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Summary. We study dynamic thermomechanical deformations of an elasto-viscoplastic body deformed in 
plane strain compression at a nominal strain-rate of 5 000 sec - 1. The boundaries of the block are assumed to 
be perfectly insulated. We model the thermoviscoplastic response of the material by the 
Brown--Kim-Anand constitutive relation in which the evolution of the microstructural changes is 
accounted for by two internal variables, viz. a scalar and a traceless symmetric second order tensor. The 
former accounts for the isotropic hardening of the material, and the latter for the kinematic hardening. We 
model a material defect by introducing a temperature perturbation in the stress-free reference configuration. 
It is found that the consideration of kinematic hardening does not change the qualitative nature of results. 

1 Introduction 

Adiabatic shear bands are narrow regions of intense plastic deformation that form during high 

strain-rate processes, such as shock loading, ballistic penetration, metal forming, and machining. 
They are called adiabatic since the bands, once they initiate, are fully developed in a few 

microseconds, and there is not  enough time for the heat to be conducted away from the severely 
deforming region. The primary mode of deformation within the band is that of shearing. 
Previous numerical [1], [2] and analytical [3] studies have shown that the thermal conductivity 

affects significantly the band-width. Because of the intense deformations of the material within 

and surrounding the shear band, the structure of the material changes during the development of 
the band. One way to account for these structural changes is to use constitutive equations which 

employ a suitable number of scalar and tensor valued internal variables. Anand [4] has given a set 
of constitutive equations appropriate for large deformation elasto-viscoplasticity that include 

two internal variables: a scalar and a symmetric, traceless second-order tensor which, in an 

average sense, represent an isotropic and an anisotropic resistance to plastic flow offered by the 
internal state of the material. Brown, Kim, and Anand [5] tested in compression an iron-2% 

silicon alloy and an 1100-)type aluminum alloy at high temperatures and determined the specific 

forms of the constitutive functionals and the values of material parameters for these alloys. Here 

we use such a constitutive relation to assess the effect of anisotropic resistance to plastic flow, also 
known as kinematic hardening, on the initiation and growth of shear bands. 

Even though Tresca [6] and Massey [7] observed hot lines, now called shear bands, during the 
forging of a hot metal in 1878 and 1921, respectively, the research activity in this field picked up 

�9 since 1944 when Zener and Hol lomon [8] observed 32 gm wide shear bands during the punching 
of a hole in a low carbon steel plate. Zener and Hollomon postulated that the heat produced due 
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to plastic working softened the material, and it became unstable when this thermal softening 
equalled or exceeded the combined effects of strain and strain-rate hardening. We refer the reader 
to the review article by Rogers [9], the papers by Shawki and Clifton [10], and Barta and Zhu [11], 
and a recent issue of Applied Mechanics Reviews [12] for other references on the subject. 

2 Formulation of the problem 

We use the updapted Lagrangian description of motion to describe the thermomechanical 
deformations of the cylindrical body with square cross-section. That is, to find the deformed 
shape of the body at time t + At, we take its configuration at time t as the reference configuration. 
However, the deformations of the body during the time increment A t  need not be small. The 

governing equations are: 

Balance of mass (O J )  ~ = O, 

Balance of linear momentum 0rf = Div T, 

Balance of internal energy ~ork = - D i v  Q + tr (Tier), 

where 

F = Grad x 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

is the deformation gradient, J = det F, x is the present position of a material particle that 
occupied place X in the reference configuration, 9r equals the mass density in the reference 
configuration, v the velocity of a material particle, a superimposed dot indicates the material time 
derivative, T is the first Piola-Kirchhoff stress tensor, the operators Div and Grad signify the 
divergence and gradient operators applied to field quantities defined on the reference 
configuration, e is the specific internal energy, and Q the heat flux per unit undeformed area. 

