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Summary. We study plane strain thermomechanical deformations of a hollow circular cylinder containing 
two rigid non-heat-conducting ellipsoidal inclusions placed on a radial line symmetrically with respect to the 
center. These inclusions can be viewed as precipitates or second phase particles in an alloy. The material of 
the cylinder is presumed to exhibit thermal softening, but strain and strain-rate hardening. The impact load 
applied or~ the inner surface of the cylinder is modeled by prescribing a radial velocity and zero tangential 
tractions at material particles situated on the inner surface. Rigid body motion of the inclusion is considered 
and no slip condition between the inclusion and the cylinder material is imposed. 

It is found that shear bands initiate from points adjacent to inclusion tips near the inner surface of the 
cylinder and propagate toward this surface. At inclusion tips near the outer surface of the cylinder, the 
maximum principal logarithmic strain and the temperature are high and the effective stress is low, but severe 
deformations there do not propagate outward. 

1 Introduction and problem formulation 

In a previous paper [1] we studied the problem of the initiation and growth of shear bands in 

a dynamically loaded and thermally softening viscoplastic cylinder undergoing plane strain 

deformations. Two ellipsoidal voids placed on a radial line symmetrically with respect to the 
center were taken to be nucleation sites for the bands. Here we study the same problem, except 

that the voids are replaced by rigid inclusions. Zhu and Batra [2] have investigated the initiation 

of shear bands from inclusion tips embedded at the centroid of a square cross-section. However, 

the inclusion was stationary because of the symmetry of the deformations. Here each inclusion 

can move in the radial direction; we account for its inertia, and compare computed results with 

those obtained when the inclusions are replaced by voids. This comparison should reveal which 

one of the two is a stronger defect in the sense that it causes the shear band to initiate sooner. 
We note that much of the literature on shear bands is given in the two papers [1], [2] cited 

above, and refer the reader to these papers for references related to this work. The study of shear 

bands is important,  since they act as precursors to shear fractures, and once a shear band has 

formed subsequent deformations of the body occur within this narrow region with the rest of the 
body undergoing very little deformations. 

The geometric configuration for the problem studied and the finite element mesh used to 
analyze it are shown in [1, Figs. 1 and 2]. Here the void of [1] is replaced by an identical 
non-heat-conducting rigid inclusion. We refer the reader to [1] for the governing equations, 
boundary  conditions, constitutive relations, and a brief description of the method used to solve 
the problem. Whereas the void surface in [1] was taken to be thermally insulated and traction 

free, here we require that displacements and surface tractions are continuous across the 
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cylinder/inclusion interface. Because of the presumed symmetry of deformations about the 
horizontal and vertical centroidal axes, the rigid inclusion can move only horizontally and the 
relevant equation of motion is 

mfJ~ ~ = F1, F i  = - 5 f f l j n j d s ,  (1) 

where the line integration is over the inclusion/cylinder material interface, nj is an outward unit 
normal to this surface and pointing into the inclusion, a u is the Cauchy stress tensor evaluated at 

cylinder particles abutting the inclusion, the integration path is traversed so that the cylinder 
material lies to our left, vl" is the velocity of the rigid inclusion in xl-direction, and m is the mass 
of the inclusion in a cylinder of unit length. 

Here we also account for the work-hardening of the cylinder material and employ the 
following constitutive relation to describe its thermomechanical response. 

au = --P(O) 6u -- c~K(O - 0o) 6 u + 2#D u, 

2 # = ~ ( l + b I )  m ( 1 - v ( O - O o ) )  1 +  , 

~/ = 2#DijDij  1 + , 212 = O i j O i j  , 
1 

/Su = / )u  - ~-/)kk6U, 

(2) 

where a u is the Cauchy stress tensor, c~ the coefficient of thermal expansion, K the bulk modulus, 
0 the present temperature of a material particle, 00 its initial temperature, D u is the strain-rate 
tensor, ~r0 the yield stress in a quasistatic simple tension or compression test, v the coefficient of 
thermal softening, and g, is an internal variable used here to describe the work hardening of the 
material. The material parameters b and m characterize the strain-rate hardening of the material, 
and ~0 and n its work hardening. 

