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Summary. Steady state axisymmetric deformations of an elastic perfectly plastic target being penetrated by 
a fast moving rigid cylindrical rod have been analyzed by the finite element method. The target is assumed to 
obey the yon Mises yield criterion and the associated flow rule. Contact between target and penetrator has 
been assumed to be smooth. A mixed formulation, in which two components of the velocity and four 
components of the deviatoric stress tensor at each node point, and the hydrostatic pressure at the centroid of 
an element are taken as unknowns, is employed. This should give a better estimate of tractions acting on the 
penetrator nose, and hence of the axial resisting force experienced by the penetrator. The effect of the 
penetrator speed, its nose shape and the elasticity of the target material on the target deformations, and the 
axial force experienced by the penetrator has been studied. The consideration of elastic effects helps delineate 
the elastic-plastic boundary in the target. 

1 Introduction 

An outstanding problem in penetration mechanics is to find, within reasonable resources, 

whether or not for the given penetrator and target geometries, materials, target support 
conditions, penetrator speed, and the angle of attack, the target will be perforated or not. If the 

target is perforated, the speed of the penetrator when it ejects out of the target is of interest. And if 
the target is not perforated, one will like to know the shape and size of the hole made in the target. 

This problem has defied a complete solution for many years. We refer the reader to review articles 

by Backman and Goldsmith [1], Wright and Frank [2], Anderson and Bodner [3], and the books 

by Zukas et al. [4], Blazynski [5], and MaCauley [6] for a summary of the available literature on 

ballistic penetration. Awerbuch [7], Awerbuch and Bodner [8], Ravid and Bodner [9], Ravid et al. 
[10], Forrestal et al. [11], and Batra and Chen [12] have proposed engineering models of different 
complexity. 

In recent years, emphasis has been placed on kinetic energy penetrators, which for terminal 
ballistic purposes may be regarded as long metal rods travelling at high speeds. For  impact 

velocities in the range of 2 - 1 0  km/s, incompressible hydrodynamic flow equations can be used 
to describe adequately the impact and penetration phenomena, because large stresses occurring 

in hypervelocity impact permit one to neglect the rigidity and compressibility of the striking 
bodies. Birkhoff et al. [13] and Pack and Evans [14] have proposed models which require the use 
of the Bernoulli equation or its modification to describe the hypervelocity impact. At ordnance 
velocities ( 0 . 5 - 2  km/s), the material strength becomes an important  parameter. Allen and 
Rogers [15] represented the material strength as a resistive pressure. Alekseevskii [16] and Tate 

[17], [18] have considered separate resistive pressures for the penetrator and the target and 
proposed that these equal some multiple of the uniaxial yield stress of the material. However, the 
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multiplying factor was not specified. Tate [19], [20], Pidsley [21], Batra and Gobinath [22], 

Gobinath and Batra [23], and Batra and Chen [12] have estimated these multiplying factors. 

Whereas Tate used a solenoid fluid flow model to simulate the steady state penetration process, 
other investigations relied on a numerical solution of the problem. 

We recall that the one-dimensional penetration theories [15] -  [18] ignore the lateral motion, 
plastic flow and the detailed dynamic effects. In an attempt to understand better these 

approximations, Batra and Wright [24] studied the problem of a rigid cylindrical rod with 
a hemispherical nose penetrating into a rigid/perfectly plastic target. The target deformations as 

seen by an observer moving with the penetrator nose tip, were presumed to be steady. 
Subsequently, Batra and his co-workers [25]-[30] studied the effect of nose shape, strain 

hardening, strain-rate hardening and thermal softening characteristics of the target material. 

Batra and Gobinath [22] - [23] have analyzed the steady state penetration problem in which both 
the target and the penetrator deform. 

When the target material is modeled as rigid/perfectly plastic it is likely that the hydrostatic 

pressure at target points adjoining the penetrator/target interface is increased because of the 
rigidity of the surrounding target material. Also, computations of stresses and hence tractions on 

the target/penetrator interface fi'om the finite element solution in which velocities at nodal points 

are taken as unknowns is less accurate as compared to the nodal velocities. We alleviate these 

concerns here by including the effect of material elasticity in the problem formulation, and using 

a mixed finite element formulation in which both the nodal velocities and nodal stresses are taken 

as unknowns. 

