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Summary. We study plane strain dynamic thermomechanical deformations of a FCC single crystal deformed 
at an average strain-rate of 1000 s- 1 along the crystallographic direction [380] with the plane of deformation 
parallel to the plane (001) of the single crystal. Four different situations are studied; in the first two there is no 
initial imperfection assumed in the crystal and it is either compressed or pulled, and in the other two the 
crystal is compressed but either the initial temperature is nonuniform or a small region around the centroid of 
the cross-section is misoriented relative to the rest of the cross-section. In each case, all twelve slip systems are 
assumed to be potentially active, and the crystal material is presumed to exhibit strain hardening, strain-rate 
hardening, and thermal softening. These effects are modelled by using a simple combined isotropic-kinematic 
hardening expression for the critical resolved shear stress, proposed by Weng, and modified to incorporate 
the effect of thermal softening of the material. It is found that each one of the slip systems (111)[I10], 
(11 I) [][10], (Tll) [110], and (I IT) [110] contributes essentially equally to the plastic deformations of the crystal 
and these slip systems become active soon after the load is applied. The same holds for the slip systems 
(111) [01T], (11 T) [011], (511) [101], and (1il) [I0t] except that they are active in a region different from that of 
the previous one. The remaining four slip systems either stay inactive throughout the deformation process, or 
become active at late stages of the deformation. 

1 Introduction 

Shear bands, i.e., regions of localized shearing, in FCC single crystals deformed quasistatically 
have been observed by several investigators (e.g. see Sawkill and Honeycombe  [1], Price and 

Kelly [2], Saimoto et al. [3], Chang and Asaro [4]). Zikry and Nemat -Nasser  [5] and Zhu and 

Batra [6] have analyzed numerically dynamic shear bands in a FCC single crystal deformed in 
plane strain tension and compression respectively. Whereas Zikry and Nemat -Nasser  employed 

the double cross-slip model  due to Koehler [7] and Orowan [8] during the entire loading history, 
Zhu and Batra  assumed that  all twelve slip systems are potentially active. We refer the reader to 

the paper  by Zikry and Nemat-Nasser  for additional references on the subject, and a discussion 

of the earlier work. Here we assume that  all twelve slip systems are potentially active, the crystal is 

deformed along the crystallographic direction [380] with its deformation in a plane parallel to the 
plane (001) of the single crystal, and consider four different situations outlined in the abstract  
above. The consideration of all twelve slip systems will enable us to consider fully the geometric 
softening associated with the rotat ion of slip planes to more  favorable orientations. The reason 
for selecting this loading configuration is that it causes a large asymmetry  in the orientation of 

slip systems and hence eliminates the need to introduce any artifical defect that  will serve as 

a nucleation site for the shear band. A comparison of results for compression and tension loading 
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should enable us to delineate which type of loading induces more geometric softening. Also 
results computed with a defect introduced at the block centroid will reveal if the effects of 
geometric softening are enhanced or inhibited by the presence of a defect. 

The shapes and locations of the shear bands and the rotation of the crystal lattice within the 
severely deformed region are different in each case. Thus, the loading direction i.e. tension or 
compression and the type of material imperfection i.e. nonuniform initial temperature or 
misorientation of the lattice structure influence strongly the locations, orientations and the form 
of shear bands. 

2 Formulation of the problem 

We employ a set of fixed rectangular Cartesian coordinates to describe deformations of a FCC 
single crystal of square cross-section of sides 2H, deformed along the crystallographic direction 
[380], and the xl - x 2  plane of deformation parallel to the plane (001) of the single crystal. Thus, 
the angle between the loading direction and the principal axis of the single crystal equals 20 ~ . In 
Eulerian description, the balance of mass, balance of linear momentum and the balance of 
internal energy are 

+ Qvl.i -- 0, (1) 

Qvi = a~j.j, (2) 

QcO = kO u + aljD~, (3) 

where 0 is the present mass density, v~ the velocity of a material particle, a superimposed dot 
indicates the material time derivative, a comma followed by an index j denotes partial derivative 
with respect to the present position xj of a material point, a repeated index implies summation 
over the range of the index, ali is the Cauchy stress tensor, c the specific heat, k the thermal 
conductivity, and D~ is the plastic part of the strain-rate tensor Dij defined by 

