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We use the first-order shear deformation plate theory (FSDT) to analyze stresses in two layers bonded

together with an adhesive as recommended by the ASTM D3165 standard, except that we also include a
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void within the adhesive. Depending upon the number of notches and voids, the specimen is divided

into several regions. Assuming that a plane strain state of deformation prevails in the specimen, we

write the balance of forces and moments for each section and impose the continuity of displacements,

forces and moments at the interfaces between the adjoining sections. By taking the Laplace transform

of the resulting ordinary differential equations we get a system of simultaneous linear algebraic

equations that can be easily solved. The inverse transform of the solution of the algebraic equations

provides stresses and displacements in the adhesive and the substrates, which are found to agree well

with those obtained by the finite element method (FEM). It is also found that the order of the stress

singularity at the corner of the free surface of the adhesive and the substrate, and the strain energy

release rate computed from the solution of the problem with the FSDT agree well with those

determined from the solution of the problem by the FEM. We note that the computational effort

required to analyze the problem with the FSDT is considerably less than that needed to solve the

problem by the FEM.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Adhesive-bonded joints are increasingly being used in aero-
space and automotive industries due to the ease with which they
can be formed. Like other joints, e.g. bolted joints, one of the
issues in adhesive-bonded joints is the prediction of failure
mechanisms. Two major failure mechanisms widely reported in
adhesive-bonded joints are interfacial and cohesive fractures
[1–6]. The interfacial fracture refers to the separation of the
adhesive from the substrate at the interface between the two
possibly due to either the normal or the shear stress or their
suitable combination exceeding the bond strength between the
adhesive and the substrate. The cohesive failure refers to the
failure of the adhesive at a point within the adhesive. Either
defects at the adhesive/substrate interface or poor bonding
between the two materials or cracks initiating at the site of the
stress singularity may result in the interfacial failure.

An often used criterion for crack initiation is the critical strain
energy release rate (SERR), i.e., a crack is assumed to initiate when
the SERR reaches a material-dependent critical value. For an
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adhesive-bonded joint, the critical value of the SERR will depend
upon the materials of the substrate and the adhesive. The order of
stress singularity at the corner of the free surfaces of the substrate
and the adhesive depends upon the elastic constants of the two
materials generally through Dundurs’ parameters [7]. One can
ascertain the order of the stress singularity and stresses in the
substrate and the adhesive by using the finite element method
(FEM) but it is computationally very expensive since the FE mesh
required to accurately compute the stress singularity needs to be
extremely fine.

Under general loading the interfacial failure is a mixed-mode
process that may include one or more of the three failure modes,
namely, the crack opening mode I, the shearing mode II, and the
tearing mode III. One thus needs to ascertain the effective SERR
that incorporates all three failure modes.

Adhesively bonded joints have been studied, amongst others, by
Goland and Reissner [8], Erdogan and Ratwani [9], and Hart-Smith
[10]. There is enormous literature on the analysis of adhesive-
bonded joints; we refer the reader to review papers by Kutscha [11],
Kutscha and Hofer [12], Matthews et al. [13], Vinson [14], da Silva
et al. [15], and Zhao et al. [16]. Tsai and Morton [17] compared
results from a two-dimensional (2-D) geometrically nonlinear FE
analysis with those from the analytical solutions. Yang and Pang [18]
have analytically found stresses in adhesive-bonded single-lap
joints. Huang et al. [19] and Yang et al. [20] have investigated the
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Nomenclature