We assume that the material is isotropic, its elastic response can be modeled by Hooke's law, 
the material moduli are independent of the mass density and the temperature, and the strain-rate 
tensor D has additive decomposition into elastic D e and plastic D p parts. We use the following 
constitutive relations proposed by Brown, Kim, and Anand [5] for the hot working of metals: 

E [ v 
- W~r+~W- ( l+v )  ( D - D  p)+ (1-2v~ 

3 im p 
D p = - - ( a ' - B ) ,  

2 am 

7)J ' 

=- B --  W B  + B W  = c l D  p - c 2 B ,  tr B = 0, 

g =  ho 1 - j  sign 1 -  ~m p, 

Q . 
s* = ~ [ ~  exp ( ~ ) 1  , 

q =  - k g r a d 0 ,  

= cO + tr (~(D - OP)), 

(tr (D - DP)) 11, (2.5) 

(2.6) 

(2.7) 

(2.8.1-2) 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 
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where 

2D = grad v + (grad v) r, 2W = grad v - (grad v) r, (2.13.1-2) 

3 
= J-1TFT,  Q = J F - l q ,  O'm 2 = ~ tr ((~' - B)2) ,  (2.14) 

1 
~' = ~r -- ~ (tr ~) 1. (2.15) 

Equation (2.5) is Hooke's  law written in the rate form, ~ is the Cauchy stress tensor, W defined by 

(2.13.2) is the spin tensor, E and v equal, respectively, the Young's modulus, and Poisson's ratio, 
the scalar s and the traceless second-order tensor B are the internal variables that describe the 

isotropic and kinematic hardening of the material, A is called the pre-exponential factor, Q the 

activation energy, 0 equals the absolute temperature of a material point, R the gas constant, m the 
strain-rate sensitivity parameter, ho a constant rate of athermal hardening, s* equals the 

saturation value of s associated with a given temperature/strain-rate pair, and k is the thermal 

conductivity. The left-hand sides of Eqs. (2.5) and (2.8) equal, respectively, the Jaumann rate of 

,r and B. In order to characterize the thermoviscoplastic response of the material, we need to 
specify E, v, ~, A, Q, R, 4, m, cl, c2, ho, a, 3, n, c, and k. 

We presume that the plane strain state of deformation prevails, and that the deformations are 

symmetrical about the horizontal and vertical centroidal axes. Thus, we analyze deformations of 
the material in the first quadrant  and apply the following conditions on the bounding surfaces 
(see Fig. 1) 

vl = 0, T21 = 0, Q1 = 0 at xl  = X1 = 0, 

1)2 = 0 ,  T12 = 0 ,  Q2 = 0 at x2 = X2 = 0, 

Ti~N~ = O, Q~N~ = 0 on the right surface, 

I) 2 = - - U ( t ) ,  T12 = 0,  Q2 = 0 on  the  top  surface, 

X2, X2 

2H 

T l t l l l l  
2H 

X 1 , X l  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Fig. 1. Schematic sketch of the problem 
studied 
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JVor/tr, 0 <_ t <_ t,,  
U(t) (2.20) 

Vo, t > tr. 

That  is, all bounding surfaces are thermally insulated, the right surface is traction free, conditions 
due to the assumed symmetry of deformations apply on the left and bot tom surfaces, and on the 
top surface zero tangential tractions, and a time dependent vertical component  of velocity is 
prescribed. Thus, the contact between the loading device and the upper surface of the body is 
assumed to be smooth. The assigned vertical velocity on the top surface increases from zero to the 
steady value v0 in time tr. 

For  the initial conditions we take 

~(x, o) = O~o, v(X, o) = o, a(x ,  o) = o, 

O(X,O)=Oo+6 1 -  exp ( - 5 r 2 ) ,  

B(X, O) = O, s(X, O) = So, 

r 2 = X 1 2  + X z  2. 

(2.21) 

These imply that the body is initially at rest, is stress free, has a uniform mass density, and 
a nonuniform temperature distribution. The initial temperature is higher in a small region 
around the origin; the magnitude 6 of the perturbation signifies, in some sense, the strength of the 
material defect. 

We note that there is no yield or loading surface assumed in our work, and the 
constitutive relations employed fall in the category of "unified theories of viscoplasticity". 
A material  point is presumed to undergo elastic deformations at all times. The constraint 
tr B = 0 does not require any special consideration since it is satisfied at time t = 0 because 
of the initial conditions, and Eqs. (2.6) and (2.8) give tr /~ (., 0) = 0. Thus, tr B(-, t) = 0 for 
every t. 