1 
D~ = -~ (v~,j + vj.i). (4) 

In Eq. (3) we have assumed that Fourier's law of heat conduction holds, and all of the plastic 
working is converted into heating. This is not strictly valid for a material that exhibits substantial 
amount of kinematic hardening for which a considerable amount of plastic working will be 
stored as irrecoverable energy. Also, for polycrystalline materials Farren and Taylor [9] and 
Sulijoadikusumo and Dillon [10] have reported that only 9 0 - 9 5 %  of plastic working is 
converted into heating. Here the assumption that all of plastic working is converted into heating 
is made for the sake of simplicity. Since in plane strain deformations D~3and a33 need not equal 
zero, the indices i andj  in the last term on the right-hand side of Eq. (3) range over 1, 2, and 3. We 
assume that the strain-rate tensor Dij given by (3) and the spin tensor W~j defined by 

1 
w~j = ~ (vi,j - vj,i) (5) 

have additive decompositions into elastic and plastic parts, i.e. 

D = D ~ + D p, W =  W ~ + W p. (6) 
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The plastic parts D p and W v are determined by the local plastic slip rates of all active slip systems 
at a material point, and are given by 

(~) (~) (~) (a) 
O~ = ~ v,f) ' ,  WP = Z c~ (7) 

g 

(a) 
where eP is the plastic strain-rate of the s slip system, and 

(~) 1 (~)(,) (,)(~) (~) 1 (-)(,) (~)(~) 
vii = -~ (blnj + bjni), ooi.i = -~ (binj - bjn~), (s) 

b is a unit vector in the slip direction and n a unit vector normal to the slip plane. Vectors b and 
n are assumed to rotate with the elastic spin of the lattice, and their rates of change are given by 

b, - -  W~b i, hi = l'Vi}nj. (9) 

Henceforth, we assume that elastic strains everywhere remain infinitesimal and are negligible as 
compared to the plastic strains. During plane strain deformations of the crystal, the rotation of 
a slip system can be characterized by the angle change ~b of the projective direction of the slip 
vector in the x~ - x 2  plane, and given by 

= w ~  = w ~  - ~ ~ .  (10) 

We assume that the material properties of the single crystal are strain-rate dependent, and the 
plastic slip rate of the eth slip system is related to the resolved shear stress on it by the power law: 

(~) ] 7 o  N ~(~)] for z > ~,  (11.1) 

~P = I "Cc \Zc/ 

O, for z < z~. (11.2) 

(~) 
Here m is the rate sensitivity parameter, 70 is a reference shear strain rate such that if the crystal 

(a) (a) (~) (~) 
is deformed with each eP set equal to %, then z = zc, the critical resolved shear stress on the a ~ 

slip system required to cause plastic deformation on that system (Pan and Rice [11]). A simple 
(~) 

combined isotropic-kinematic hardening expression for zc proposed by Weng [12], [16] is 

modified as follows 

% =  Z o + ~ h [ g + ( 1 - g )  cosr ( l - v 0 )  (12) 
# 

( ~ )  
to account for the thermal softening effect. In Eq. (12), r is the angle between the slip directions 

of the e th and ffh slip systems, q~ the angle between their slip normals, V p the plastic strain of 

the flth slip system, h the strength coefficient, n the work-hardening exponent, g the degree of 
anisotropy in work hardening, v the coefficient of thermal softening, and the summation index 
fl ranges over all slip systems. We note that g -- 1 corresponds to Taylor's [13] isotropic 
hardening, and g = 0 to kinematic hardening. We refer the reader to Weng [12], [16] for details of 
the development of the isotropic-kinematic hardening model. That the thermal softening of 
a material can be modeled by an affine function of temperature has been pointed out by Bell [14] 
and Lin and Wagoner [15] based on their experimental observations. Whereas Bell has tested 
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single crystals and polycrystalline materials, Lin and Wagoner based their conclusion upon tests 
conducted on a steel. 

