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Summary. We study steady state axisymmetric deformations of a thick viscoplastic target being penetrated 
by a fast-moving long rigid cylindrical rod with a hemispherical nose. The deformations of the target appear 
steady to an observer situated on the penetrator nose tip and moving with it. The objective of this work is to 
investigate the effect of the frictional force acting on the target/penetrator interface upon the deformations of 
the target. It is postulated that the frictional force at a point on the target/penetrator interface is proportional 
to the normal traction there and depends upon the speed of the target particle relative to the penetrator. It is 
found that the frictional force affects significantly the variation of the tangential speed and the second 
invariant of the strain-rate tensor on the penetrator nose surface, but minimally the distribution of the 
normal stress there, since the dominant component of the normal stress is the hydrostatic pressure which is 
affected little by the consideration of friction forces. 

1 Introduction 

In previous papers  [1] - [6], Batra and co-workers have studied in detail the penetra t ion problem 

in which the fast moving rod is assumed to be semi-infinite and the target infinite with 

a semi-infinite hole, and the rate of penetrat ion and all flow fields are steady as seen from the 

nose of the penetrator.  They examined the effect of different nose shapes and flow rules used 

to model  the viscoplastic response of the target and penet ra tor  materials.  Here we relax their 

assumption of the target /penetra tor  interface being smooth  and study in some detail  the effect 

of considering frictional forces at the target /penetra tor  interface. We resolve the difficult question 

of modell ing the friction force by first motivat ing that  it should depend upon the relative speed 

of the two sliding surfaces and the normal  t ract ion between them. An approximate  value of 

the two constants appearing in the expression for the frictional force is determined by compar ing 

the dis tr ibut ion of the frictional force on the penet ra tor  nose surface obtained from a solution 

of the penetra t ion problem with that  found by modell ing the steady state penetra t ion process 

as a viscous fluid flowing a round  the rigid penetrator.  The fluid flow results in a thin boundary  

layer abut t ing the penet ra tor  surface. We recall that  Birkhoff et al. [7] and Pack and Evans 

[8] described the hypervelocity impact  by a modified Bernoulli  equation in which mater ial  

strength was represented as a resistive pressure. Alekseevskii [9] and Tare [10] considered 

separate resistive pressures for the target and the penetrator.  Tate [11] has recently given 

expressions for these resistive pressures in terms of Young's modulus  and the flow stress of the 

material.  

Fo r  a review of the open l i terature on ballistic penetrat ion,  we refer the reader  to Backman 

and Goldsmi th  [12], Jones and Zukas  [13], and Anderson and Bodner [14]. Engineering models of 

ballistic penetra t ion have been proposed  by Awerbuch [15], Awerbuch and Bodner  [16], Ravid 
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and Bodner [17], Ravid et al. [18], Batra and Chen [19], Jones et al. [20], Woodward [21], and 

Forrestal et al. [22]. 
The work described herein is in the spirit of our previous work [1] - [6], initiated a few years 

ago by Batra and Wright [3], with the hope that the kinematic and stress fields reported herein 
will help in devising and/or checking results from simpler engineering theories of penetration. 

2 Formulation of the problem 

We use cylindrical coordinates with the origin attached to the penetrator nose tip and z-axis 

pointing into the penetrator to describe the axisymmetric deformations of a viscoplastic target. 
Recalling that the penetrator is moving at a steady speed, equations governing the target 
deformations and written in terms of non-dimensional variables are 

div v = 0, (1) 

div a = c~(v" grad) v, (2) 

(1 + bI) m 
a = - p l  + - -  D ,  (3) 

2D = grad v + (grad v) T, (4) 

212 = tr (D2). (5) 

Here v is the velocity of a target particle relative to the penetrator, a is the Cauchy stress tensor, 

p is the hydrostatic pressure not determined by the deformation history, D is the strain-rate 

tensor, the material parameters b and m characterize the strain-rate sensitivity of the material, 
= ~tv0Z/ao is a non-dimensional number that signifies the importance of inertia forces relative 

to the flow stress of the material, 9t is the mass density of the target material, Vo the steady 

penetration speed, and ao is the flow stress of the target material in a quasistatic simple tension or 
compression test. The non-dimensional variables are related to the dimensional variables 

denoted below by a superimposed bar as follows: 

v = ~/Vo, a = ~ / a o ,  p = p / a o ,  r = f / r o ,  z = i/ro, 

- ro ro (6) 
I = I - - ,  D = D - - .  