P applied tensile load per unit width, N/m
ux

i x-displacement for ith substrate, mm
ux

oU, ux
oL upper and lower substrates mid-plane x-displace-

ment, mm
ux

a adhesive x-displacement, mm
ciU, ciL upper and lower substrates angles of rotation of the

transverse normal about the yi-axis for ith substrate,
rad

uz
i z-displacement field for ith substrate, mm

uz
oU, uz

oL upper and lower substrates mid-plane z-displace-
ment, mm

uz
a adhesive z-displacement, mm
exx

i , ezz
i , gxz

i strain components for ith substrate, mm/mm
exx

a , ezz
a , gxz

a adhesive strain components, mm/mm
Nx

i axial force per unit width for ith substrate, N/m
My

i bending moment per unit width for ith substrate,
Nm/m

Qz
i transverse shear force per unit width for ith substrate,

N/m

Nc, Qc, Mc equivalent crack-tip axial and transverse forces, and
bending moment

ks shear correction factor
hU, hL thickness of upper and lower substrates, mm
W work done to open the crack, J
sxz

a adhesive shear stress, Pa
szz

a adhesive normal stress, Pa
Z adhesive thickness, mm
a initial crack length, mm
b virtual crack extension length, mm
Lc current crack length, mm
Lo total overlap length without a crack and a void, mm
Ln notch length of ASTM D3165 specimen, mm
Lv void length, mm
GI mode I strain energy release rate, J/m2

GII mode II strain energy release rate, J/m2

GT total strain energy release rate, J/m2

b mode-mixity parameter
a, b Dundurs’ parameters
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problem by assuming the adhesive material to be elastic–plastic and
considered asymmetry of the substrates and the effects of transverse
shear deformation. Krueger [21] used the virtual crack closure
technique (VCCT) and the FEM to determine the SERR. Davidson
et al. [22] used the classical plate theory and the VCCT to find SERR
for delamination of a composite plate. Kim and Kong [23] as well as
Lou and Tong [24] have used the classical beam (or plate) theory to
calculate the SERR. Yang et al. [25] included transverse shear
deformation of the plate, studied behavior of single-lap joints with
interfacial crack and calculated the SERR. A comparative study of the
analytical models can be found in a review paper by da Silva
et al. [26]. Other works that used the VCCT to determine the SERR
include those of Wang et al. [27], Wei et al. [28], and Crocombe
et al. [29]. Contour integrals to compute the SERR have been
employed, amongst others, by Fernlund et al. [30], Chadegani
et al. [31], and Chen et al. [32]. Yang et al. [25,33] studied the effect
of an interfacial crack in adhesive-bonded joints with composite
substrates. In these studies the adhesive-bonded joint is assumed to
have no flaws and voids (or gaps).

The effects of flaws and voids in adhesive-bonded joints have
been studied, amongst others, by Hart-Smith [34], Kan and
Ratwani [35], and Rossettos and Zang [36]. They used a shear-
lag model where the substrates support the axial load and the
adhesive is deformed primarily in shear. It should be noted that
this model is appropriate when the applied loads do not cause
bending of the joint. Rossettos et al. [37] adopted a modified
shear-lag model by Rossettos and Shishesaz [38] assuming a
quadratic distribution of the axial displacement in the adhesive.
Olia and Rossetos [39] presented an analytical solution for a
simple lap-joint with a void considering the effect of bending in
their formulation of the problem. Lang and Mallick [40] studied
Fig. 1. ASTM D3165 geometry includin
the effect of a void in a single-lap joint with spew fillets using the
FEM. de Moura et al. [41] evaluated the influence of strip defects
on the mechanical behavior of composite bonded joints using the
FEM and including interfacial decohesion based on a mixed-mode
damage initiation and growth law. You et al. [42] employed the
FEM to investigate the effect of a void on the stress distribution in
an adhesive-bonded double-lap joint.

Here we use the first-order shear deformation theory (FSDT) to
analyze stresses and displacements in an adhesive-bonded joint
with an interfacial crack and a void; the void represents a region
where there is no adhesive present between the two substrates.
We assume that both the adhesive and the substrates are made of
linear elastic, isotropic, and homogeneous materials. It is shown
that the FSDT provides good values of the order of stress
singularity and the SERR. Since this method is computationally
inexpensive it can be used to conduct parametric studies, and to
select between various preliminary designs of joints. The selected
few designs can be further analyzed and narrowed down by using
the FEM. Of course, there is no substitute for experimentally
insuring that the proposed designs will work in practice.
2. Formulation of the problem

We study plane strain infinitesimal deformations of an ASTM
D3165 standard specimen [43] composed of four metallic sub-
strate segments bonded by thin layers of adhesive as shown
in Fig. 1. We use rectangular Cartesian coordinates to describe
deformations of the upper substrates of thickness hU and the
lower substrates of thickness hL joined by the adhesive layer of
thickness Z. The tensile load per unit width (the dimension
g an interfacial crack and a void.