The resolved shear stress t~) of the ~th slip system is taken to be related to the local Cauchy 
stress a~j by 

(~) (~) 
z = riCo-l j, (13) 

where the Schmid factor vii is given by Eq. (8.1). The Cauchy stress rate corotational with the 
elastic distortion of the single crystal is assumed to be related to the elastic part of the strain-rate 
tensor through Hooke's law: 

r e (  2 G) Dr, kfo + 2GD~, (14.1) 

o'~j = ~rij + o-ikWf, j -- Wrko-k~. (14.2) 

K and G equal, respectively, the bulk and shear moduli of the crystal whose elastic response has 
been assumed to be isotropic for the sake of simplicity. This assumption though unrealistic for 
single crystals has been employed by other investigators, e.g., see Weng [16]. Recalling that the 
Jaumann stress rate ~i~ corotational with the material element is given by 

~i = ~J + o-ik~ - W ~ j ,  (15) 

we obtain 

a~j = K - -~ G D~k~ij "1- 2GD~ + o-ikWPj -- WPO-kj. (16) 

For the boundary conditions we assume that all bounding surfaces are thermally insulated, 
the left and right vertical surfaces are traction free, the top and bottom surfaces are free of the 
tangential traction and on them a vertical component of velocity v2 given by 

S ++_(t/t,)Vo for 0 _<t _< t,, 
V2(t) (17) 

1 for t > t,, 

is prescribed. For the initial conditions we take 

O(x, O) = 0o, v(x, 0) --- 0, o-(x, 0) = 0, q$(x, 0) = 0, (18.1) 

O(x, 0)= {~(1 --r2) 9 exp (-- 5r2) forf~ < 1, (18.2) 

where r 2 -- (X~ 2 + X22)/H 2, 2H being the length of a side of the square cross-section of the body. 
For e > 0, the initial nonuniform temperature field represents a possible imperfection in the 
single crystal, and serves as a triggering mechanism for the localization of the deformation. 

3 Numerical solution and results 

We seek an approximate solution of the aforestated highly nonlinear problem by the finite 
element method. At each node, the mass density, two components of the velocity, temperature, 
four components o'lt, o-a2, o-22, and o-33 of the Cauchy stress, and the angle tp characterizing the 
rotation of the slip system are taken as unknowns. The coordinates of nodes are updated after 
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each time increment. The coupled nonlinear ordinary differential equations (ODEs) obtained by 
the Galerkin approximation of the field equations are integrated by using the backward- 
difference Adams method included in the subroutine LSODE taken from the package 
ODEPACK developed by Hindmarsh [17], and we set ATOL = RTOL = 10-3. The subroutine 
adjusts the time step and the integration order in the Adams method adaptively until a solution 
of the coupled nonlinear ODEs has been computed to the desired accuracy. From the computed 

. (~) (~) 
solution we evaluated z, ~)P, D~, and W~ at each quadrature point, and determined the plastic slip 

strain of each active slip system by using 

+ At) = 7 p + At[~P(t) + (~'(t + At)]~2. (19) 

Even though LSODE allows up to 12th-order accurate integration method to be used, for the 
present problem, the highest order method used was only two and the maximum time step was 
found to be of the order of 10- 3 ~ts. Thus, the error in the computations of slip strains should be of 

the same order as that in the computations of nodal values of the temperature and ~rl 1, etc. An 
alternative approach will be to regard Eq. (11.1) and (11.2) as field equations, obtain their weak 

(a) 
forms by using the Galerkin method [18], and compute 7 p at each node point. This will increase 

the number of unknowns by a factor of 2.3 and thus require significantly more computational 

resources. 
We modified Batra and Liu's [19] code to analyze the present problem and assigned following 

values to various material and geometric parameters. 

k = 237 Win-1 ~ -1, c = 960 J kg-1 ~ -1, 00 = 2700 kg m -3, 

G = 27.6 GPa,  K = 81.48 GPa,  z0 = 55 MPa,  n = 0.52, 
(20) 

h = 11.02 MPa,  m = 0.02, v = 0.0222~ -1, H = 5 ram, 

g = 0.28, vo = 5 ms -1, tr = 2 gs. 

Thus, the average applied strain-rate equals 1000 s -1. Values of material parameters listed in 

(20) are representative for a single crystal of aluminium, except that a large value of the thermal 

softening coefficient v is used to reduce the CPU time required for the initiation and development 

of the shear band. It should not affect the qualitative nature of results reported herein. Values 
of some of the material parameters are taken from Weng [16]. The low value 0.28 of g may 

imply that our assumption of all of the plastic working being converted into heating should be 
modified. However, such a modification will not affect the qualitative nature of results reported 

herein. 
Results presented below are in terms of nondimensional variables obtained by scaling stress 

like quantities by %, mass density by Qo, length by H, time by H/vo and the temperature by 0r 

where 

Or = zo/Ooc = 21.2 ~ (21) 

As a measure of the deformation at a point we use the maximum principal logarithmic strain 

defined by 

ev = In 21 - - l n  22 (22) 

where 212, 222, and 1 are eigenvalues of the right Cauchy-Green tensor C~ = xi,~x~,p, or the left 

Cauchy-Green tensor B~j = xi.~xj.,, X ,  being the coordinates of a material point in the stress-free 
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undeformed configuration. The second relation in Eq. (22) holds because plastic deformations of 
the crystal are isochoric, and within the band elastic deformations are negligible. 