2 Formulation of the problem 

We use a cylindrical coordinate system with origin attached to the center of the penetrator nose, 

moving with it at a uniform speed Vo, and positive z-axis pointing into the target, to describe the 

deformations of the target. These deformations appear to be steady to an observer situated at the 

origin of this coordinate system, and are governed by the following equations: 

Balance of mass: div v = 0, (1) 

Balance of linear momentum:  div a = ~o(v. grad) v, (2) 

Constitutive relations: a = - pI  + s, (3) 

g = 2G(D - DP), (4) 

s = 2#(1) O p, (5) 

where 

Oo 212 = tr (Dr2), 
2# - ] /~ I '  

3 = (v. grad) s + s W - Ws, 

(6.1, 2) 

(7) 

2D = grad v + (grad v) r,  2W = grad v -  (grad v) r .  (8) 

Equations (1) and (2)are written in the Eulerian description of motion. The operators grad and 
div denote the gradient and divergence operators on fields defined in the present configuration. 
In Eqs. (1) -(8),  v is the velocity of a target particle relative to the penetrator, e the Cauchy stress 
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tensor, s its deviatoric part, p the hydrostatic pressure not determined by the deformation history, 
and an open circle on s indicates the Jaumann derivative defined by Eq. (7) for the steady stress 
field. Furthermore, G is the shear modulus, D p the plastic strain-rate, # defined by Eq. (6.1) may be 
interpreted as the shear viscosity of the target material, fro is the yield stress in a quasistatic simple 
compression test, D the strain-rate tensor and W is the spin tensor. Equation (4) expresses 
Hooke's law written in the rate form and is based on the tacit assumption that the strain-rate has 
additive decomposition into elastic and plastic parts. We note that Pidsley [21] used the ordinary 
time derivative rather than the Jaumann rate in Eq. (4). Equation (5) follows from the assumption 
that the target material obeys von Mises yield criterion and the associated flow rule. However, in 
Eqs. (3)-(5) we have assumed that a material particle is undergoing elastic and plastic 
deformations simultaneously. Substitution from Eqs. (5) and (7) into Eq. (4) gives the following 
differential equation for s: 

(v. grad) s + s W -  His + (G/#)  s = 2 G D .  

We non-dimensionalize variables as follows: 

6 = ~r/ao, g = S /r  ~ = p / a o ,  ~ = V/Vo, 

i = z / ro ,  G = r , / ro ,  [ =  I ro 
VO 

(9) 

(10) 

where the superimposed bar indicates the non-dimensional variable, the pair (r, z) the cylindrical 
coordinates of a point, Vo the uniform penetrator speed, ro the radius of the cylindrical part of the 
penetrator, and 2ro and 2rn equal the length of the principal axes of the ellipsoidal nose in the 
r and z directions, respectively. 
non-dimensional variables become 

div v = 0, 

- g r a d  p + div s = c~(v-grad) v, 

s + fiT((v" grad) s + s W -  W s )  = r iD,  

where 

QVO 2 O" 0 1 

~ -  ao , ~ = ~ - ,  and fi 2 ] / 3 I  

Equations (1), (2), and (9), when written in terms of 

(11) 

(12) 

(13) 

(14) 

are non-dimensional numbers, and we have dropped the superimposed bars. Henceforth, we 
will use only non-dimensional variables. Note that c~ and 7 are constants for the given problem, 
but/~ varies from point to point in the deforming region. The value of ~ signifies the importance 
of inertia forces relative to the flow stress of the material, and that of 7 gives the effect of 
material elasticity. For most metals 7 is of the order of 10 -3. For a rigid perfectly plastic 
material 7 equals zero. The value of the Weissenberg number (fly) varies from 10 .3 to 104 in 
the deforming region. 