YO YO 

Henceforth we work in terms of non-dimensional variables. 
Equation (1) and that obtained by substituting from (3), (4), and (5) into (2), subject to 

appropriate boundary conditions, are to be solved for p and v. We seek an approximate solution 
of these coupled nonlinear partial differential equations by the finite element method, which 
necessitates that we consider a finite target region. The target region studied and its discretization 

into finite elements is depicted in Fig. 1. For  the boundary conditions, we take 

t �9 an = g(v, n - an) on the target/penetrator interface Fi, 

v ' n = O  on/ ' i ,  

~zz = 0, vr = 0 

vr = 0, 

Gz = 0, 

on the bounding surface AB, 

v~ = - 1 . 0  on the bounding surface EFA,  

vr = 0 on the axis of symmetry DE.  

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 
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E 

Fig. 1. The finite region analyzed and its discretization 

Here n and t denote, respectively, a unit normal  and a unit vector tangent to the surface, and Fi is 
the surface DCB. The boundary  condition (7.1) implies that the tangential force at a point on the 
target/penetrator  interface is a function of the relative velocity and normal  traction there. Oden 
et al. [23] have motivated such a form for the frictional force. It has also been used by Chen [24] in 
studying the penetration of a rigid ogival nosed cylindrical projectile into a geological target. We 
discuss the specific form of the frictional force a little later. The boundary  condition (7.2) signifies 
that there is no penetration of a target particle into the penetrator.  The boundary  conditions (7.3) 
and (7.4) are good approximations,  provided that the target region studied is large. One way to 
ensure the adequacy of the region analyzed is to study the problem for successively larger regions 
till the solution variables at target particles near the target/penetrator  interface change within 
desirable tolerances. The boundary  conditions (7.5) follow from the assumption that  the target 

deformations are axisymmetric. 
With the definitions 

.s = t " a n ,  f .  - n " a n ,  (8) 

we rewrite (7.1) as 

f = g(v, f,).  (9) 

We note that there is no failure criterion for the target material  included in our Work. 

2.1 Hypothesis for  the frictional force 

We assume that  the frictional force at a point on Fi is proport ional  to the normal  traction there 
and opposes the mot ion of the target particle relative to the penetrator.  That  is, 

f = --vf.e~, e~ - v/Ivl. (10) 
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In Coulomb's  law, v is taken as a constant and the frictional force is independent of the 

magnitude of the relative velocity of sliding between the two bodies. That Coulomb's law is not 

appropriate for the present problem can be realized by considering the state of stress at the 
stagnation point D in Fig. 1. Recalling the boundary condition (7.5), i.e., crr~ = 0, and the 

symmetry of the Cauchy stress tensor, we see that ft = a~r = 0 at point D. However, f ,  + 0 there. 
Rather, f ,  is expected to be maximum at the stagnation point D. 

We postulate that the frictional force f is continuously distributed on F~, and take 

u = #v ~, (11.1) 

obtaining thereby 

f = - # v~f,e,,, (11.2) 

where v = (vr 2 + Vz2) 1/2 is the magnitude of v, and # and fi are constants. For  Coulomb's  law, 

fi = 0. We note that 

= v~ + (Vo - v~) e - ~  (12) 

assumed by Chen [24] satisfies f = 0 at the stagnation point D only when vo = 0. In Eq. (12), 

Vo, voo and y are constants. Equation (11.2) is valid for a certain range, to be determined 
experimentally, of values of v. Here we assume it to hold for moderate penetration speeds 
considered in this study. 