The initial finite element mesh consisted of 32 • 32 uniform square elements, and we used 
2 • 2 Gaussian quadrature rule to integrate various quantities over an element. 

3.1 Results f o r  no material imperfection 

We first investigate the development of a shear band due to the heterogeneity of deformations 
caused by significantly varying contributions to the overall plastic deformations of the crystal 
from different slip systems. We examine two loadings, namely when the crystal is pulled and when 
it is compressed at an average strain-rate of 1000 s- 1. In each case, the initial temperature is 
assumed to be uniform. 

3.1.1 Tensile loading along the crystallographic direction [380] 

A study of the evolution of the accumulated plastic slip strains on different slip systems indicated 
that the slip systems (111) [I10], ( l lI)  [I10], (Il l)  [110] and (I l i)  [110] contributed equally and 
significantly to the plastic deformations of the single crystal. The plastic deformation on these slip 
systems first ensued at the top right and bottom left corners possibly because of the singularity of 
the deformations there since the boundary surfaces meeting there have different types of 
boundary conditions prescribed on them. This plastic deformation propagated into the body, 
and gradually concentrated into two narrow parallel regions at an angle of approximately 60 ~ 
with the horizontal axis. Figure 1 shows contours of the accumulated plastic strain on one of 
these four slip systems at nondimensional time t = 0.057 5. Note that the nondimensional time 
also equals the average strain. During subsequent deformations of the block, most of the 
deformations occurred within the two parallel narrow regions. The slip systems (lll)[01I], 
(1 lI) [011], (I11) [101] and (1 I1) [I01] also contributed to the plastic deformation of the body, the 
severely deformed regions of these slip systems were wider and were aligned along lines almost 
perpendicular to the centerlines of the narrow regions in which intense plastic deformations of 
the previous four slip systems were concentrated. Throughout the loading history studied herein, 
the plastic deformation everywhere in the body stayed minuscule (negligible for all practical 
purposes) on the remaining four slip systems, viz., (lll)[01I], (II1)[101], (Ill)[10I], and 
(Ili) [011]. 

The value of the maximum plastic strain within the aforestated sets of severely deforming 
regions were essentially the same and it equalled 0.45 at nondimensional time t = 0.097 5. 

Figure 2 depicts contours of the angle ~b of rotation of the crysal lattice at nondimensional 
time t = 0.097 5. It is clear that the crystal lattice undergoes significant rotations in severely 
deformed regions where the two sets of aforestated slip systems are active, and at nondimensional 
time t = 0.097 5 the maximum value of ~b in each region equals 16.4 ~ but the directions of rotation 
are opposite of each other. Contours of slip strain-rates on different slip systems resemble those of 
slip strains exhibited in Fig. 1, and are, therefore, not included herein. 

The contours of the second invariant I of the nondimensional deviatoric strain-rate tensor/31j 
defined as 

1 
2I z = Di j f i i j ,  Dij = Dij - ~ DkkfiiJ 

are exhibited in Fig. 3 for an average strain (Yavg) of 0.097 5. The average strain is defined as the 
product of the nominal strain-rate and the elapsed time, and also equals the nondimensional 
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Fig 1. Contours of slip strains on any one of the four slip systems (11l)[i10], (11I)[I10], (Ill)[110], and 
(Ili) [110] at an average strain of 0.0575 

time. The contours of the second invariant Ip of the nondimensional plastic strain-rate tensor 
D~ look similar except that the magnitudes are different and are omitted for the sake of brevity. 
The values of D~ are derived from the plastic straining of the slip systems, i.e., by using Eq. (7.1), 
those of D~j are obtained from the spatial gradients of the global velocity field, i.e., by using Eq. (4). 
At an average strain of 0.077 5, the maximum values of I and Ip, normalized by the nominal 
strain-rate of 1000 s -1, which need not occur at the same material point equal 13.7 and 17.8, 
respectively, suggesting that the micromechanisms of slip deformations of active slip systems are 
being delineated reasonably well. The minimum value zero of Ip indicates that at ?avg = 0.077 5, 
some regions of the body are deforming elastically. At an average strain of 0.1, the maximum 
values of Ip and I equal 2206 and 12, respectively. Thus, the plastic straining of active slip systems 
becomes quite intense even though macrorate of deformation remains unchanged. The extent to 
which the coarseness of the finite element mesh contributes to the difference in the values o f / a n d  
Ip has not been determined. Other reasons for the differences in the values of I and Ip are: 