3 Computational considerations 

The stiff coupled nonlinear equations (2.1)-(2.3), (2.5), (2.8), and (2.9) are to be solved for ~, v, O, 
a, B, and s. Since em v appears only as ~m p in Eqs. (2.6), (2.9), and (2.10), we substituted for it from 
Eq. (2.7), and thus did not take it as one of the variables to be solved for. It is extremely difficult, if 
not impossible, to prove the existence and/or uniqueness of their solution under the prescribed 
initial and boundary  conditions. Here we seek their approximate  solution by the finite element 
method. A set of nonlinear coupled stiff ordinary differential equations is derived from 
(2.1)-(2.3), (2.5), (2.8), and (2.9) by using the Galerkin method, and are then integrated with 
respect to time by using the backward difference Adam's  method included in the subroutine 
L S O D E  developed by Hindmarsh [13]. The subroutine adjusts the time step size adaptively to 
compute a solution of the ordinary differential equations within the prescribed tolerance. The 
parameters  R T O L  and A T O L  which control the relative and absolute tolerance in the solution 
variables were each set equal to 10- 7. The coordinates of nodes in the finite element mesh were 
updated after each time step. 
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4 Computation and discussion of results 

In order  to compute  numerical  results, we assigned the following values to various geometric and 

mater ial  parameters:  

0o = 7 8 6 0 k g m  -3 ,  E = 1 6 8 G P a ,  v = 0 . 3 ,  # = 6 4 . 6 G P a ,  

A = 6.346 x 10 i5 sec - i ,  Q = 1 0 0 K J m o l e  - i ,  R = 8.3145 J mole -a  ~  

c = 473 J k g -  1 ~  l ,  k = 49.22 W m -  i ~  l ,  g = 405 M P a ,  (4.1) 

00 = 25 ~ 6 = 25 ~ m = 1.0, a = 1.5, 

= 3.25, ho = 5000 M P a ,  H = 5 mm,  

Vo = 25 m s e c  -1 ,  t r =  10-6 sec. 

Thus, the nominal  s train-rate equals 5 000 sec-1 and the prescribed speed on the top surface 

increases from zero to the s teady value of 25 m sec-  1 in one microsecond. In order  to study the 

effect of isotropic and kinematic  hardening on the development  of the shear band, we studied the 

following seven different cases. 

Case 1: ca = C 2  = 0, n = 0.002. 

Case 2: cl = c2 = 0, n = 0.05. 

Case 3: cl = 2(10 -2) g, c 2 = 0, n = 0.002. 

Case 4: c i = 1 0  - 2 g ,  c 2 = 0 ,  n = 0 . 0 0 2 .  

Case5 :  c i = 2 ( 1 0 - 2 )  g,  c 2 = 5 ( 1 0 5 ) s e c  -1 ,  

Case 6: cl = 10 .2  I-t, c2 = 105 sec -1 ,  

Case7 :  c l = 1 0 - 2 g ,  c2=2(10S) sec  - i ,  

n = 0.002. 

n = 0.002. 

n = 0.002. 

There is no kinematic  hardening for the first two cases, and a comparison of results for them 

should delineate the effect of the sa tura t ion value s* of s. Results for the other five problems 

should help illustrate the relative significance of the two terms on the r ight-hand side of Eq. 

(2.8.1), giving the evolution of B, on the development  of the shear band. Jayachandran  and Batra  

[14] studied the effect of various parameters  in the constitutive relations on the response of the 

defect free body deformed in plane strain compression and found that  an increase in the value of 

ho, n, m, g, and Q enhances the hardening of the material,  and an increase in the value of 4, a, and 

A furthers the softening of the material.  However,  they neither considered kinematic  hardening 

nor  studied the nucleation and growth of a shear band. 