Fig. 2. Discretizaion of the specimen into subregions.
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perpendicular to the plane of the paper), P, is applied along the
x-axis to the right end of the single lap-joint specimen that is held
fixed at the left end. Because of the notches present in the upper
and the lower substrates the adhesive is mostly deformed in
shear. We assume that during use an interfacial crack of length Lc

has developed right after the first notch as shown in Fig. 1, and
there is a void where no adhesive exists between the two
substrates. The void could form either because the adhesive at
the location of the void has evaporated or there was a manufac-
turing defect that went undetected. The location and the length of
the void are varied to evaluate their effects on the performance of
the lap-joint. A simplifying assumption is that prior to the
application of the load P, the two substrates and the adhesive
are stress free.

Assuming that the thickness hU of the upper substrate, the
thickness hL of the lower substrate, and the thickness Z of the
adhesive are small as compared to their lengths and widths, we
use the FSDT to describe deformations of the substrates and the
adhesive. Starting from the left edge surface we divide the body
into eight regions depicted in Fig. 2. Thus each substrate is
divided into seven parts shown in Fig. 2. The number of regions
into which the specimen is divided depends upon the number of
notches, the number of initial cracks, and the number of voids
present. For each region we write equations of equilibrium for the
upper substrate, the adhesive, and the lower substrate.

2.1. Equations for a substrate

For each substrate Si (i¼1, 2,y, 14) we use local rectangular
Cartesian coordinates (xi,yi,zi) with the origin at the midpoint of
the left edge of the substrate. In the FSDT displacements ux and uz

in substrate Si are approximated by

uxðxi,ziÞ ¼ uo
xðxiÞþzicðxiÞ ð1aÞ

uzðxi,ziÞ ¼ uo
z ðxiÞ ð1bÞ

where the superscript ‘‘o’’ represents the quantity associated with
the mid-plane and c is related to the rotation of the transverse
normal about the yi-axis. Eqs. (1a) and (1b) give the following
expressions for the infinitesimal strains in substrate Si

ei
xx ¼

@uxðxi,ziÞ

@xi
¼

duo
xðxiÞ

dxi
þzi

dcðxiÞ

dxi
ð2aÞ

ei
zz ¼

@uzðxi,ziÞ

@zi
¼ 0 ð2bÞ

gi
xz ¼

@uzðxi,ziÞ

@xi
þ
@uxðxi,ziÞ

@zi
¼

duo
z ðxiÞ

dxi
þcðxiÞ ð2cÞ

Assuming that the material of substrate Si is linear elastic,
stresses sxx

i , szz
i , and �sxz

i in Si are given by

si
xx ¼ Ci

11e
i
xxþCi

22e
i
zz ð3aÞ

si
zz ¼ Ci

22e
i
xxþCi

33e
i
zz ð3bÞ
si
xz ¼ Ci

44g
i
xz ð3cÞ

where C11
i ,C22

i , C33
i , and C44

i are elastic constants for the material
of Si. The resultant normal and shear forces Nx

i , Qz
i , and the

bending moment My
i per unit width of Si are given by

Ni
x ¼

Z
si

xxdzi ð4aÞ

Qi
z ¼ ks

Z
si

xzdzi ð4bÞ

Mi
y ¼

Z
zisi

xxdzi ð4cÞ

where the integration is over the thickness of the substrate Si and
ks is the shear correction factor.
2.2. Equations for the adhesive

We presume that the adhesive, if present between the upper
and the lower substrates, is perfectly bonded to them. Further-
more, because of the small thickness Z of the adhesive, the strain
components at a point in the adhesive are approximated by