(i) values of D p are computed from the data at Gauss points and involve no differentiation 
but those o l d  involve differentiation of the velocity field derived from nodal values of the velocity 
field and thus are less accurate than the values of DP; 

(ii) D33 = 0 because of the assumption of plane strain but D~3 need not equal 0; 

(iii) because of the rather small value of m, a 10% change in the value of rc can change the 
value of ~P by a factor of 100; 
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Fig. 2. Contours of the angle of rotation of the crystal lattice at an average strain of 0.0575 

(iv) stress waves may have not been completely attenuated and thus may affect the in- 
stantaneous values of I and Ip; and 

(v) rotations of the slip systems and the temperature rise at a Gauss point can easily change 

the value of re by 10%. 
The reason for computing D p and D from data at different points is given after Eq. (19). 

The contours of the maximum principal logarithmic strain ep and the temperature rise at an 
average strain of 0.097 5 look similar to those of Ip depicted in Fig. 3. The maximum and 
minimum values of ep at any point within the body and at t = 0.097 5 equal 0.58 and 0.016, 
respectively, and the maximum value ofep was found to be higher than the maximum value of the 
slip strain on any one of the 12 slip systems. A reason for the maximum value of ep being greater 
than the maximum value of slip strains is that within a small region all slip systems are active 
simultaneously. The peak temperature rise equals 33 ~ but because of the rather large value of 
the coefficient of thermal softening assumed in our work, the value of the critical shear stress is 
reduced to 26.6% of its value when the term (1 - vO) is omitted in the expression (12) for the 
critical shear stress. Thus, softening of the material because of its being heated up facilitates its 

further plastic deformation. 
The deformed mesh at an average strain of 0.097 5 shown in Fig. 4 reinforces what can be 

concluded from the contours of slip strains, the angle of rotation and the second invariant of the 
deviatoric strain-rate tensor exhibited in Figs. 1, 2, and 3, respectively, that the intense 
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Fig. 3. Contours of the second invariant of the non-dimensional deviatoric strain-rate tensor at an average 
strain of 0.097 5 

deformations of the body are concentrated along the sides of a parallelogram. The plot of the 
vertical component of the velocity, not shown due to the limitations of space, indicates that at an 
average strain of 0.097 5, the body is divided into several regions each moving as a rigid body and 
the vertical component of velocity changes sharply across the boundaries of these regions. 

3.1.2 Compressive loading along the crystallographic direction [380] 

As in the previous case, two sets of slip systems, namely (111)[i10], (llI)[I10], ( I l l ) [ l l0] ,  
( I l I)[ l l0] ,  and (lll)[01I], (115) [011], (511)[101], (151)[i01] are quite active and contribute 
significantly to the plastic deformations of the body. The contours of slip strains of one slip 
system from the first set at an average strain, Y,vg, of 0.057 5 are exhibited in Fig. 5. Whereas the 
slip strains on the first set of slip systems contribute to the plastic deformation of the region near 
the top right and bottom left corners, that on the second set of slip systems deform noticeably the 
central longitudinal region. At an average strain, 7a,g, of 0.097 5, the maximum value of slip strain 
in the first and second sets of slip systems equals 1.076 and 0.381, respectively. The other four slip 
systems, i.e., (111)[501], (551)[101], (511)[015], and (I15)[011] stay dormant until the average 
axial strain reaches 0.057 5 at which instant they start making a contribution to the plastic 
deformations of a very small region near the top right and bottom left corners. At 7avg = 0.057 5, 

0.077 5, and 0.097 5, the maximum values of the slip strain on a slip system from this set equal 
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Fig. 4. Deformed mesh at an 
average strain of 0.097 5 

0.048, 0.235, and 0.417, respectively. However, the region over which these slip systems are active 
is quite small. One reason for these slip systems to begin contributing towards the plastic 
deformation of the body at 7avg = 0.057 5 is the noticeable rotation of the lattice structure during 
its plastic deformation; Fig. 6 depicts the contours of the angle of rotation ~b at 7avg = 0.057 5. The 
maximum values of q5 in the severely deformed regions near the top right and bottom left corners 
and in the central longitudinal region equal 25.5 ~ counterclockwise and 15.8 ~ clockwise, 
respectively. 