We assume that the target/penetrator interface is smooth, and impose on it the following 
boundary conditions: 

t . (~n)  = 0 ,  (15)  

v . n  = O. (16)  
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Here n and t are, respectively, a unit normal and a unit tangent vector to the surface. Equation 

(15) implies that there is no frictional force acting at the contact surface, and the boundary 

condition (16) ensures that there is no interpenetration of the target material into the penetrator 
and vice-versa. A partial justification for boundary condition (15) is that a thin layer of material 

at the interface either melts or is severely degraded by adiabatic shear. At points far away from 

the penetrator, we impose 

Iv + el -~ 0, as (r 2 ~- Z2) 1/2 --4 O0, 

lanl ~ 0 ,  as z ~ - r e ,  r > 1, 

Z > --0(3, (17) 

(18) 

where e is a unit vector in the positive z-direction. The boundary condition (17) embodies 

the assumption that target particles far from the penetrator and not on the bounding back 

surface appear to be moving at a uniform velocity with respect to it. Equation (18) implies 
that when a target particle has moved far to the rear of the penetrator, the surface tractions 

on it vanish. 
The problem formulation outlined above differs from that studied earlier by Batra and 

co-workers [25] -  [30] because of the consideration of elastic deformations here. In earlier work 

substitution for s in Eq. (12) resulted in non-linear field equations for v. Here, Eq. (13) can not be 
solved easily for s; accordingly we solve Eqs. (11)-(13) for p, v and s. This necessitates that the 

boundary conditions for stress components be prescribed at the entrance region. Shimazaki 

and Thompson [31] have studied a simple problem whose governing equations are similar to 

Eqs. (11)-(13), and have justified prescribing p and s at the entrance region. 

3 Fini te  e l e m e n t  formulat ion  o f  the problem 

Unless we use special infinite elements, a numerical solution of the problem requires that we 

consider a finite region. Accordingly, we study deformations of the region R shown in Fig. 1, and 

replace boundary conditions (17) and (18) at the far surfaces by the following conditions (19) and 

(21) on the boundary surfaces of the finite region being analyzed: 

vr = 0, vz = 1.0 on the bounding surface EFA,  (19) 

crr~ = 0, vr = 0 on the axis of symmetry DE, (20) 

a~z = 0, v,, = 0 on the surface AB. (21) 

Conditions (20) follow from the assumed axisymmetric nature of deformations. The validity of 

replacing (17) by (19), (18) by (21), and the accuracy of the computed results depend upon the size 
of the region R. Since Eq. (13) can not be solved explicitly for s, but is to be solved simultaneously 
with Eqs. (11) and (12), we need to specify the state of stress of the material entering the control 
volume (e.g. see Shimazaki and Thompson [31]). Accordingly we set 

p = O, sr~ = O, Soo = 0, s~z = 0 and srz = 0 on the boundary surface EFA.  (22) 

The first step in analyzing the problem numerically is to obtain a weak formulation of the 

problem. Let ~b and 0 be smooth and bounded vector and tensor-valued functions defined on the 
region R that vanish on the surface EFA, and q~r = 0 on AB and DE, q~.n = 0 on the 
target/penetrator interface BCD. Also, let t /be a bounded, scalar valued function defined on R. 
Taking the inner product of both sides of Eqs. (11), (12), and (13) with t/, q~ and ~p, integrating the 
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Fig. 1. The finite region studied and its 
discretization 

resulting equations over R, using the divergence theorem, the traction boundary conditions (15), 
(19) and (20), and the aforestated boundary conditions on q~ and qt, we arrive at the following 
equations: 

S r/(div v) d V =  O, (23) 

p(div q~) d V -  ~ s :(grad q~ + (grad (~)T) d V =  o~ .i [(V' grad) v]. q~ dV, (24) 

0 :s d V =  ~ flU) 0: [grad v + (grad v) T] dV, (25) 

g = s + fi?((v- grad) s + s W  - Ws). (26) 

Here and below the integrations are over the region R. The boundary value problem defined by 
Eqs. (11)-(13), (15), (16), and (19)-(22) is equivalent to the statement that v and s satisfy- the 
prescribed essential boundary conditions and Eqs. (23)-(25) hold for every 4J, qt and q such that 
grad q~, grad qt, and q are square integrable over R, and 4J and 0 satisfy the stated homogeneous 
essential boundary conditions. 