2eai
xx ¼

d

dxi
uoU

x ðxiÞ�
hU

2
ciU
ðxiÞþuoL

x ðxiÞþ
hL

2
ciL
ðxiÞ

� �
ð5aÞ

gai
xz ¼

1

Z
uoU

x ðxiÞ�
hU

2
ciU
ðxiÞ�uoL

x ðxiÞ�
hL

2
ciL
ðxiÞ

� �

þ
1

2

duoU
z ðxiÞ

dxi
þ

duoL
z ðxiÞ

dxi

� �
ð5bÞ

eai
zz ¼

1

Z uoU
z ðxiÞ-uoL

z ðxiÞ
� �

ð5cÞ

where superscripts U and L signify, respectively, quantities for the
upper and the lower substrates, and the superscript ‘‘a’’ stands for
the adhesive. It is known that the last term on the right hand side
of Eq. (5b) has negligible effect, (see Ref. [39]), and the inclusion
of this term often makes it hard to solve the problem. Since
we use symbolic software, the retention of this term poses
no difficulty, and mitigates the need to make one additional
assumption.

Assuming that the adhesive material is linear elastic and
isotropic, the axial stress sxx in the adhesive is negligible, the
normal (peel) and the shear stresses in the adhesive are given by

sai
zz ¼ C

a

22e
ai
xxþC

a

33e
ai
zz ð6aÞ

sai
xz ¼ C

a

44g
ai
xz ð6bÞ

In view of the small thickness Z of the adhesive, stresses and
strains in it are taken to be functions of xi only.
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2.3. Equilibrium equations

In order to derive equilibrium equations we draw a free-body
diagram of an element of length Dxi of the substrate Si; e.g.,
see Fig. 3.

The balance of forces and moments for the element of the
upper substrate gives

dNiU
x

dxi
¼�sai

xz ð7aÞ

dMiU
y

dxi
¼QiU

z þ
hU

2
sai

xz ð7bÞ

dQiU
z

dxi
¼ sai

zz ð7cÞ

We write similar equations for the lower substrate. Boundary
conditions for the upper substrate are

NiU
x ¼ 0,QiU

z ¼ 0,MiU
y ¼ 0, at a traction-free vertical surface ð8aÞ

uoiU
x ¼ 0,uoiU

z ¼ 0,MiU
y ¼ 0, at the left edge of the specimen ð8bÞ

NiU
x ¼ P=2,uioU

z ¼ 0,MiU
y ¼ 0, at the right loaded vertical surface

ð8cÞ

sai
xz ¼ 0,sai

zz ¼ 0, at the traction-free bottom horizontal surface

ð8dÞ

We impose the following boundary conditions on edges of the
lower substrate.

uoiL
x ¼ 0,QiL

z ¼ 0,MiL
y ¼ 0, at the left edge of the specimen ð9aÞ

NiL
x ¼ P=2,QiL

z ¼ 0,MiL
y ¼ 0, at the right loaded vertical surface

ð9bÞ

Because of St. Venant’s principle boundary conditions at the left
edge of the specimen will have a little effect on the stress field in
regions other than region 1.

The continuity conditions at the vertical interface between
segments i and iþ1 of the upper substrate are

NiU
x ¼Nðiþ1ÞU

x ,QiU
z ¼Q ðiþ1ÞU

z ,MiU
y ¼Mðiþ1ÞU

y ð10aÞ
Fig. 3. Free-body diagram and sign convention.
uoiU
x ¼ uoðiþ1ÞU

x ,uoiU
z ¼ uoðiþ1ÞU

z ,ciU
¼cðiþ1ÞU

ð10bÞ
2.4. Solution technique

Combining Eqs. (1)–(7), we get second-order linear ordinary
differential equations (ODEs) in terms of the generalized displa-
cements ux

oiU, ciU, uz
oiU, ux

oiL, ciL and uz
oiL. Equilibrium equations for

the lower and the upper substrates are related with each other
through sxz

ai and szz
ai appearing in Eqs. (7a)–(7c). Equations for

segments i and iþ1 are related through the equations expressing
the continuity of surface tractions and displacements across the
common vertical interface between them; e.g., see Eqs. (10a)
and (10b).