We note that the regions in which the first two sets of slip systems are active are quite different 
when the crystal is loaded in tension and compression. At an average strain of 0.097 5 the 
maximum value of slip strain on any slip system equalled 1.076 and 0.486 for compression and 
tension loading, respectively. One reason for this difference is that the region deformed more 
severely is smaller when the body is compressed as compared to that when it is pulled. 

From the computed results, we evaluated the nondimensional second invariant ! of the 
deviatoric strain-rate tensor D and the nondimensional second invariant Ip of the plastic 
strain-rate tensor D p. The maximum values of I and Ip at average strains of 0.007 5, 0.027 75, 
0.037 5, 0.047 5, 0.057 5, 0.077 5, and 0.097 5 equal (3.62, 7.13), (7.44, 9.09), (13.47, 32.28), (23.20, 
45.13), (18.99, 60.15), (17.84, 856), and (19.22, 7457), respectively. Note that the maximum values 
of I and Ip need not occur at the same material point. When the average strain exceeds 5%, the 
region in which slip systems are active and contribute to the plastic deformation of the body 
narrows down measurably, and the slip strain-rate there increases significantly to accommodate 
the imposed nondimensional average strain-rate of 1. However, the region in which I has 
nonzero values is still large as compared to that in which Ip > 0, therefore, the peak value of 



Dynamic shear bands in a FCC single crystal 195 

Y 

I ' - Q " - - -  '. , '7--> .~--~.~-~ .'-'-<:, 
1 " ~ _  . . . .  ---, .-~-;- / - ' /  / i r ~ ' x ~  ~-'~',~ 

o,,] "< ' , , '  r" Jr( 
�9 I I)~ \ / / , ,  , " ~ ' ~  ] ,;,,',' ,_.---, 

o.oo;'.-. /,/ <::r 
,r 

( ....... " , ' r ' f  /,,"/ 

",'~~', ,.-...,, ---., --._ 
, " . " ~ \ ~ ' "  ~ ~'~-.~<--" - -  ' ,  " - ' - . 7 ~  

_o.,, \ - . ; _ ~ _ % x x } , . ' . . , w ~ .  , % - > . . . ,  . " : . ,  . , , . - . ,  

-0. ~)9 -0.4g O, O0 O. 49 O. gg 

X 

- -  0.02 ...... 0.03 .... 0.04 0.06 

- - -  0.12 - -  0.18 - - -  0.24 . . . .  0~0 

Fig. 5. Contours of slip strains on any one of the four slip systems (111)[TlO], (11 I)[IlO], (T11)[110], and 
(I1T) [110] at an average strain of 0.057 5 

I does not increase as rapidly as the peak value of Ip does. Other plausible reasons for the 
differences in the values of I and Ip are enumerated in the previous section. 

Figure 7 depicts contours of the maximum principal logarithmic strain ep at an average strain 
of 0.097 5. The maximum value 1.158 of ~p suggests that deformations within the band are more 
intense than those in the previous case when the single crystal was pulled so as to induce the same 
average tensile strain. At the hottest point within the band, the thermal softening effect reduces 
the critical shear stress to 11.94% of its value in the absence of thermal softening. From the 
contours of the maximum principal logarithmic strain, one can see that the shear band is in the 
form of the letter Z turned upside down rather than a parallelogram obtained in the previous 
case. 

3.2 Material imperfection modelled by nonuniform initial temperature 

We assume that the initial temperature is given by Eq. (18.2) with e = 1.0, and the single crystal is 
compressed along the crystallographic direction [380]. The maximum value of the initial tem- 
perature perturbation is intentionally taken to be large so as to reduce the computational time. 
It will facilitate the comparison of presently computed results with those of Zhu and Batra [6] 

who used a different loading configuration for the FCC single crystal. Because of the initial higher 

temperature at the center, the material there is softer and easy to deform. Contours of slip strains 
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Fig. 6. Contours of the angle of rotation of the crystal lattice at an average strain of 0.0575 