An approximate solution of Eqs. (23)-(25) has been obtained by using the finite element 
method (e.g. see Hughes [32]). In order to preclude spurious oscillations in the stress deviator 
s and also to improve upon the rate of convergence, we employed the Petrov-Galerkin 
approximation of Eq. (25) but Galerkin approximation of Eqs. (23) and (24) (see Hughes [32]). 
The region R is divided into quadrilateral subregions, called finite elements, over each of which 
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v and s are approximated by simple polynomials defined in terms of their values at the four corner 

nodes. The pressure p is assumed to be uniform over each element; this value is assigned to the 

centroid of the element. The basis functions used in the Petrov-Galerkin approximation are those 
given by Brooks and Hughes [33]. The boundary condition (16) on target/penetrator interface 

BCD is enforced by using the method of Lagrange multipliers. 

We note that Eqs. (23)-(25) are coupled and are nonlinear in v. The following iterative 

technique was used to linearize them: 

t/(div v m) dV = 0, (27) 

~pm(divqa) d V - ~ s ( v  m 1 ) : ( g r a d ( a + ( g r a d O ) r ) d V = ~ ( ( v  " ~.grad) vm).OdV, (28) 

O:s dV + ~ qt: g(v"- 1) dV = ~ flU"- 1) 0 :  [gra d v m-I + (grad v m- 1)r] dV, (29) 

where m is the iteration number. The iterative process was stopped when 

( 2  l[ v~ - r < ~176 ]lvm-~][2) 1/2, (30.1) 

(Z[P"  - Pm-tl2)l/2 < 0"01(2 IP" II2)1/2, (30.2) 

( ~  HS ra - -  sm-ll[2)l/2 ~ 0.01(2 ][S~-XI[2) 1/2, (30.3) 

where Ilv[I 2 = v 2 + v. 2, and IlsH 2 = tr(ssr). The summation sign refers to the sum of the indicated 

quantity evaluated at all nodes in the finite element mesh. This convergence criterion is weaker 

than the local norm used by Batra and his co-workers [25]-[30]. 
Having determined pressm'e f at the centroids of elements, the pressure at node points is 

computed from 

M 
Z N Nj aV) dV = dr ,  1, 2 . . . .  , M (31) 
j=l 

where M is the number of nodes, and N1, 32 .. . .  are the piecewise bilinear finite element basis 

functions. We note that Eq. (31) also serves to smooth out the pressure field. 

4 Computation and discussion of results 

A computer code based on Eqs. (27) (29) and employing 4-noded quadrilateral elements has 

been developed. The two components (v,., Vz) of the velocity and four components (st,., Soo, srz, and 
s~z) of the deviatoric stress tensor are taken as unknowns at each node, and the hydrostatic 
pressure p is assumed to be constant within an element. The validity of the computer code was 

established by solving the radial flow problem discussed by Shimazaki and Thompson [31]. For  
the same finite element grid and numerical values of parameters as those used by Shimazaki and 
Thompson [31], the two sets of computed results plotted in Fig. 2 agree well with each other. 
Another test problem studied was a hypothetical one involving the flow ofa  Navier-Stokes fluid 
in a circular pipe and achieving a favorable comparison between the computed and analytical 

results; this problem is discussed in the Appendix. 
In the results presented below, the target material was assumed to be an aluminium-alloy for 

which we took ~o = 340 MPa, G = 27 GPa,  and 0 = 2890 kg/m 3. However, the results are 
presented below in terms of non-dimensional numbers and are therefore valid for other 
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Fig. 4. Distribution of the compressive normal stress on the penetrator nose surface for the three different 
nose shapes and for ~ = 2, 6, 8, and 10 when the target material is modeled as elastic perfectly plastic 

combinat ions of target material  and penetrat ion speed. The finite element subdivision of the 

target region when the penet ra tor  has an ell ipsoidal nose with r,/r0 = 2.0 is shown in Fig. 1. The 

components  of the deviatoric stress tensor and the hydrosta t ic  pressure were assigned to be zero 

at the entrance region EFA. 