For the specimen divided into 8 regions or 14 segments
exhibited in Fig. 2, there will be 42 coupled second-order ODEs.
Here we take the generalized displacements and their first-order
derivatives with respect to x as unknowns. Thus we need to
simultaneously solve 84 linear coupled first-order ODEs under the
pertinent boundary conditions. We take the Laplace transform of
these equations to get a system of linear algebraic equations,
which are simultaneously solved for the unknowns. The inverse
Laplace transform of these unknowns provides the generalized
displacements from which stresses and strains are computed at
any point of the specimen. The processes of taking the Laplace
transform followed by taking the inverse Laplace transform are
performed using the software MAPLE. Governing equations for
each segment are solved first and then continuity and boundary
conditions are used to evaluate the constants of integration.
3. Strain energy release rate calculation

In linear elastic fracture mechanics (LEFM) a crack is assumed
to propagate when the SERR at the crack-tip attains a critical
value. Here we assume that there exists a crack of length Lc¼a at
Fig. 4. ASTM D3165 specimen with an initial interfacial crack of length a, shown

with dashed line, and a virtual crack extension of length b.



Fig. 6. Schematic sketch of the contact between two bodies.

Fig. 5. Left: stresses on the top surface near the crack tip; right: equivalent forces

and bending moment at the crack tip.
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the adhesive/lower substrate interface immediately after the first
notch and find the value of the SERR by two methods.

In order to compute the SERR by using the VCCT, we consider a
virtual crack extension through length b from point C to point C0;
e.g., see Fig. 4.

Prior to the crack extension, the overlap area between points C

and C0 adheres and there are in general non-zero normal and
tangential tractions at the interface between the adhesive and the
substrate.

These tractions on the interface CC0, shown in Fig. 5, are related
to the equivalent crack-tip forces and bending moment Nc, Qc, and
Mc as follows:

Nc ¼�

Z b

0
sa7

xz dx7 ð11aÞ

Qc ¼

Z b

0
sa7

zz dx7 ð11bÞ

Mc ¼

Z b

0
sa7

zz x7dx7 ð11cÞ

Stresses sxz
a7 and szz

a7 are obtained from the solution of the
single-lap joint problem prior to the virtual extension of the
crack-tip.

During the virtual extension of the crack-tip from point C to
point C0, the material point at C is assumed to split into two points
A and B. In order to close the virtual crack, crack-tip forces and
moments are applied at points A and B to move them back to their
original locations. The work, W, required to close the virtual crack
is given by

W ¼ 1
2½NCðu

B
x�uA

x ÞþMCðc
B
�cA
ÞþQCðu

B
z�uA

z Þ� ð12Þ

where it has been tacitly assumed that Nc, Mc and Qc vary linearly
with (ux

B
�ux

A), (cB
�cA), and (uz

B
�uz

A), respectively. Values of
ux

A, ux
B, etc. are found by solving the single-lap joint problem with

the overlap length L4 in Fig. 2 replaced by L4�Lc and using the
following relations:

uB
x ¼ uo4

x 9x3 ¼ L3�b�
hU

2
þZ

� �
c4

x3 ¼ L3�b

�� ð13aÞ

cB
¼c4

x3 ¼ L3�b

�� ð13bÞ

uB
z ¼ u4

z x3 ¼ L3�b

�� ð13cÞ

uA
x ¼ uo5

x 9x3 ¼ L3�bþ
hL

2
c5

x3 ¼ L3�b

�� ð13dÞ
cA
¼c5

x3 ¼ L3�b

�� ð13eÞ

uA
z ¼ u5

z x3 ¼ L3�b

�� ð13fÞ

We note that W also equals the energy released during the
virtual extension of the crack through distance b. Thus for unit
width of the specimen in the y-direction, the SERR is given by

GT ¼ GIþGII ð14aÞ

where

GI ¼
1

2b
½MCðcB�cAÞþQCðu

B
z�uA

z Þ� ð14bÞ

GII ¼
1

2b
½NCðu

B
x�uA

x Þ� ð14cÞ

The mode-mixity parameter, b, is defined as

b¼ tan�1 GII

GI

� �
ð15Þ

For pure mode I failure, b¼0, and b¼p/2 for pure mode II
failure.
4. Solution of the problem by the FEM