2.2 Determination o f  parameters in the frict ion law 

in order to determine an approximate value of/3 in Eq. (11), we envisage that the target material 

flowing around the penetrator can be regarded as a fluid, somewhat akin to the solenoidal fluid 

flow model of Tate [25]. At a large distance from the penetrator nose tip, the fluid can be regarded 

as nonviscous or perfect, and the fluid viscosity plays a dominant role in a thin layer surrounding 
the penetrator. With respect to the orthogonal curvilinear coordinate axes (x, y) shown in Fig. 2, 

a general momentum integral that gives the shearing traction r0 at a point on the hemispherical 
nose surface of the penetrator can be written as [26] 

Zo = 0~ I U2 dO* dV ~:2 0* ~ r ]  (13) d 2  + (20* + u + --r a j' 

I 
I 

region I region II Fig.  2. Schematic sketch of the fluid 
flow around the penetrator, and the 
coordinate systems used 
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where 

6 * = f ( l - u )  dY, (14.1) 

o 

0 " =  ~ 1 -  dy, (14.2) 

o 

0u , (14.3) 
% = I~y Oy y=o 

u and U denote, respectively, the x-velocity of a fluid particle within the boundary  layer and at far 
away points, ~s is the mass density, and #y the shear viscosity of the fluid. We make the 
Karman-Pohlhausen  [26] approximation,  i.e., 

u = U(a + btl + cq z + dtl 3 + etl4), 

where 

(15.1) 

q=y /6 (x ) ,  (15.2) 

6(x) is the thickness of the boundary  layer, and a,/~, c, d, and e are constants to be determined from 
the following boundary  conditions: 

u(x, o) = o,  u(x, ~) = U(x), 

~U ~21,1 
(x, 6) = 0, ; - s  (x, 6) = 0, (16) 

6~ ey- 

c?Zu U(x) dU 
Oy 2 (X, O) = --o~f - -  - - .  

py dx 

A solution of Eq. (15.1) under the boundary  conditions (16) is 

2 u = 1 - ( 1 + 7 7 ) ( 1 - t / )  3 + ~ r / ( 1 - r / )  3, 
U 

where 

(17.1) 

With the definitions 

r = o~fO*2/]2f, (18.1) 

dU 
= q5 dffx' (18.2) 

(~2 dU 
2 = ~o s - -  - - .  (17.2) 

l~y dx 
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the general momentum integral (13) can be written as 

d~ 
u ~ : m z ) ,  (19.1) 

where 

H(z) = 2[g(z)-  (2 +f(z))  z] 
2dr U 
rdx U' 

z, U ' + O ,  (19.2) 

2 dr 
= 2[g(z) (2 +/(z))  x] - r dxx Uq), U' = 0 ,  (19.3) 

g(z) = (2 + ~ )  h(z) = U x/~olq2/, 

f(g) = ( 3 l~o)/h(x), 

z(x) = 2h2(z), 

37 2 2 2 
h ( ~ )  - 

315 945 9072" 

(19.4) 

(19.5) 

(19.6) 

(19.7) 

We note that, because of Eq. (17.2), we have two unknowns, say z and q~. The laminar boundary 
layer theory requires that 121 < 12. We determine the far field velocity U by studying the solutions 
of the steady state penetration problems analyzed earlier, in which the target/penetrator interface 
Fi was taken to be smooth. This is justified, since in the region away from the penetrator surface, 
the fluid is modelled as nonviscous, and the effect of the frictional force on the target/penetrator 
interface should be minimal there. 

Batra and Chen [19] represented the velocity field in steady state penetration ofa viscoplastic 
target by a hemispherical nosed rigid cylindrical penetrator as 

( 1 Vo= 1 - ~ +  s i n 0 +  ~C~k~o rosin k 20, 
m,k 

[(~2 ) 2 ( 1 2  1 ) 2 (91~ ~n) 1 v~= - 1  c o s 0 -  1 - n  o-+1 c o s 0 + ~  - cos0 

- ~ k ~ 2  ~ -  ~~ sink 120((2k+ 1) cos 2 0 + 1 )  

in region I, and 

1 1) ,  
v ~ = -  1 - r~ ; ;  + ~ v r = 0  

(20.1) 

(20.2) 