In the results presented below, a fixed mesh consisting of 32 x 32 four-noded quadri la teral  

elements was used, and all integrals defined on an element were evaluated by using the 2 x 2 
i 

quadra ture  rule. The elements are squares in the initial stress-free configuration, but  are 

quadri lateral  for subsequent times because of their unequal  deformations in the horizontal  and 

vertical directions. Results computed  with a 64 x 64 mesh of four-noded quadri la teral  elements 

agreed quali tat ively with those obtained with the 32 x 32 mesh, the quanti tat ive difference 

between the values of temperature  at the origin was less than 5% during the entire process of the 

development  of the band. This was not  viewed as critical, and because of the considerable savings 
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in the C P U  time resulting from the use of the 32 x 32 mesh, it was employed for all of the seven 

cases. 
Below we present and discuss results in terms of the following nondimensional variables 

indicated by a superimposed bar 

a 

Y 
O. 984 

0 . 7 4 2 -  

0 . 5 0 0 -  

0 . 2 5 6  

0 .016  

0 .016  

- -  0.20 
- -  {135 
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2 = x / H ,  X = X / H ,  ~ = V/Vo, ~ = o /g ,  [Y = B /~ ,  0 - f = t v o / H .  (4.2) 
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Fig. 2. Contours  of the max imum principal logarithmic strain at four different values of the average strain. 

a 7av~ = 0.0175, b ?avg = 0.0576, e 7,vg = 0.0776, d ?avg = 0.0889 
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- - -  0.64 
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Here 2H equals the height of the block. Henceforth, we use only nondimensional variables 
and drop the superimposed bar. Because the prescribed downward speed on the top surface 
increases from zero to one in time tr, the average strain is slightly less than the nondimensional 

time. 
Figure 2 depicts, in the reference configuration, the contours of the maximum principal 

logarithmic strain e, defined as 

= In 2, (4.3) 

where 22 equals the maximum eigenvalue of the right (FrF) or the left (FF r) Cauchy-Green 

tensor, at four different values of the average strain (Tavg) for case 6. Unless otherwise noted, the 
results presented below are for case 6; the results for other cases are qualitatively similar to those 
presented herein. The contours of the maximum principal logarithmic strain suggest that a small 
region surrounding the center of the cross-section undergoes severe deformations, and these 
intense deformations propagate along the main diagonal. The severely deforming region 
progressively narrows down. The reason the domain extends from 0.016 to 0.984 and not from 
0.0 to 1.0 in the horizontal and vertical directions is that the X1- or X2-coordinate of the 
quadrature point nearest to the left or right and bottom or top surfaces is 0.016 and 0.984. The 
software used to plot the contours interpolates the data at numerous points from that provided at 
the quadrature points. We note that the results reported herein are qualitatively similar to those 
obtained by Zhu and Batra [14] who used a different constitutive relation and did not consider 
kinematic hardening. By finding the distance through which the contour oft  = 0.35 had travelled 
from t = 0.08 to 0.09125, its average speed of propagation was found to be 208 m/sec. This speed 
depends upon the state of deformation of the material within the band and also upon the 
constitutive relation employed. The contours of temperature resemble those of the maximum 
principal logarithmic strain and are not shown here. 

We have plotted in Fig. 3 the variation of the velocity in the xl- and x2-directions at 
7avg = 0.088 9. It is clear that the body is divided into two deforming triangular regions, one 
adjoining the top surface that is moving downward at the prescribed speed, and the other 
abutting the horizontal centroidal plane. Theses two domains are connected by a narrow 
transitional region in which the speed in the vertical direction increases sharply from essentially 
zero to nearly 1.0. The thickness of this transitional layer, which is related to the band-width, 
equals two elements for the mesh used herein. A finer mesh will probably result in even shaper 
gradients of the speed within this transition zone. This significant change of speed across the thin 
transitional layer supports the assertions of Tresca [6] and Massey [7] that the tangential velocity 
is discontinuous across the shear band. In our work, the velocity field is forced to be continuous 
within an element and across interelement boundaries. Therefore, jumps in the tangential 
velocity across a shear band cannot be delineated. 