In order to ascertain the accuracy of results obtained by using
the FSDT, we compare them with those obtained by using the
commercial FE software ABAQUS [44]. The FE meshes for the two
substrates and the adhesive are successively refined till the
solution has converged as determined by comparing the com-
puted order of singularity in the shear stress at the adhesive/
substrate interface with its analytical value. The order of stress
singularity depends upon Dundurs’ parameters whose values
depend upon the elastic constants of the two adjoining materials.
The problem has been analyzed, amongst others, by Bogy and
Wang [45]. Referring the reader to Qian and Akisanya [46] for
details, we merely mention that equations of elastostatics for the
two materials are solved in the neighborhood of point A shown in
Fig. 6 with perfect bonding conditions imposed on the interface.

Denoting the shear moduli and Poisson’s ratios of the two
materials by subscripts 1 and 2, the order of stress singularity is



Fig. 7. On log–log scale, variation of the shear and the normal stresses with the

distance from the corner.

Fig. 8. Comparison of the adhesive (a) shear and (b) normal stress distributions

within the overlap area for the single-notch specimen; the inset labeled overlap

configuration lists values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.
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given by [46]

sij ¼

oðr�1þpÞ if pAR

o½ðr�1þx cosðZlogrÞÞ,ðr�1þxsinðZlogrÞÞ� if pAC

oðlogrÞ if no zero occurs in 0oReðpÞo1

but dD
dp ¼ 0 at p¼ 1

8>>>><
>>>>:

ð16Þ

where p¼xþ iZ is a root of the following characteristic equation.

Dða,b,y1,y2,pÞ ¼ ½ða�bÞ2p2 sinðy1Þ
2
�ð1�bÞ2 sinðpy1Þ

2
�

�½ð1þbÞ2 sinðpy2Þ
2
�ða�bÞ2p2 sinðy2Þ

2
�

þða2
�1Þsinðpðp�y2ÞÞ

2
½2ða�bÞ2p2 sinðy2Þ

2

þ2ð1�b
2
Þsinðpy1Þsinðpy2Þ�ða2

�1Þsinðpðp�y2ÞÞ
2
� ¼ 0

ð17Þ

Angles y1 and y2 are defined in Fig. 6, and Dundurs’ parameters
a and b are given by

a¼ G1m2�G2m1

G1m2þG2m1
ð18aÞ

b¼
G1ðm2�2Þ�G2ðm1�2Þ

G1m2þG2m1
ð18bÞ

Gi ¼
Ei

2ð1þuiÞ
, mi ¼

4ð1�uiÞ for plane strain
4

ð1þ uiÞ
for plane stress i¼ 1,2

(
ð18cÞ

As pointed out by Weissberg and Arcan [47] one needs a very
fine FE mesh to accurately compute the stress singularity at the
corner where free surfaces of the adhesive and the substrate
intersect. The FE mesh was successively refined till a converged
value of the order of stress singularity was achieved. In the
neighborhood of the free edge the FE mesh was refined to three
orders of magnitude more than that used for the rest of
the region. For the aluminum substrate and the epoxy polymer
adhesive, the computed value of the order of the singularity in the
shear stress sxz at the interface equals 0.321 (see Fig. 7) which
compares well with the analytical value of 0.322. We note that
the computed order of the stress singularity in the normal stress
is 0.396 whereas that in the analytical solution is 0.321. To
calculate a converged value of the SERR, the FE mesh was refined
so that the element height in the adhesive equaled Z/15 while
that in the substrate equaled hU/40. The aspect ratio of a FE was
taken to be 3.
5. Results for sample problems

In order to compute numerical results we consider substrates
made of 2024-T3 aluminum [6] (EAl¼73 GPa, uAl¼0.33) bonded
together with a 0.1 mm thick FM-73 [6] epoxy adhesive
(Eadh¼1.64 GPa, uadh¼0.35). We set the shear correction factor
ks¼5/6, Lo¼50.8 mm even though this value of ks was proposed
for thin monolithic plates/beams, the notch-size Ln¼1.6 mm
(see Fig. 1) and the lengths L1 and L8 of substrates outside the
overlap (see Fig. 2) equal to 25.4 mm. The length, Lv, of the void
is varied. Unless otherwise noted results are computed for
hU
¼hL
¼1.6 mm.

