div v) dV=10, (23)
| p(div @) dV— | s:(grad ¢ + (grad ¢)7) dV =« | [(v- grad) v]- ¢ dV, (24)
Jg&:s’ v = % J{)’(I} ¥: [grad v + (grad »)7] 4V, (25)
§=s+4 Byl(v-grad) s + sW — Ws). (26)

Here and below the integrations are over the region R. The boundary value problem defined by
Eqs. (11)—(13), (15), (16), and (19)—(22) is equivalent to the statement that v and s satisfy the
prescribed essential boundary conditions and Egs. (23)—(25) hold for every ¢, y and 5 such that
grad ¢, grad ¥, and # are square integrable over R, and ¢ and ¥ satisfy the stated homogeneous
essential boundary conditions.

An approximate solution of Egs. (23)—(25) has been obtained by using the finite element
method (e.g. see Hughes [32]). In order to preclude spurious oscillations in the stress deviator
s and also to improve upon the rate of convergence, we employed the Petrov-Galerkin
approximation of Eq. (25) but Galerkin approximation of Egs. (23) and (24) (see Hughes [32]).
The region R is divided into quadrilateral subregions, called finite elements, over each of which
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vand s are approximated by simple polynomials defined in terms of their values at the four corner
nodes. The pressure p is assumed to be uniform over each element; this value is assigned to the
centroid of the element. The basis functions used in the Petrov-Galerkin approximation are those
given by Brooks and Hughes [33]. The boundary condition (16) on target/penetrator interface
BCD is enforced by using the method of Lagrange multipliers.

We note that Eqs. (23)—(25) are coupled and are nonlinear in v. The following iterative
technique was used to linearize them:

[ (div v dV =0, 27)
[ p™(div @) aV — | s(v™~1): (grad ¢ + (grad ¢)7) dV = o [ ("' - grad) v")- ¢ dV, (28)
[wisdV+ [ s dv={ paIm ") y:[grad v"~' + (grad v"~ 1] dV, (29)

where m is the iteration number. The iterative process was stopped when

(X m — v 2)H2 < 0.0103 v t2)He, (30.1)
(Z Ip"™ — pm—1|2)1/2 < 0_01(2 !pm—1|2)1/2) (30-2)
(X lls™ — sm=12)M2 < 0.01(Y fsmH2)2, (30.3)

where ||v||? = v,2 + v,% and ||s]|* = tr(ss”). The summation sign refers to the sum of the indicated
quantity evaluated at all nodes in the finite element mesh. This convergence criterion is weaker
than the local norm used by Batra and his co-workers [25]—[30}.

Having determined pressure p at the centroids of elements, the pressure at node points is
computed from

M
(I NN;dV)p;dV=[NpdV, i=12 .., M (31)
J J

j=1

where M is the number of nodes, and Ny, N, ... are the piecewise bilinear finite element basis
functions. We note that Eq. (31) also serves to smooth out the pressure field.

4 Computation and discussion of results

A computer code based on Egs. (27)—(29) and employing 4-noded quadrilateral elements has
been developed. The two components (v,, v,) of the velocity and four components (s,., Soos Sy-, and
s,.) of the deviatoric stress tensor are taken as unknowns at cach node, and the hydrostatic
pressure p is assumed to be constant within an element. The validity of the computer code was
established by solving the radial flow problem discussed by Shimazaki and Thompson {31]. For
the same finite element grid and numerical values of parameters as those used by Shimazaki and
Thompson [31], the two sets of computed results plotted in Fig. 2 agree well with each other.
Another test problem studied was a hypothetical one involving the flow of a Navier-Stokes fluid
in a circular pipe and achieving a favorable comparison between the computed and analytical
results; this problem is discussed in the Appendix.