2 Results and discussion 

The material and geometric parameters are assigned values as in [1], and we set 

K = 168 GPa ,  Ol = 20r, t~0 = 0.017, 

n = 0 . 1 ,  o~=10 .8x10-6~  -*,  0 o = 2 5 ~  
(3) 

where 0i is the mass density of the inclusion. 
Results presented below are in terms of nondimensional variables defined in [1]. Figure 1 

depicts the variation of the rigid inclusion velocity with time. Because of the dissipation of energy 
due to plastic working and heat conduction, the speed of the inclusion gradually dies out. The 
peak speed of the inclusion depends upon its mass density and the values of parameters for the 
cylinder material. The evolution of the maximum principal logarithmic strain e, the temperature, 
and the effective stress se, at four points P, Q, R, and S located on the horizontal axis is plotted in 
Figs. 2a, b, and c, respectively. Points Q and R represent cylinder particles adjoining, 
respectively, the left and right tips of the inclusion, and P and S are situated on the inner and outer 
surfaces of the hollow cylinder. The effective stress se and the maximum principal logarithmic 
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Fig. 1. Variation of the xl-velocity of the rigid inclusion with time 

strain e are defined as 

/1 \1/21 ( ~t)" 
(4.1) 

e = In 21, (4.2) 

where )~1 z is the maximum eigenvalue of the left or right Cauchy-Green tensor and s is the 
deviatoric stress tensor. Because of the oscillatory motion of the rigid inclusion, values of e at 
points Q and R increase gradually, attain a local maximum at time t = 0.0085, and then fall off 

slowly. Once the inclusion has essentially come to rest, s at points Q and R increases. The values 
of e at points P and S increase monotonically, but are quite small relative to the peak values of 
e at points Q and R. For e = 0.3, the stretch equals 1.35, and the nominal strain 0.25. The 
temperature rise at points P and S is minuscule as compared to that at points Q and R. The 
temperature of each of these four points increases monotonically; the temperature of point Q on 

the left inclusion tip is always higher than that of point R on the right inclusion tip. The effective 
stress s~ at points Q and R increases first because of the strain and strain-rate hardening of the 

material, but then decreases essentially monotonically because this hardening is exceeded by the 
softening of the material due to its being heated up. The peak values ofs~ at points Q and R occur 
at different times, even though e attains the maximum value there at about the same instant. It is 
due to the different values of the temperature and possibly strain-rates. In our previous studies 
[1] - [3] of shear banding in one and two-dimensional problems, values of e and 0 at the point of 

the initiation of the band increased monotonically and in consonance with each other 
throughout the localization process. However, in the present problem, because of the oscillatory 
motion of the rigid inclusion, the point where e assumes maximum values at any instant of time 

keeps on changing. 
Figure 3 depicts the contours of the maximum principal logarithmic strain at t = 0.01, 0.02, 

and t = 0.035, and of the temperature at time t = 0.035. We note that the subroutine used to plot 
these contours interpolates data at numerous points in the domain from that supplied at either 
nodal points or quadrature points of the elements. The temperature contours suggest that shear 
bands initiate fi'om points near both inclusion tips. However, the contours of the maximum 
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Fig. 2. Evolution of the maximum principal logarithmic strain, temperature, and the effective stress at points 
P, Q, R, and S. Coordinates of these points in the stress-free reference configuration are P (0.5016, 0.0018), 
Q (0.719 3, 0.003 3), R (0.7764, 0.003 5), and S (0.998 4, 0.002 7). 

principal logarithmic strain indicate that initially severe deformations occur at points near both 
inclusion tips, but those at points near the right inclusion tip subside and those at points adjacent 
to the left inclusion tip become more intense and propagate toward the inner surface. This is 
confirmed by a plot, given in Fig. 4, of the deformed mesh embedded in a small region 
surrounding the inclusion. We note that this mesh was not used to solve the problem. 
Coordinates of node points for this mesh in reference and present configurations were obtained 
from the coordinates of node points in the mesh in the unstressed reference configuration and the 
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Fig. 3 a - d .  Contours of the maximum principal logarithmic strain at three different times and of the 
temperature at t = 0.035 
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solution of the problem. In our earlier investigation [1] involving a void where we have inclusion 

now, we found that a small region near the right void tip also deformed severely, but these intense 
deformations did not propagate to distant points. The presently computed results suggest that 