on slip systems (111)[il0], (llI)[T10], (Ill)[110], and (IlI)[110] are nearly identical, and those 
for the system (111) [T10] at an average strain of 0.027 5 are depicted in Fig. 8. As the single crystal 
continues to be compressed, its plastic deformations ensuing from the center propagate outwards 
in the form of the letter x, and the material near the top right and bottom left corners also begins 
to deform plastically. Interestingly enough, plastic deformations of the material in these regions 
recede rather than intensify with the passage of time, and eventually intense plastic deformations 
of the material along the line making an angle of 34 ~ clockwise with the horizontal persist. It is 
because in compression the 34 ~ direction is more favorable to plastic deformation than the one 
perpendicular to it. Contours of slip strains on any one of the slip systems (111) [01 I], (111) [015], 
(I l l )  [101] and (151) [501] are almost identical to each other and are omitted to conserve space. 
The material region wherein these slip systems are active looks like a star and the plastic 
deformation therein continues to intensify and propagate outwards with an increase in the 
overall deformations of the crystal. No measurable or detectable plastic deformation occurs on 
the other four slip systems, viz. (111) [501], (551) [101], (Sll) [015], and (I15) [011], until the average 
strain of 0.027 5 at which instant these slip systems begin contributing to the plastic deformation 
of the body. Slip strains on these slip systems are essentially the same, and the narrow intensely 
deformed region is oriented at an angle of approximately 30 ~ clockwise from the horizontal axis. 
The maximum values of the slip strain on the three sets of slip systems when 7avg = 0.057 5 equal 
0.398 6, 0.120 9, and 0.334 8, respectively. However, these need not occur at the same point. 
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The contours of the angle q~ of rotation of the crystal lattice exhibited in Fig. 9 at an average 
strain of 0.057 7 vividly illustrate the region where significant values of 4) occur. At 7avg = 0.057 5, 
4) varies from 2 ~ clockwise to 39.8 ~ counterclockwise, the minimum and maximum values of ep 
equal 0 and 0.737 signifying thereby that some of the region has not been plastically deformed at 
all. The maximum value 19.24 of the second invariant I of the nondimensional strain-rate tensor 
D indicates that peak strain-rates equal 1.9 x 104 s- 1, and the peak nondimensional temperature 
of 1.97 implies that the critical shear stress at the point where the peak temperature occurs equals 
7.2% of its value in the absence of the thermal softening effect. The deformed mesh at 
7avg = 0.057 5 not shown herein illustrates that the shear band is inclined at an angle of nearly 30 ~ 
clockwise with the horizontal and does not pass through a corner. 

Zhu and Batra [6] recently studied the problem when the single crystal was compressed along 
the crystallographic direction [010] and plane of deformation was parallel to the plane (001) or 
(10T). They assumed the deformations to be symmetric about the horizontal and vertical 
centroidal axes and analyzed deformations of the material in the first quadrant. When the plane 
of deformation was parallel to the plane (001) of the single crystal, a single shear band originated 
from the center of the cross-section, propagated along a line making an angle of 45 ~ with the 
horizontal, and was reflected back from the top loading surface with the angle of reflection being 
essentially equal to the angle of incidence. For the case of the plane of deformation being parallel 

to the plane (10I) of the single crystal, the shear band originating from the center of the 
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cross-section propagated along the line making an angle of 39.5 ~ with the horizontal, and 
eventually split into two parallel bands. Different slip systems were found to be active in each 
case .  

3.3 Material imperfection modelled by a misorientation of the crystal lattice 

We now assume that the initial temperature is uniform but four elements meeting at the centroid 
of the cross-section are misoriented by 10 ~ Thus the deformations of these four elements will be 
different from that of the rest of the body, and these elements may act as nuclei of shear bands or 
may not deform much. For the single crystal compressed along the crystallographic direction 
[380], the contours of the accumulated slip strains on any one of the four slip systems (111) [I10], 
(11[) [T10], ( I l l )  [110], and (T1T) [110] at average strain, yav~, of 0.007 5, 0.047 5, 0.077 5 and 0.097 5 