The distribution at 7avg -- 0.088 9 of the effective stress G, defined as 

3 
rye 2 = ~- tr (a' - B) 2 , (4.4) 

and the effective back-stress Be given by 

3 
Be 2 = ~- tr (B 2) (4.5) 

within the block is exhibited in Fig. 4. As expected, the effective stress within the shear band 
drops. However, the drop is not as precipitous as that found by Batra and Liu [15] who modeled 
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components of the velocity within the de- 
forming region at 7avg = 0.0889 

thermal softening by an affine function of temperature and assumed a rather large value of the 
thermal softening coefficient. Zhu and Batra [14] assumed an exponentially decaying softening 
function and obtained results somewhat similar to that shown here. The effective back-stress 

Be within the band is more than that elsewhere in the body, which is consistent with the 
assumption that the rate of evolution of the back-stress is proportional to the plastic strain-rate. 
The plastic strain-rate is high at points within the band, and is negligible elsewhere. 

The deformed mesh at 7av~ = 0.088 9 plotted in Fig. 5 vividly illustrates that the two elements 
within the band are significantly deformed and the rest of the body has undergone very little 
distortion. From results presented thus far, we estimate that at time t = 0.09 a large segment of 



Effect of kinematic hardening 

STRESS 

5 

0 1,00 

[3 
25 

2.0 

15 

1.0 

0.5 

Elll,~0 I,~ 

035 
0~5 

225 

Fig. 4. Distribution of the effective stress 
and the effective back-stress within the 
deforming region at 7~vg = 0.0889 

the band in the deformed configuration is directed along the line EF that makes an angle of 43 ~ 
with the horizontal. The orientation of the band changes a little with time. The distribution of the 

maximum principal logarithmic strain and temperature within the band at different times is 
exhibited in Fig. 6. These curves reveal that the strain and temperature distributions within the 

band are nonuniform; the strain and the temperature assume their highest values near the origin 
and fall offrather rapidly with the distance from O along OEF. In order to decipher the variation 
of the strain, temperature, effective back-stress, and the rate of dissipation of the energy density 

defined as tr (~ D p) across the band, we have plotted, in Figs. 7 and 8, the distribution of these on 
lines PQ and RS perpendicular to the estimated centerline of the band; these lines are shown in 
Fig. 7. The abscissa equals the distance from the band centerline of a point along line PQ or RS, 
and is assigned negative values for points lying above OEF. These plots provide evidence that 

a narrow band forms around OEF. A finer mesh would probably have resulted in a smoother 
variation of the strain along PQ and RS, and also in a narrower band. Because of the rather small 
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Fig. 5. Deformed mesh at 7avg = 0.088 9 

value of the thermal conductivity, the energy dissipation rate can be regarded as being 

proportional to the rate of change of temperature. Thus, the temperature changes rapidly at 

points within the band and slowly at material points outside of it. The energy dissipation rate is 
a little lower at t = 0.09 than that at t = 0.08 because of the drop in the value of ~ caused by 

increased thermal softening of the material. 

Figure 9 shows the evolution of the maximum principal logarithmic strain, the temperature, 
the effective back-stress, and the rate of dissipation of the energy density at or near the centroid of 

the cross-section for four different cases, viz. cases 1, 4, 6, and 7. We note that for case 1 the 

back-stress always stays at zero. For  case 4 the evolution of the back-stress B is proportional to 

D p, and for cases 5 through 7, the present value of the back-stress retards the evolution orB. The 

value of c2 multiplying B in its evolution equation in case 7 is twice that for case 6. If the rapid 
increase of the maximum principal logarithmic strain at X1 = X2 = 0.006 6 is taken as the 

criterion to decide when a shear band initiates, then the shear band is delayed by the 

consideration of the back-stress. An increase in the value of c2 results in the band forming a little 
sooner. For  the average strain-rate of 5 000 sec - 1 considered herein, the nondimensional time of 

0.10 equals 20 microseconds. The evolution of the temperature at the origin is affected less by the 

consideration of the back-stress and the values assigned to cl and c2 in the evolution equation for 
B. Whereas the temperature vs. average strain curves are concave upward for the problems 
studied herein, those obtained by Zhu and Batra [14] were concave downward. In both cases, the 

values of the thermal conductivity and the specific heat were the same. It seems that the curvature 

of the temperature Vs. average strain curve depends upon the way a material defect is modeled. 
Zhu and Batra [14] considered a rigid non-heat-conducting thin ellipsoidal inclusion, which 
resulted in a severe stress concentration near the inclusion tips, and the temperature there 
increased sharply in the beginning and slowly afterward. As expected, the back-stress is highest 
for case 4 and least for case 1 at any instant of time. For  each of the four cases for which results are 

plotted in Fig. 9, the energy dissipation rate attains a peak value at time t ~ 0.075, the rate for the 
no back-stress case being always higher than that for the other three cases. Thus, the rate of 

increase of temperature at the origin will decrease for t > 0.075. This is not transparent from the 
plots of the evolution of the temperature, mainly because of the scale used. 