the temperature rise and stress drop at a point in a two-dimensional problem may make the 
material there unstable, but this instability need not propagate outward from that point. Perhaps 
factors such as the rates of temperature rise and of stress drop, and the state of deformation of the 

material surrounding the point where the stress drop occurs are equally important,  too. 
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Fig. 4. Deformed mesh embedded in a small region surrounding the rigid inclusion 
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Fig. 5. Variation, at different times, of the maximum principal logarithmic strain within the band, and of the 
temperature at points on the estimated centerline EF of a shear band 
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From the contours of e and the deformed mesh, we estimate the centerline of the shear band to be 

the line EF shown in Fig. 3 d. The variation of the temperature at points on EF and of the 
maximum principal logarithmic strain within the band for different values of time is shown in 
Fig. 5. The values of the maximum principal logarithmic strain were obtained by computing its 
values at several points on a line perpendicular to EF, finding the largest of these values, and 
assigning that value to the point of intersection of the transverse line with EF. We note that 
e varies noticeably at points on the transverse line as depicted below in Fig. 6. As oscillations of 
the rigid inclusion diminish, the strain within the band tends to become uniform. Whereas the 
maximum strain occurs at a point close to E, the peak temperature occurs at a point on line EF 

that is slightly away from E. The distribution, at different times, of the temperature and the 
maximum principal logarithmic strain at points on line GH (cf. Fig. 3 d for the location of line 
GH) perpendicular to EF is shown in Fig. 6. The abscissa is the distance of a point from G along 

the line GH. Whereas the temperature at material points on line GH changes gradually as one 
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Fig. 7. Variation, at different times, of the maximum principal logarithmic strain and the temperature on 
a horizontal line tangent to the inclusion tip 

moves along the line GH, the strain does not. The computations were stopped when a material 
point had melted. The melting of one material point does not imply the failure of the body since 
the neighboring material holds it together. It seems that the use of an adaptively refined mesh 
would probably result in sharper gradients of temperature and strain along line GH. 

The distribution of the maximum principal logarithmic strain and temperature at points on 
a horizontal line VW tangent to the inclusion is exhibited in Fig. 7. The abscissa in the figure 
equals the distance from the inner surface of the cylinder (i.e., point V) of a point on line V~. 
Oscillations of the rigid inclusion affect noticeably the location of the point where peak values of 

occur. The strain and temperature at points near the left inclusion tip are higher than those at 
points near the right inclusion tip. 

Figure 8 depicts how the average pressure 

2 t ~  

t Or,(ri, O) dO (5) P =  rc 

o 
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on the inner surface of the cylinder varies with time. In Eq. (5), rl equals the inner radius of the 
deformed cylinder. The solid curve corresponds to the case of the rigid inclusion and the broken 
one to that of an identical void. Note that essential boundary conditions are prescribed on the 
inner surface, and the outer surface is traction free. If the shear band is assumed to initiate when 
the pressure on the inner surface drops precipitously, then the rigid inclusion causes the shear 
band to initiate sooner than the void does. Also, the average pressure in the cylinder containing 
the inclusions stays lower than that in the cylinder having similarly situated voids suggesting that 
the overall stiffness of the cylinder has been reduced more for the rigid inclusion case. 

3 Conclusions 

We have studied the problem of the initiation and growth of shear bands in a thermally softening 
viscoplastic cylinder undergoing plane strain deformations. The cylinder has two non- 
heat-conducting rigid ellipsoidal inclusions, placed on a radial line symmetrically about the 
center. The complete dynamic thermomechanical problem, including the inertia of the rigid 
inclusion, has been analyzed. It is found that because of the oscillations of the rigid inclusion, the 
point where peak values of the maximum principal logarithmic strain occur keeps on changing 
with time. A shear band initiates from a point close to the left void tip and propagates toward the 
inner surface. Even though the maximum principal logarithmic strain at a point near the right 
inclusion tip also increases, these severe deformations stay confined to a very narrow region 
surrounding the right inclusion tip. Thus, a material point may become unstable in the sense that 
the effective stress there decreases with increasing strain, but this instability may not propagate 
farther because either the state of deformation of the material surrounding the inclusion tip is not 
conducive to that, or the instability is not severe enough. 
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