vividly demonstrate that intense plastic deformation on these slip systems initiates from the top 
right and bottom left corners and propagates inwards; the contours of the accumulated slip 
strains at an average strain of 0.007 5 are shown in Fig. 10. We note that these bands do not pass 
through the center. Since the slip systems within the central four elements are different from those 
outside of them, this region is found to be less amenable to severe plastic deformations and resists 
the propagation of shear bands through it. The contours of the accumulated slip strains on slip 
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systems (111)[01T], (llT)[011], (511)[101], and (TIT)[011] at 7avg = 0.007 5, 0.047 5, 0.077 5 and 
0.097 5 reveal that severe plastic deformations on them occur near the boundaries of the central 
four elements and propagate outwards. The remaining four slip systems (111) [~01], (T~I) [101], 
(511) [015] and (51I) [011] stay inactive until the crystal has been compressed to an average strain 
of 0.05 7 at which point they become active in a very narrow region. At an average strain of 
9.75%, the maximum value of the accumulated plastic strain on these three sets of slip systems 
equals 37.1%, 16.9%, and 17.4%, respectively. Contours of the angle of rotation ~b of the crystal 
lattice at 7av~ = 0.077 5 are plotted in Fig. 11. At an average strain of 0.097 5, peak values of ~b in 
the two severely deformed regions equal 9 ~ clockwise and 25.4 ~ counterclockwise. 

The peak value 1.325 of the rise in nondimensional temperature lowers the critical shear 
stress by 62.4%, maximum and minimum values of nondimensional I equal 17.06 and 0.008 7, 
and ep takes on values between 0 and 0.51. Thus there is at least one material point in the body 

that has not been deformed plastically at all. The deformed mesh at an average strain of 0.127 5 
reveals that severe deformations of the body occur along two parallel lines on either side of the 
centroid and making an angle of about 35 ~ counterclockwise with the horizontal. The intensely 
deformed region essentially coincides with the one wherein large rotations of the crystal lattice 
O c c u r .  

Figure 12 depicts the time-history of the magnitude of the average axial stress acting on the 
top surface for the four cases considered above. We note that the body is pulled in the first case 
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but is compressed in the remaining three cases. A comparison of curves A and B suggests that 
there is no major difference in the overall response of the crystal to the prescribed deformation 

rate. In each one of the four cases studied, the stress magnitude drops at a rather low value of the 

average strain; the stress drop is more rapid for the case of temperature perturbation. It is due to 
the rather high values of the initial temperature assumed at the centroid of the body, and also of 

the thermal softening coefficient. The oscillations in the curve C signify that stress waves have not 
been attenuated completely whereas those for the other three cases have been. A comparison of 

curves A, B, and D reveals that the misorientation by 10 ~ of a small region near the block centroid 

does not affect in any noticeable way the overall response of the crystal. However, the shapes and 
locations of the shear bands formed in each case are different. 

4 Conclusions 

We have studied dynamic plane strain thermomechanical deformations of a FCC single crystal 

loaded along the crystallographic direction [380] with the plane of deformation being parallel to 

the plane (001) of the crystal. The prismatic body has square cross-section with all boundaries 
thermally insulated, the two vertical surfaces traction free, the two horizontal surfaces are free of 

tangential tractions but a normal velocity is prescribed on them so as to induce an average 
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normal  strain-rate of 1 000 s -1. In the first set of computat ions  there is no material  imperfection 
presumed, and the body is either pulled or compressed. In the second set of problems, the body is 
assumed to have an imperfection either in the form of an initial nonuniform temperature with the 
max imum temperature  at its centroid or a small region around the centroid is misoriented and 
the body is loaded in compression. In each case all twelve slip systems are assumed to contribute 
to the plastic deformations of the body. 

In each one of the four cases studied, the two sets of four slip systems, viz., (111)[T10], 
(llT)[I10], ( I l l ) [ l l 0 ] ,  ( I l I ) [ l l 0 ] ,  a n d  ( l l l ) [01I] ,  ( l l I)[011],  (I l l)[101],  ( l i l ) [ I01 ]  became 

active in different regions soon after the body was loaded. The other four slip systems either 
stayed dormant  throughout  the loading process, or became active after the body had been 

deformed by a certain amount.  When there is no imperfection introduced, the singularity of the 
deformations at the corners caused the shear bands to initiate there and propagate  inwards into 
the body. The severely deformed region is in the form of a paral lelogram when the body is pulled, 
and the letter Z turned upside down when compressed. For  the case of the nonuniform initial 

temperature with the max imum temperature at the centroid of the cross-section, the shear band 
passed through the centroid and made an angle of approximately 34 ~ counterclockwise with the 
horizontal. An initial misorientation of the lattice structure in a small region surrounding the 

centroid of the cross-section resulted in two parallel bands on either side of the centroid and 
inclined at an angle of about  35 ~ counterclockwise with the horizontal. 
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