Figure 3 depicts the effect of material  elasticity (7 = 1.26 x 10 -2) on the pressure 

distr ibution at the nose surface for three different nose shapes with rn/ro = 0.2, 1.0, and 

2.0, and when ~ was set equal to 10.0. Fo r  each nose shape the normal  pressure on 

the nose surface was lower when mater ial  elasticity was accounted for than that  for 

the rigid perfectly plastic case (7 = 0). However,  the general shapes of the curves are 

unaffected by the considerat ion of elastic effects. The normal  stress at the s tagnat ion 

point  is nearly the same for the three nose shapes, but  the shape of the normal  stress 

versus angular  posi t ion 0 curve depends strongly upon the nose shape. As expected, 

for the blunt  nose, the normal  stress stays constant  over most of the nose surface, and 

drops off rapidly to zero near the nose periphery. Fo r  the hemispherical  nosed penetrator ,  

the normal  stress drops off nearly evenly as one moves away from the center to the 
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Fig. 5. Distribution of the tangential speed and the strain-rate measure I upon the penetrator nose surface 
for three different nose shapes; c~ = 10 

nose periphery. F o r  the ell ipsoidal nosed penet ra tor  the normal  stress drops off quite 

rapidly for 0 ~  0 < 30 ~ and rather  slowly for 0 > 30 ~ The curvature of the curve for 

rn/ro = 2.0 is opposi te  to that of the curve for rn/ro = 1.0 or 0.2. 

The dis tr ibut ion of the compressive normal  stress on the nose surface for c~ = 2, 6, 

8, and 10 and when the target mater ial  is modeled as elastic perfectly plastic is plot ted 

in Fig. 4. F o r  each of the three nose shapes considered the normal  stress at points 

on the nose surface for which 0_< 0_< 0c increases with ~, that  at points with 0 > 0c 

decreases with c~. The value of Oc equals approximate ly  22 ~ 45 ~ and 82 ~ for the long 

tapered ell ipsoidal nosed, hemispherical  nosed and the blunt  nosed penetrators,  respectively. 

The normal  stress at points near  the nose periphery was found to be positive for c~ > 15 

implying thereby that  the target particles tended to separate  away from the penetrator .  

However,  for the blunt nosed penet ra tor  this tendency of the target particles to separate 

away from the penet ra tor  adjacent  to the nose periphery was also observed at lower 

values of c~. 

The distr ibution of the tangential  speed on the penet ra tor  nose surface and the strain- 

rate measure I at the centroids of elements abut t ing the penet ra tor  nose surface for the three 

different nose shapes and c~ = 10.0 is shown in Fig. 5. It is apparent  that  the material  elasticity has 

negligible effect on the tangential  speed and the s train-rate  measure I. Fo r  the long tapered nosed 

penetrator ,  the tangential  speed increases very rapidly for 0 _< 0 < 20 ~ attains the value of 1.0 at 

0 ~ 30 ~ and then stays close to 1.0 for 30 ~ _< 0 _< 90 ~ F o r  the hemispherical  nosed penetra tor  the 

tangential  speed increases gradual ly  from 0 at 0 = 0 ~ to 1.0 at 0 ~ 60 ~ and does not  vary much for 

60 ~ < 0 < 90 ~ The trend is quite different for the blunt  nosed penetrator.  In this case the 
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Fig. 6. Variation of the pressure, strain-rate measure I and the z-velocity on the axial line with the distance 
from the penetrator nose tip 

tangential speed increases slowly for 0 < 50 ~ and then very rapidly. The maximum value of the 

tangential speed computed for the blunt nosed penetrator is more than that for the other two 

nose shapes. For  the blunt nosed penetrator the peak values of the strain-rate measure I are an 

order of magnitude higher than that for the long tapered nosed penetrator. Whereas/max Occurs 
near the nose periphery for the blunt nosed penetrator, peak values of I for the other two nose 

shapes are realized at the stagnation point. Both for the hemispherical and the elliptical nosed 

penetrator, I decreases slowly from its maximum value at the nose center to nearly zero at the 

nose periphery. 
We have plotted the variation of the hydrostatic pressure, strain-rate measure I and the axial 

velocity along the axis of symmetry in Fig. 6. The consideration of material elasticity has very 
little effect on the distribution of I and the axial velocity but reduces noticeably the value of the 
hydrostatic pressure. The value o f / a t  the stagnation point is maximum for the ellipsoidal nosed 
penetrator and least for the blunt nosed penetrator; the former equals nearly twice the latter. It is 
clear that severe deformations of the target occur at points situated at most 3ro from the 
penetrator nose surface. Thus the target region studied is adequate. The pressure drops offmore 

slowly when the target material is modeled as rigid perfectly plastic as compared to the case when 
it is modeled as elastic perfectly plastic. The general shapes of the curves I, vz or p versus the 
distance from the nose tip are unaffected by the penetrator nose shape and by the consideration 

of material elasticity. 
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Fig. 7. Dependence of the peak pressure at the stagnation point and the axial resisting force experienced by 
the penetrator upon 