We compute results for two configurations—one shown
in Fig. 1 and the other in which there is no right notch; these
two configurations are referred to as the double-notch and the
single-notch, respectively.

For the single-notch and the double-notch specimens we have
plotted in Figs. 8 and 9, respectively, the variation with the
distance from the crack-tip of the shear and the normal stresses
in the adhesive obtained from the solution of the problem by
using the FSDT and the FEM. The two sets of results are very close
to each other. At points away from the crack-tip the maximum
difference between the normal and the shear stresses computed



Fig. 9. Comparison of the adhesive (a) shear and (b) normal stress distributions

within the overlap area for the double-notch specimen; the inset labeled overlap

configuration lists values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.

Fig. 10. Comparison of the resultant (a) axial force, (b) shear force, and (c) bending

moment for a single-notch specimen (i) without void and (ii) with void having

Lv/Lo¼1/4; the inset labeled overlap configuration lists values of Li/Lo, Lv/Lo,

(Lo�Li�Lv)/Lo.
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by the two methods equals 8% and 6%, respectively. Hence the
FSDT formulation can be used to compute reliable values of
stresses and strains for several preliminary designs. Subsequently,
for a few selected designs, the accuracy of computed results can
be improved by using the FEM and employing an appropriately
refined FE mesh. The singularities in the shear and the normal
stresses from the FSDT results could not be captured, whereas the
corresponding values of the orders of the stress singularity from
the solution by the FEM are 0.32 and 0.4, respectively. For the
FSDT, stress distributions in the adhesive were computed using
Eqs. (5) and (6). The large values of the tensile normal stress near
the free edge between the adhesive and the substrate imply that
the two will start separating there. We note that the stress
singularity at the corner is due to our using the linear elasticity
theory. Had we considered material and geometric nonlinearities,
we would have obtained finite values of stresses at the edge but
the computational cost would have increased considerably. The
normal stress at the interface is tensile for 0ox7/L4o0.01.

Results exhibited in Figs. 8 and 9 also reveal that the presence
of the void of normalized length Lv/Lo¼1/4 and Lv/Lo¼1/2 in
single-notch and double-notch specimens, respectively, does not
affect much the stress distribution near the free edge of the
adhesive/substrate interface. However, at the corners of the free
edges of the adhesive adjoining the void and the substrate, the
shear stress rapidly drops to zero. The normal stress in the
vicinity of the crack tip is tensile; it becomes compressive as
one goes away from the crack tip implying that the adhesive and
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the adherend are in contact with each other, and then it gradually
goes to zero near the void tip. Unless one uses a very fine mesh,
the traction boundary conditions are approximately satisfied in
Fig. 11. Comparison of the resultant (a) axial force, (b) shear force, and (c) bending

moment for a double-notch specimen (i) without void and (ii) with void having

Lv/Lo¼1/2; the inset labeled overlap configuration lists values of Li/Lo, Lv/Lo,

(Lo�Li�Lv)/Lo.
the analysis of the problem by the FEM. Here we have not used a
very fine mesh near the void tip resulting in the traction boundary
conditions near the void tip being not well satisfied. The plate
theory is an idealization of the 3-D elasticity theory and cannot be
expected to satisfy point-wise boundary conditions. In order to
see how the void affects the resultant axial and shear forces
transmitted through the specimen, we have plotted their varia-
tions along the x-axis as well as that of the bending moment in
Figs. (10a–c) and (11a–c) for the single-notch and the double-
notch specimens, respectively. It is clear that the presence of the
void does not change the force transmitted through the specimen
implying that it does not affect the load carrying capacity of the
joint. We note that some of the results exhibited in Figs. 8–11
Table 1
Comparison of crack-tip forces and bending moment.