We have plotted in Fig. 10 the load displacement curves for cases 1, 4, 6 and 7, both with and 
without the initial temperature perturbation. Since the nondimensional height of half of the 
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block equals one and the block is being compressed at a nondimensional average strain-rate of 
one after the initial rise to the steady value, the nondimensional vertical displacement of a point 
on the top surface is slightly less than the nondimensional time. The applied load P is computed 
by using the relation 

P = - S  @z(xl, 22) dxl, 

where 2z is the current x2-coordinate of a point on the top surface and the limits of integration 
extend from xl = 0 to the value of xl for points on the right edge. The values of P are significantly 
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Fig. 7. Distribution at different times, starting with t = 0.02, of a the maximum principal logarithmic strain, 
b the temperature, e the effective back-stress, and d the rate of dissiptation of the energy density on line PQ. 
e Estimated centerline OEF of the band, and locations of two transverse lines PQ and RS perpendicular to 
OEF. The curves are for t = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09 

higher than those of the effective stress since the hydrostatic component of the stress tensor and 

the back-stress make noticeable contributions to the load. The upper set of curves is obtained by 
assuming that the initial temperature is uniform. Initially, the applied load increases almost 

linearly in each case due to the linear increase of the applied speed. The heating of the block, 

because of its plastic deformations, softens it and the load required to deform it decreases. This 
decrease in the load with increasing compression of the block is more once a shear band has 

initiated than when there is no band formed. Thus, the development of a shear band results in 

a decrease in the load carrying capacity of the body. The oscillations in the load displacement 
curves are probably due to the inertia forces, and can be attributed, at least partially, to the fact 

that the deformation of the top row of elements is not homogeneous and the computat ion of 
tractions at boundary points is less accurate as compared to the solution within the block. It is 

very likely that the use of a finer mesh would decrease the oscillations in P, but this could not be 
verified because of the limited computational  resources available to us. Also, a finer mesh would 
improve the resolution of the deformation within the band. 

5 Conclusions 

We have studied the initiation and growth of a shear band in an elastoviscoplastic body 
being deformed in plane strain compression at a nominal strain-rate of 5000 sec-1. The 
effect of inertia forces and the coupling between the thermal and mechanical aspects of the 
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DISPLACEMENT 

Fig. 10. The load displacement curves for cases 1, 4, 6, and 7. The upper set of curves corresponds to no 
temperature perturbation. - -  Case l, �9 ...... case 4, - . . . . . .  case 6, - - - - - - - -  case 7 

deformation is included in the problem formulat ion and its solution. The effect of texture de- 

velopment on the ensuing deformations is considered by including in the theory two internal 

variables, a scalar to account for the isotropic hardening of the mater ial  and a symmetric tra- 

celess second-order  tensor  to account  for the k inemat ic  hardening.  The const i tut ive theory 

used is due to Anand and his co-workers [4], [5]. The computed  results show that  the consi- 

derat ion of kinematic  hardening does not  alter the quali tative nature of results. Also, the re- 

sults agree qualitatively with those obtained earlier by Batra  and co-workers [11], [14], [15], 

who used a different constitutive relat ion that  does not  require the integrat ion with respect 

to time of the Cauchy stresses, and hence requires fewer computa t ional  resources. Because of 

a lack of test results detai l ing the evolut ion of the micros t ructure  within the band in plane 

strain compression problems,  it is not  clear which constitutive theory should be used. Also, 

the determinat ion of the values of material  parameters  in either theory for high strain-rates 

and elevated temperatures found within a shear band is still an open problem. 
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