The dependence of the peak pressure that  occurs at the s tagnat ion point,  and of the axial 

resisting force F experienced by the penet ra tor  upon ~ is depicted in Fig. 7. The axial resisting 

force F is given by 

~r/2 

F = 2 f ( n . a n )  

0 

cos ~b sin 0 [sin 2 0 + (1/r,) ~ cos z 0] 1/2 

[sin 2 0 + ( l / r , )  2 cos 2 0] 2 
dO, (32.1) 

Z/rn 2 
COS ~b = [r 2 + (z/r2)2]l/2 , (32.2) 

where the angle 0 is defined in Fig. 1 and (r, z) are the coordinates  of a point  on the 

penetra tor / target  interface. The corresponding axial force in physical units is given by (~rro 2ao) F. 

Fo r  each nose shape, the relationships between Pmax and ~, and F and ~ are nearly affine, and the 

considerat ion of elastic effects lowers the value of Pmax by about  2, and of F by 1.8. The least 

squares fit to the computed  da ta  gives 

Pm,x = 6.82 + 0.48C~, F = 7.97 + 0.094c~, r,/ro = 0.2, (33.1) 

Pmax = 7.20 + 0.48C~, F = 7.67 + 0.042Cq rUro = 1.0, (33.2) 

Pm~x = 7.26 + 0.48c~, F = 7.29 + 0.021~, r,/ro = 2.0, (33.3) 
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Fig. 9. Variation of the deviatoric stress 
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when the target  material  is modeled as rigid perfectly plastic, and 

Pmax --- 4.87 + 0.47~, F = 6.17 + 0.096c~, rn/ro = 0.2, (34.1) 

Pma~ = 5.29 + 0.47c~, F -- 5.90 + 0.038~, m/r0 = 1.0, (34.2) 

Pmax = 5.16 + 0.47c~, F = 5.32 + 0.019~, r~/ro = 2.0, (34.3) 

when it is taken to be elastic perfectly plastic. We note that  the dependence o f f  upon c~ is quite 

weak. 

The contours  of the hydrosta t ic  pressure in the deforming target region for the three different 

nose shapes and c~ = 10 are depicted in Fig. 8. These show that  the pressure falls off to zero, not  

only on the axial line, but  also along other radial  lines as one moves away from the penetra tor  

nose surface. The contour  of the zero hydrosta t ic  pressure near the bounding surface is not  

plot ted in order  to focus on the narrow region surrounding the penetra tor / target  interface. F o r  

each one of the three nose shapes examined, the pressure near  the nose periphery drops  off to 

a very small value. The pressure gradient  at points near  the nose tip is steepest for the ell ipsoidal 

nosed penetrator.  

On the axial line uniaxial  strain condit ions prevail  approximately.  Thus the magni tude of the 

deviatoric stress szz at a point  on the axial line should equal (2/3a0) whenever the mater ial  point  is 

deforming plastically. For  a rigid perfectly plastic target material  and for each nose shape 

considered, the computed  value of Iszzl came out  to be 2/3cr o as shown in Fig. 9. Near  the 

boundary  point  F of the target region studied, Is=zl rapidly dropped  to the prescribed zero value. 

This rapid  drop is not  shown in the figure. However,  when the target material  is modeled as 
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elastic perfectly plastic, Is~] equals (2/3r for a distance of 3ro to 4ro from the nose tip and then 
gradually decreases to the assigned value of zero at the outer boundary. The penetrator nose 

shape influences the rate of decay of Is~l; the plastic deformation progresses farther for the blunt 

nosed penetrator and ISzd decays slowly for it as compared to the ellipsoidal nosed penetrator. 