(21) 

in region II. The constants n and Cm~ were determined by ensuring that the error in integrating 
the balance of linear momentum was minimum. Regions I and II are identified in Fig. 2. Batra 
and Chen found that the solution computed with the leading term differed very little from that 
found by also including the next two terms in the series. Here we consider only the leading terms 
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and assume that 

i sin x in region I, (22.1) 
U(x) 1 in region II.  (22.2) 

At the stagnation point, U(x) = 0, and from Eq. (19.1), 

H(x) = 0 at the stagnation point. (23) 

The value of 2 is determined from Eq. (23). Having found 2, all other solution variables can be 
computed there. The solution is marched forward in the x-direction by using the forward- 
difference method, and the shearing force at every point on the hemispherical nose surface can be 
found. 

The steady state penetration problem defined by Eqs. (1) and (2), and boundary conditions (7) 
with the frictional force given by Eq. (11) was solved by the finite element method using the 
computer code developed by Batra [5]. The code was modified to include the frictional force on 
the target/penetrator interface. The code employs six-noded triangular elements with vr and 
vz approximated in each element by quadratic polynomials defined in terms of the values of vr and 
vz at the node points, and the pressure field approximated by a polynomial of degree one defined 
in terms of its values at the vertices of the triangle. The system of nonlinear algebraic equations 
was solved iteratively, until at each node point 

IIv ~ - v ~ 111 ~ o .o2  [Iv ~ i I I ,  

I p "  - p "  11 =< 0.02 I p "  11. 

Material parameters in Eq. (3) were assigned values b = 1.0 x 106 and m = 0.09. Thus, the target 
material is assumed to exhibit strong strain-rate hardening effects. Batra [4] has investigated the 
effect of the values of b and m on the deformations of the target. 

The value of fl was adjusted so that the peak value of the tangential force given by the finite 
element solution of the penetration problem with c~ = 15 and the boundary layer theory occurred 

2.00~ 

1.75 

1.50 

cs 1.25 
o 

o ~ 1,00 

~ 0.75 
< 

0 . 5 0  

0.25 

0.00 

,/,.,/,,/./'/"" " . . .  - . . . .  

t t F i t t , i 
10 20 30 40 50 60 70 80 

\ 

i 

9 O  

Fig. 3. A comparison of the distribution 
of the frictional force on the hemispheri- 
cal nose of the penetrator as found from 
a solution of the penetration problem 
and the boundary layer theory 
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at nearly the same location on the penetrator nose surface. We note that for the solution given by 

the boundary layer theory, the peak value of the shear traction occurred at the same location for 
different values of Reynold's number or the fluid viscosity considered. A large value of c~ is taken 

here, since the validity of the boundary layer approximation improves with an increase in the 
fluid speed in the outer region. The value of # was found so that the peaks in the two solutions 

were close to each other. This procedure resulted in 

# -~ 0.12, /~ = 1.5, 

and the two solutions are plotted in Fig. 3. The parameters QI and #I  were assigned values so that 

the shearing tractions for the two methods had identical expressions in terms of non-dimensional 
variables. It is clear from the results plotted in Fig. 3 that the shear tractions are sensitive to the 

value of #. Henceforth, we keep/3 fixed and compute results for the penetration problem for 

different values of #. 

3 Results for the penetration problem 

3.1 Effect of diJferent values of the coefficient of Ji'iction 

Figure 4 a depicts the distribution of the normal traction, f,, on the hemispherical nose surface of 
the penetrator for b = 1.0 x 106, m = 0.09, c~ = 6.15, and # = 0.0, 0.1, 0.2, 0.3, and 0.4. Since the 

deviatoric stress s defined as 

s=cr + pl 

satisfies 

( t r  s2)1/2 = ~/~  (1 + bI) m, 

a significant contribution to the value of f ,  is made by the hydrostatic pressure, which seems 
to be less sensitive to the value of #. Thus, the value and the distribution of normal tractions 

on the penetrator nose surface change very little when # is increased from 0.0 to 0.4. Whatever 
little change does occur, the general trend is that f ,  increases near the nose tip and decreases 
near the nose periphery with an increase in the value of #. We have plotted the strain-rate 