FEM FSDT

Qc (N) 73.84 71.19

Nc (N) 69.84 67.35

Mc (N mm) 2.22 2.40

Fig. 12. For single-notch specimen with different void location and length,

comparison of (a) total SERR and (b) the mode-mixity parameter computed from

results of the FSDT and the FE-VCCT; the inset labeled overlap configuration lists

values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.



A. Chadegani, R.C. Batra / International Journal of Adhesion & Adhesives 31 (2011) 455–465 463
have been obtained by Hart-Smith [10,34] by using a shear lag
model. These are included here for the sake of completeness and
to show that our approach also gives results close to those derived
by Hart-Smith.

For a case with substrate thickness hU
¼hL
¼1.6 mm, the

equivalent crack-tip forces and bending moment found from
the results of the FSDT and the FE simulations are compared in
Table 1.

For different overlap configurations, we have plotted in
Figs. 12 and 13 the total SERR and the mode-mixity parameter
computed by using Eqs. (12) and (13). The configurations studied
have different values of (Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo), which repre-
sent the effect of the void location and its length. We refer the
reader to Fig. 1 for definitions of Lo, Li, and Lv. It is clear that for a
given overlap configuration number (horizontal axis) the total
SERR (the mode-mixity parameter) computed from the results of
the FSDT is about 1% (2.4%) less than that obtained from the
solution of the problem by the FEM. Thus the use of the FSDT to
analyze the adhesive joint provides very good values of the SERR
with a rather modest computational effort as compared to that
Fig. 13. For double-notch specimen with different void location and length,

comparison of (a) total SERR and (b) the mode-mixity parameter computed from

results of the FSDT and the FE-VCCT; the inset labeled overlap configuration lists

values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.

Fig. 14. Effect of substrate thickness on the total SERR for (a) single-notch and

(b) double-notch specimens with different void location and size; the inset labeled

overlap configuration lists values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.
required for the FEM. Whereas the mode-mixity parameter is
essentially the same for all configurations including the one
without the void the SERR depends upon the configuration. For
the configurations studied, the maximum value of the SERR
differs from the minimum value of the SERR by about 3.5%
implying that the presence of the void and where it is located
does not affect much the load carrying capacity of the joint.
However, it is very likely that the presence of a void would have a
noticeable effect for a ductile adhesive, which will deform
plastically in the overlap region. As also pointed out by Pires
et al. [48] using a compliant adhesive diminishes stress concen-
trations and the joint strength is higher than that for a stiff
adhesive.

For different void lengths and locations we have compared in
Fig. 14 the effect of the substrate thickness on the total SERR for
single- and double-notch specimens. It can be observed that
doubling the thickness of the substrate does not change the
mode-mixity parameter but reduces the SERR by about 50%. For
hU
¼hL
¼3.2 mm, we have plotted in Fig. 15 the mode-mixity

parameter for different overlap lengths. It is clear that the
presence of the right notch does not change the mode-mixity
parameter but increases the SERR by about 4%.



Fig. 15. Comparison of the mode-mixity parameter for (a) single-notch and

(b) double-notch with different void location and size; the inset labeled overlap

configuration lists values of Li/Lo, Lv/Lo, (Lo�Li�Lv)/Lo.
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6. Conclusions

We have used the first-order shear deformation plate theory
(FSDT) to analyze infinitesimal deformations of an adhesive-
bonded lap joint specimen conforming to the ASTM D3165
specifications, and have considered the effect of a void. It is
found that values of the strain energy release rate (SERR) and the
mode-mixity parameter b found from results of the FSDT differ
by less than 4% from the corresponding values computed from
the solution of the problem by the finite element method.
Furthermore, the presence of a void and where it is located have
minimal effects on values of the SERR and b.

Thus the FSDT can be used to analyze adhesive-bonded lap
joints. The presence of the void of reasonable length does not
deteriorate much the load carrying capacity of the joint.
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