On the axial line, the Bernoulli equation in terms of non-dimensional variables and as modified 
by Tate [17], [18] is 

1 2 
- c~ + R t  = _ r  = ps  + -  (35) 
2 3 

where Rt accounts for the strength of the target material, and o~z and pS are the values of czz and 

p at the stagnation point. Having computed r and knowing ~, we can find R~. For  the three nose 
shapes considered, the least squares fit to the computed values of Rt for different values of a gives 

the following: 

R, = 7.48 - 0.020c~, (r,,/ro) = 0.2, (36.1) 

R~ = 7.86 - 0.018cz, (r,,/ro) = 1.0, (36.2) 

Rt = 7.92 - 0.024~, (r,/r0) = 2.0, (36.3) 

for a rigid perfectly plastic target, and 

Rt = 5.53 -- 0.027c~, (r,/ro) = 0.2, 

Rt = 5.96 - 0.027~, (r,,/ro) = 1.0, 

Rt = 5.83 - 0.032~, (r,/ro) = 2.0, 

(37.1) 

(37.2) 

(37.3) 

for an elastic perfectly plastic target. In either case the dependence of Rt upon ~ is very weak and 

this explains why the assumption of constant Rt in simpler theories of penetration gives good 

results. Tate [19] has proposed that 

2 (38t Rt = ~ + In \3ao] 

where Et is Young's modulus of the target material. Thus for values of G and ao taken herein, 

2 ( 2 [ / 3 x 2 7 _ x  109))  
Rt= 3- + I n  \ 0.34 x 109 ] ]  =5"734 (39) 

which is close to the values computed for the elastic perfectly plastic target. Recalling that 
pS = p . . . .  it is interesting to note that the slope of the least squares fit to the Pmax VS. ~ data is close 

to 0.5 as it should be if Eq. (35) were to hold. 
As is transparent from Fig. 9 the stress state at target particles far away from the 

target/penetrator interface lies inside the surface defined by 

2 
tr (s 2) = 3" (40) 

This is certainly true of points on the boundary surface EFA where s = 0 is prescribed. The 
constitutive assumptions (4)--(6) tacitly assume that each target particle is deforming elastically 

and plastically. However, points where Ilsll is small are undergoing negligible plastic deforma- 
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Fig. 10. Elastic-plastic boundary for 
three different nose shapes, and ~ = 10 

tions. Here we classify points for which the stress state satisfies the condition (40) as deforming 

plastically and those for which the stress state lies inside the surface (40) as deforming elastically. 

The elastic plastic boundary computed by using this criterion and obtained by joining points that 

are deforming plastically by straight line segments is depicted in Fig. 10.These curves suggest that 
less of the material ahead of the penetrator nose tip and to the sides of the rigid rod is deformed 

plastically for the ellipsoidal nosed penetrator as compared to the other two nose shapes 

considered. The distance of the elastic-plastic boundary from the penetrator nose tip is found to 
be 5.4, 6.8, and 7.7, respectively, according as the penetrator nose shape is ellipsoidal, 

hemispherical or blunt. Tate [19] presumed that a material particle was deforming either 
elastically or plastically and based on his solenoid flow model he found the axial distance of the 

elastic-plastic boundary from the stagnation point to be 6.71, which compares well with our 

computed values. The computed results, not plotted herein, show that ahead of the penetrator 
the elastic-plastic boundary does not advance much when c~ is increased from 6 to 10 for the 

hemispherical and blunt nosed penetrator but does move appreciably for the ellipsoidal nosed 

penetrator. As soon as a material particle goes past the nose periphery, stresses on it are relieved 
and the stress state for it lies inside the surface defined by (40). 

A measure of the deformation of a material particle is the value of the effective strain e, 
defined as 

(1 
= tr D 2 = I (41) 

at that point. For  a steady state penetration problem Tate [20] has described a method to 

compute different components of the finite strain tensor from a knowledge of the velocity field. 
He showed that contours of the circumferential strain are approximately parallel to the crater 
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Fig. l l .  Contours of the effective strain in 
the deforming target region for a blunt 
nosed penetrator, and ~ = 10 

surface and that the circumferential strain at a point distance a little more than one radius from 

the crater tip equals 5%. Because of the steady state deformations, we write Eq. (41) as 