measure I and the tangential speed on the nose surface for different values of # in Figs. 4b 

and 4c, respectively. Near the nose tip, the strain-rate measure decreases noticeably with an 
increase in the value of #, and it increases sharply at points close to the nose periphery with 

an increase in the value of #. For  m = 0.09, an increase in the value of I from 0.5 to 3.0 will 
enhance the value o f f ,  by a factor of t.175. Even though I increases at points near the nose 
periphery, the resulting increase in the value of f ,  is more than compensated for by a decrease 

in its value caused by the drop in the value of the hydrostatic pressure there. The plots in 
Fig. 4 c reveal that the tangential speed changes significantly with an increase in the value of 
#. Both the magnitude and the curvature of the curves are affected by the value of #. These 

curves provide a partial explanation for the effect the value of # has on the distribution of the 
strain-rate invariant at points on the nose surface. 

The variation of ( -  or.z) and the strain-rate measure I on the axial line for # = 0.0, 0.1, 0.2, 0.3, 
and 0.4 is exhibited in Fig. 5. At target particles within a distance of 0.5ro from the penetrator 
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Fig. 4. Distribution of a the normal trac- 
tion, b the strain-rate measure I, and c the 
tangential speed on the hemispherical 
nose of the penetrator for different values 
of the coefficient of friction 
( /~ = 0.0, - . . . . . . . . .  # = 0.1, 

# = 0.20, # = 0.3, 
/~ = 0.4) 

nose  tip, the values of the strain-rate measure  I decrease significantly with an increase in the value 

of  #. This change is less not iceable  in the value of a , ,  because it is dominated  by the value of the 

hydrostat ic  pressure. Values of I drop rather quickly,  s ignifying that severe deformations  of the 

target occur within  a distance of 3ro from the target/penetrator interface. A s s u m i n g  that the 

target material  is high strength steel for which Qo = 7 800 kg /m 3 and Cro = 400 MPa,  we obtain 

Vo = 562 m/s  for c~ = 6.15. Thus,  the nond imens iona l  values o f / n e e d  to be mult ipl ied by nearly 

105 to get their d imens ional  counterparts.  
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The dependence of the axial resisting force experienced by the penetrator upon the coefficient 

of friction # is plotted in Fig. 6. Note  that the tangential tractions acting on the penetrator nose 

surface do have a component  in the axial direction, and thus retard the mot ion of the penetrator. 
Thus, even though the normal tractions depend rather weakly upon #, the dependence of the 

axial resisting force F upon # is moderate. We note that the dimensional values of the axial 
resisting force are obtained by multiplying their nondimensional values by (~ro2~o). 
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3.2 Effect of penetration speed 

For results presented in this Section, we take ff = 0.12 and vary the penetration speed. In Figs. 7 a 
and 7b, we have plotted the distribution of the normal traction, the second invariant of the 

strain-rate tensor D, and the tangential speed on the penetrator nose surface for ~ = 6, 8, 10, 12, 

and 15. As for the case when the target/penetrator interface was taken to be smooth,  the normal 
tractions around the nose tip increase with c~, those at points adjacent to the nose periphery 

decrease with c~, and the normal tractions at 0 = 45 ~ remain unaffected by the value ofc~. A similar 

trend is exhibited by the values of the second invariant I of the strain-rate tensor D. The 
tangential speed is zero at the stagnation point and increases to one at the nose periphery. At 
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intermediate points, the tangential  speed increases with an increase in ~, but  the change is not  

that  large. Figures 8 a and 8 b depict, respectively, the variat ion of ( - ~ = )  on the axial line for 

= 6, 8, 10, 12, and 15, and the dependence of the axial resisting force experienced by the 

penetra tor  upon e. As for the no-friction case, the dependence of the axial resisting force upon c~ is 

very weak. Fo r  all values of ~ considered, the magni tude of Crzz at points on the axial line decays 

slowly as we move away from the penetra tor  nose tip, pr imari ly  because the hydrosta t ic  pressure 

decreases slowly because of the resistance offered by the essentially non-deforming target 

material  surrounding the severely deforming material  a round the penet ra tor  nose. In [6], 

Jayachandran  and Batra  accounted for the elastic deformations of the target and found that  

(-C~zz) dropped  to one-fifth of its peak value at a distance of 4ro from the nose tip. Here (-+r=) 

drops to nearly one-half of the peak value over the same distance. 