In the results presented below, the target material was assumed to be an aluminium-alloy for
which we took oy = 340 MPa, G = 27 GPa, and ¢ = 2890 kg/m®. However, the results are
presented below in terms of non-dimensional numbers and are therefore valid for other
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Fig. 4. Distribution of the compressive normal stress on the penetrator nose surface for the three different
nose shapes and for o = 2, 6, 8, and 10 when the target material is modeled as elastic perfectly plastic

combinations of target material and penetration speed. The finite element subdivision of the
target region when the penetrator has an ellipsoidal nose with r,/ro = 2.0 is shown in Fig. 1. The
components of the deviatoric stress tensor and the hydrostatic pressure were assigned to be zero
at the entrance region EF A.

Figure 3 depicts the effect of material elasticity (y = 1.26 x 107%) on the pressure
distribution at the nose surface for three different nose shapes with r,/ro = 0.2, 1.0, and
2.0, and when « was set equal to 10.0. For each nose shape the normal pressure on
the nose surface was lower when material elasticity was accounted for than that for
the rigid perfectly plastic case (y =0). However, the general shapes of the curves are
unaffected by the consideration of elastic effects. The normal stress at the stagnation
point is nearly the same for the three nose shapes, but the shape of the normal stress
versus angular position 6 curve depends strongly upon the nose shape. As expected,
for the blunt nose, the normal stress stays constant over most of the nose surface, and
drops off rapidly to zero near the nose periphery. For the hemispherical nosed penetrator,
the normal stress drops off nearly evenly as one moves away from the center to the
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Fig. 5. Distribution of the tangential speed and the strain-rate measure / upon the penetrator nose surface
for three different nose shapes; o = 10

nose periphery. For the ellipsoidal nosed penetrator the normal stress drops off quite
rapidly for 0° = 6 < 30° and rather slowly for 8 > 30°. The curvature of the curve for
roffo = 2.0 is opposite to that of the curve for r,/ro = 1.0 or 0.2,

The distribution of the compressive normal stress on the nose surface for o« = 2, 6,
8, and 10 and when the target material is modeled as elastic perfectly plastic is plotted
in Fig. 4. For each of the three nose shapes considered the normal stress at points
on the nose surface for which 0 <0 < 6, increases with o, that at points with 6 > 6,
decreases with o. The value of 6, equals approximately 22°, 45° and 82° for the long
tapered ellipsoidal nosed, hemispherical nosed and the blunt nosed penetrators, respectively.
The normal stress at points near the nose periphery was found to be positive for o > 15
implying thereby that the target particles tended to separate away from the penetrator.
However, for the blunt nosed penetrator this tendency of the target particles to separate
away from the penetrator adjacent to the nose periphery was also observed at lower
values of .

The distribution of the tangential speed on the penetrator nose surface and the strain-
rate measure I at the centroids of elements abutting the penetrator nose surface for the three
different nose shapes and o = 10.0is shown in Fig. 5. It is apparent that the material elasticity has
negligible effect on the tangential speed and the strain-rate measure 1. For the long tapered nosed
penetrator, the tangential speed increases very rapidly for 0 < 8 < 20°, attains the value of 1.0 at
0 ~ 30°, and then stays close to 1.0 for 30° < 8 < 90°. For the hemispherical nosed penetrator the
tangential speed increases gradually from O at 8 = 0° to 1.0 at 6 =~ 60° and does not vary much for
60° < § < 90°. The trend is quite different for the blunt nosed penetrator. In this case the
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Fig. 6. Variation of the pressure, strain-rate measure I and the z-velocity on the axial line with the distance
from the penetrator nose tip

tangential speed increases slowly for 8 < 50°, and then very rapidly. The maximum value of the
tangential speed computed for the blunt nosed penetrator is more than that for the other two
nose shapes. For the blunt nosed penetrator the peak values of the strain-rate measure [ are an
order of magnitude higher than that for the long tapered nosed penetrator. Whereas I,,,, occurs
near the nose periphery for the blunt nosed penetrator, peak values of I for the other two nose
shapes are realized at the stagnation point. Both for the hemispherical and the elliptical nosed
penetrator, [ decreases slowly from its maximum value at the nose center to nearly zero at the
nose periphery.