(v' grad) 8 = I (42) 

and first compute 1 from the velocity field, and then find 8 as a solution of Eq. (42) with the 

boundary  condition 8 = 0 on EFA. These contours basically look alike for the three nose shapes, 

and are shown in Fig. 11 only for the blunt  nosed penetrator. The contours of e suggest that 

severe deformations propagate farther to the side than ahead of the penetrator nose. The peak 

values of 8 occur at target particles near the target/penetrator interface and equal 100%. We 

recall that no failure or fracture criterion is included in our work. Thus a material point can 

undergo an unlimited amount  of deformation. As expected, the strain gradients are high at points 

near the target/penetrator interface and rapidly decay as one moves away from this interface. 
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5 Conclusions 

We have analyzed the steady state axisymmetric deformations of an elastic perfectly plastic target 
being penetrated by a fast moving rigid cylindrical rod. Three different nose shapes, i.e., 
ellipsoidal, hemispherical, and blunt are considered. For  each nose shape the effect of the 
penetration speed upon the deformations of the target is investigated. The consideration of 
elastic effects necessitates that the problem be analyzed by using a mixed formulation in which 
both velocities and stresses at a node point are taken as unknowns. 

The peak hydrostatic pressure at the stagnation point is lower when elastic effects are 
included than when they are not. Also, the axial resisting force experienced by the penetrator  is 
found to be lower when the target material  is modeled as elastic perfectly plastic than when it is 
modeled as rigid perfectly plastic. In either case, the axial force depends upon the non- 
dimensional parameter  ~ very weakly. Similarly the strength parameter  appearing in the 
modified Bernoulli equation is found to be essentially independent of c~, and the computed value 
is close to that given by Tate. For  the blunt nosed penetrator,  plastic deformations spread farther 
ahead of the penetrator  nose as well as to its sides as compared to those when the penetrator  nose 
is ellipsoidal or hemispherical. The distance of the elastic-plastic boundary  from the penetrator  
nose tip along the axis of symmetry is found to compare  well with that estimated by Tate. 

Appendix 

One of the problems analyzed in order to establish the validity of the finite element code 

developed is the following hypothetical problem. Consider the flow of a homogeneous and 
incompressible Navier-Stokes fluid of unit mass density and unit viscosity. The flow is governed 

by equations obtained from Eqs. (1) through (8) when ~ = 1, a o / ~  I = 2, omitting Eq. (4) and 
adding the body force vector to the left-hand side of Eq. (2). These equations have the solution 

v, = r(1 - r), vz = --z(2 -- 3r), p = z, 

g,. = 3 + r(1 - r) (1 -- 2r), 

T A r 
i "  

g z =  l - 3z/r + 3 z r ( 1 -  r) + z ( 2 -  3r) 2, 

(AI) 

(A2) 

N P 

T R '$ 

Fig. A I. The finite element mesh used for the test 
problem 
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Table A 1. Comparison of analytical and numerical solution. The good agreement between the computed 
and analytical values of vr, v z, and p establishes the va[idity of the code 

Point Analytical values Computed values Point 

Ur Pz ~r Uz 

Analytical Computed 
value value 

p - p  

N 0.1875 0.3125 0.1890 0.3116 1 0.3125 0.331 1 
P 0.2500 0.1250 0.2504 0.1250 2 0.3125 0.311 5 
Q 0.2500 0.2500 0.2502 0.2500 3 0.4375 0.4329 
R 0.2500 0.3750 0.2501 0.3750 4 0.4375 0.4318 
S 0.1875 -0.1875 0.1875 -0.1875 5 0.6875 0.7032 
T 0.1875 0.9375 0.1876 0.9374 6 0.6875 0.6819 

where vr and vz are, respectively, the radial and axial components of the velocity, and gr and 

gz equal the radial and axial components of the body force per unit  mass. 

The finite element mesh used to compute the solution is shown in Fig. A 1. On surfaces AB, 
BC, and CD, both vr and vz as given by Eq. (A 1) were prescribed, on the surface AD, vr and the 

normal traction, equal to crzz, were specified. In this case, the specification of the state of stress at 

the entrance region was not needed. In Table A 1, we have listed the converged computed results 

and the values from the analytical solution (A 1) at various points in the domain. Recall that the 

pressure field is assumed to be constant  within an element; this value is assigned to the centroid of 

the element. The pressure field at other points is interpolated from its values at the centroids of 

the elements. 
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