3.3 Effect of penetrator nose shape 

Figure 9 exhibits the distr ibution of the normal  tract ion on the penet ra tor  nose surface for three 

different nose shapes, viz., blunt with r,,/ro = 0.2, hemispherical with r,/ro = 1.0, and ellipsoidal 

with r,/ro = 2.0. Here r, and ro equal the semi-major and semi-minor axes of the penetra tor  nose. 

In each case, two values of#,  namely, 0.0 and 0.12, are considered and ~ was set equal to 8. The 

difference between the normal  tractions for # = 0.0 and # = 0.12 is maximum for the ellipsoidal 

nosed penetra tor  and minimum for the blunt  nosed penetrator.  Fo r  each value of #, the normal  

tract ion near the penetra tor  nose tip increases with an increase in the value of r,/ro, and the 

reverse happens near the nose periphery. The increase in the value of f ,  near the nose tip is both  

due to an increase in the value of the second invariant  of the strain-rate tensor and the hydrostat ic  
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Fig. 9. Distribution of the normal trac- 
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pressure there. As expected,  for a b lunt  nosed  penetrator the normal  tractions stay essential ly 

un i form over the nose  surface and suddenly  drop to zero at points  adjacent to the nose  periphery. 

The  distr ibut ion of  the second invariant  I of  the strain-rate tensor D and the tangential  speed 

on the penetrator nose  surface for the three nose  shapes and c~ = 8 is p lot ted in Fig. 10. For  the 

blunt  nosed  penetrator the strain-rate invariant  I becomes  very large near the nose  periphery. 

For  the other two  nose  shapes,  the m a x i m u m  value of  I occurs near the nose tip. The  effect of  

frictional force is to decrease sl ightly the value of  I at every po int  on the nose surface. However ,  
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the effect of the frictional force on the tangential speed is quite noticeable for each 
one of the three nose shapes. Except at the nose tip and the nose periphery, the con- 
sideration of frictional forces decreases the tangential speed at every point on the nose 
surface. Figure 11 depicts the decay of the second invariant I of the strain-rate tensor 
and ( - a = )  along the axial line for the three nose shapes. For the blunt nosed penetrator, 
I decreases slowly as compared to the other two nose shapes, implying that the de- 
formations of the target spread farther for the blunt nosed penetrator. For all three 
nose shapes, I becomes essentially zero at a point distant 2.5ro from the nose tip, suggesting 
that severe deformations of the target material occur at points located within 2.5ro from 
the nose surface. Thus, the target region studied is adequate, and the computed values 
of different field variables at points in the vicinity of the target/penetrator interface should 
be quite good. 

4 Conclusions 

We have analyzed the effect of frictional forces on the steady state deformations ofa viscoplastic 
target being penetrated by a rigid cylindrical penetrator. It is postulated that the frictional force 
at a point depends upon the normal traction and the relative velocity of sliding between the two 
surfaces at that point. The approximate value of the parameters appearing in the expression for 
the friction force is found by comparing results for the penetration problem with those obtained 
by modelling the deforming target material as a viscous fluid and using the Karman-Pohlhausen 
approximation that relates the speed of the fluid in the boundary layer to that at far away points. 
It is found that the consideration of frictional forces affects significantly the distribution of the 
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second-invariant  of the strain-rate tensor and the tangential  speed on the penetra tor  nose 

surface, but  minimally the dis tr ibut ion of the normal  t ract ion there for each one of the three nose 

shapes, namely, the blunt, hemispherical,  and ellipsoidal. For  the blunt  nosed penetrator,  peak 

values of the second invariant  of the strain-rate tensor occur at points near the nose periphery, 

and are considerably higher than those for the other two nose shapes, which occur at points 

adjacent  to the nose tip. 
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