We have plotted the variation of the hydrostatic pressure, strain-rate measure I and the axial
velocity along the axis of symmetry in Fig. 6. The consideration of material elasticity has very
little effect on the distribution of I and the axial velocity but reduces noticeably the value of the
hydrostatic pressure. The value of I at the stagnation point is maximum for the ellipsoidal nosed
penetrator and least for the blunt nosed penetrator; the former equals nearly twice the latter. It is
clear that severe deformations of the target occur at points situated at most 3r, from the
penetrator nose surface. Thus the target region studied is adequate. The pressure drops off more
slowly when the target material is modeled as rigid perfectly plastic as compared to the case when
it is modeled as elastic perfectly plastic. The general shapes of the curves I, v, or p versus the
distance from the nose tip are unaffected by the penetrator nose shape and by the consideration
of material elasticity.
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Fig. 7. Dependence of the peak pressure at the stagnation point and the axial resisting force experienced by
the penetrator upon o

The dependence of the peak pressure that occurs at the stagnation point, and of the axial
resisting force F experienced by the penetrator upon o is depicted in Fig. 7. The axial resisting
force F is given by

Foo J‘ (n-on cos ¢ sin 0 [sin® 8 + (1/r,)* cos? G]1/? i, (32.1)

[sin® 6 4 (1/r,)* cos? 6]?

z[ry

%+ (z/r, 22 (32.2)

cos ¢ =

where the angle 6 is defined in Fig. 1 and (r, z) are the coordinates of a point on the
penetrator/target interface. The corresponding axial force in physical units is given by (nrg*c,) F.
For each nose shape, the relationships between py,., and o, and F and « are nearly affine, and the
consideration of elastic effects lowers the value of p.,., by about 2, and of F by 1.8. The least
squares fit to the computed data gives

Pmax = 6.82 + 0480, F =797+ 00%0, r,fro =02, (33.1)
Pmax = 7.20 + 048, F =767+ 0042, r,/ro=10, (33.2)

Do = 7.26 + 0.48c,  F =729+ 002la, r,fro = 2.0, (33.3)
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when the target material is modeled as rigid perfectly plastic, and

Pmax = 487 + 047a, F =617 +0.09%a, r,/ro =02, (34.1)
Pmax = 329 + 0.47¢, F =590+ 0.038x, r,/ro=1.0, (34.2)
Pmax = 5.16 + 0470, F=1532+0019%, r,fro=20, (34.3)

when it is taken to be elastic perfectly plastic. We note that the dependence of F upon « is quite
weak.

The contours of the hydrostatic pressure in the deforming target region for the three different
nose shapes and « = 10 are depicted in Fig. 8. These show that the pressure falls off to zero, not
only on the axial line, but also along other radial lines as one moves away from the penetrator
nose surface. The contour of the zero hydrostatic pressure near the bounding surface is not
plotted in order to focus on the narrow region surrounding the penetrator/target interface. For
each one of the three nose shapes examined, the pressure near the nose periphery drops off to
a very small value. The pressure gradient at points near the nose tip is steepest {or the ellipsoidal
nosed penetrator.

On the axial line uniaxial strain conditions prevail approximately. Thus the magnitude of the
deviatoricstress s, at a point on the axial line should equal (2/3¢,) whenever the material point is
deforming plastically. For a rigid perfectly plastic target material and for each nose shape
considered, the computed value of |s,,| came out to be 2/30, as shown in Fig. 9. Near the
boundary point F of the target region studied, |s.,| rapidly dropped to the prescribed zero value.
This rapid drop is not shown in the figure. However, when the target material is modeled as
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elastic perfectly plastic, |s,.| equals (2/36,) for a distance of 3rq to 41, from the nose tip and then
gradually decreases to the assigned value of zero at the outer boundary. The penetrator nose
shape influences the rate of decay of |s,.|; the plastic deformation progresses farther for the blunt
nosed penetrator and |s,,| decays slowly for it as compared to the ellipsoidal nosed penetrator.
On the axial line, the Bernoulli equation in terms of non-dimensional variables and as modified
by Tate [17], [18] is

1 s c2

506+Rt=~azz=p +§ (35)
where R, accounts for the strength of the target material, and o3, and p® are the values of ¢, and
p at the stagnation point. Having computed ¢,, and knowing «, we can find R,. For the three nose
shapes considered, the least squares fit to the computed values of R, for different values of & gives
the following:

R, =748 —0.0200, (r,/ro) = 0.2, (36.1)
R, =786 —0018a, (r.ro) = L0, (36.2)
R, =792 — 0.024a, (r,/ro) = 20, (36.3)

for a rigid perfectly plastic target, and

R, =553 —0.027x, (r.jro) =02, (37.1)
R, =596 — 0.027a, (r,/ro) = 1.0, (372)
R, =583 — 0032, (r.jro) = 2.0, (37.3)

for an elastic perfectly plastic target. In either case the dependence of R, upon « is very weak and
this explains why the assumption of constant R, in simpler theories of penetration gives good
results. Tate [19] has proposed that

2 2E
Rt=3+ln< ‘), (38)

3a,

where E, is Young's modulus of the target material. Thus for values of G and ¢, taken herein,

2 2 /3 %27 x 10°
Ro= - an (22220270 5734 39
t 3+n<3<0.34><109>> (39)

which is close to the values computed for the elastic perfectly plastic target. Recalling that
P° = Pmax, it is interesting to note that the slope of the least squares fit to the p,, vs. o data is close
to 0.5 as it should be if Eq. (35) were to hold.

As is transparent from Fig. 9 the stress state at target particles far away from the
target/penetrator interface lies inside the surface defined by

i) = (40)

This is certainly true of points on the boundary surface EF A where s = 0 is prescribed. The
constitutive assumptions (4) —(6) tacitly assume that each target particle is deforming elastically
and plastically. However, points where ||s|| is small are undergoing negligible plastic deforma-
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tions. Here we classify points for which the stress state satisfies the condition (40) as deforming
plastically and those for which the stress state lies inside the surface (40) as deforming elastically.
The elastic plastic boundary computed by using this criterion and obtained by joining points that
are deforming plastically by straight line segments is depicted in Fig. 10.These curves suggest that
less of the material ahead of the penetrator nose tip and to the sides of the rigid rod is deformed
plastically for the ellipsoidal nosed penetrator as compared to the other two nose shapes
considered. The distance of the elastic-plastic boundary from the penetrator nose tip is found to
be 5.4, 6.8, and 7.7, respectively, according as the penetrator nose shape is ellipsoidal,
hemispherical or blunt. Tate [19] presumed that a material particle was deforming either
elastically or plastically and based on his solenoid flow model he found the axial distance of the
elastic-plastic boundary from the stagnation point to be 6.71, which compares well with our
computed values. The computed results, not plotted herein, show that ahead of the penetrator
the elastic-plastic boundary does not advance much when « is increased from 6 to 10 for the
hemispherical and blunt nosed penetrator but does move appreciably for the ellipsoidal nosed
penetrator. As soon as a material particle goes past the nose periphery, stresses on it are relieved
and the stress state for it lies inside the surface defined by (40).

A measure of the deformation of a material particle is the value of the effective strain e,
defined as

1 1/2
£ = (2 tr DZ> =1 (41)

at that point. For a steady state penetration problem Tate [20] has described a method to
compute different components of the finite strain tensor from a knowledge of the velocity field.
He showed that contours of the circumferential strain are approximately parallel to the crater



24 R. Jayachandran and R. C. Batra

Z-Coordinate

Fig. 11. Contours of the effective strain in
the deforming target region for a blunt
nosed penetrator, and o = 10

R-Coordinate

surface and that the circumferential strain at a point distance a little more than one radius from
the crater tip equals 5%. Because of the steady state deformations, we write Eq. (41) as

(v-grad)e =1 (42)

and first compute I from the velocity field, and then find ¢ as a solution of Eq. (42) with the
boundary condition ¢ = 0 on EF A. These contours basically look alike for the three nose shapes,
and are shown in Fig. 11 only for the blunt nosed penetrator. The contours of ¢ suggest that
severe deformations propagate farther to the side than ahead of the penetrator nose. The peak
values of ¢ occur at target particles near the target/penetrator interface and equal 100%. We
recall that no failure or fracture criterion is included in our work. Thus a material point can
undergo an unlimited amount of deformation. As expected, the strain gradients are high at points
near the target/penetrator interface and rapidly decay as one moves away from this interface.
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5 Conclusions

We have analyzed the steady state axisymmetric deformations of an elastic perfectly plastic target
being penetrated by a fast moving rigid cylindrical rod. Three different nose shapes, ic.,
ellipsoidal, hemispherical, and blunt are considered. For each nose shape the effect of the
penetration speed upon the deformations of the target is investigated. The consideration of
elastic effects necessitates that the problem be analyzed by using a mixed formulation in which
both velocities and stresses at a node point are taken as unknowns.

The peak hydrostatic pressure at the stagnation point is lower when elastic effects are
included than when they are not. Also, the axial resisting force experienced by the penetrator is
found to be lower when the target material is modeled as elastic perfectly plastic than when it is
modeled as rigid perfectly plastic. In either case, the axial force depends upon the non-
dimensional parameter o very weakly. Similarly the strength parameter appearing in the
modified Bernoulli equation is found to be essentially independent of o, and the computed value
1s close to that given by Tate. For the blunt nosed penetrator, plastic deformations spread farther
ahead of the penetrator nose as well as to its sides as compared to those when the penetrator nose
is ellipsoidal or hemispherical. The distance of the elastic-plastic boundary from the penetrator
nose tip along the axis of symmetry is found to compare well with that estimated by Tate.

Appendix

One of the problems analyzed in order to establish the validity of the finite element code
developed is the following hypothetical problem. Consider the flow of a homogeneous and
incompressible Navier-Stokes fluid of unit mass density and unit viscosity. The flow is governed
by equations obtained from Egs. (1) through (8) when ¢ = 1, ao/Vg I =2, omitting Eq. (4) and
adding the body force vector to the left-hand side of Eq. (2). These equations have the solution

v,=r(l—r), v,=—-22-3r, p=z, (A1
2 =3+rl—r {121, g=1-3z/r+3zr(1 — 1) + 22 — 3r)?, (A2)
z |
A u D
N P
L4 [
1 2
31
Q
5 8
T R S
Fig. A 1. The finite element mesh used for the test
B8 ¢  problem
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Table A 1. Comparison of analytical and numerical solution. The good agreement between the computed
and analytical values of v, v, and p establishes the validity of the code

Point Analytical values Computed values Point Analytical  Computed
value value
v, v, o, A -p -
N 0.1875 0.3125 0.1890 03116 1 0.3125 0.3311
P 0.2500 0.1250 0.2504 0.1250 2 0.3125 0.3115
0 0.2500 0.2500 0.2502 0.2500 3 0.4375 0.4329
R 0.2500 0.3750 0.2501 0.3750 4 0.4375 04318
S 0.1875 —0.1875 0.1875 —0.1875 5 0.6875 0.7032
T 0.1875 0.9375 0.1876 09374 6 0.6875 0.6819

where v, and v, are, respectively, the radial and axial components of the velocity, and g, and
2. equal the radial and axial components of the body force per unit mass.

The finite element mesh used to compute the solution is shown in Fig. A 1. On surfaces AB,
BC, and CD, both v, and v, as given by Eq. (A1) were prescribed, on the surface 4D, v, and the
normal traction, equal to a,,, were specified. In this case, the specification of the state of stress at
the entrance region was not needed. In Table A 1, we have listed the converged computed results
and the values from the analytical solution (A 1) at various points in the domain. Recall that the
pressure field is assumed to be constant within an element; this value is assigned to the centroid of
the element. The pressure field at other points is interpolated from its values at the centroids of
the elements.
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