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a b s t r a c t

Adhesives have become the method of choice for many structural joining applications. Therefore, there is
a need for improved understanding of adhesive joint performance, especially their failure, under a
variety of loading conditions. Various numerical methods have been proposed to predict the failure of
adhesive bonded material systems. These methods generally use a cohesive zone model (CZM) to analyze
crack initiation and failure loci. The CZM incorporates a traction–separation law which relates the jump
in surface tractions with the jump in displacements of abutting nodes of the cohesive segment; the area
under the curve relating these jumps equals the energy release rate which is determined from
experimental data. Values of parameters in the CZM are usually obtained through the comparison of
results of numerical simulations with the experimental data for pure mode I and mode II deformations.
Here a numerical approach to simulate crack initiation and propagation has been developed by
implementing CZM in the meshless method using the symmetric smoothed particle hydrodynamics
(SSPH) basis functions, and using the design of experiments technique to find optimal values of CZM
parameters for mode I failure. Unlike in the finite element method where a crack generally follows a path
between element boundaries, in the meshless method a crack can follow the path dictated by the physics
of the problem. The numerical technique has been used to study the initiation and propagation of a crack
in a double cantilever beam under mode I and mixed mode in-plane loadings. Computed results are
found to agree well with the corresponding experimental findings. Significant contributions of the work
include the determination of optimum values of CZM parameters, and simulating mode I, mode II and
mixed mode failures using a meshless method with the SSPH basis functions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture behavior in adhesively bonded material systems sub-
jected to single mode or mixed mode loading is of significant
interest in a number of industries, including those engaged in
biomedical implants, construction, microelectronics, mining, trans-
portation, and energy. In linear elastic fracture mechanics (LEFM),
the critical value of either the stress intensity factor (SIF), or the
maximum principal stress at a fixed distance from the crack tip, or
the strain energy release rate (SERR) is used to simulate crack
initiation. Alternatively, one can use the cohesive zone model (CZM)
[1–3] to simulate crack initiation and propagation. The CZM has
been developed to represent at the continuum level what happens
at the atomic level during failure which can be thought of as
breaking of bonds between adjacent atoms. Barenblatt [1] proposed

a CZM that accounts for the interaction between several neighbor-
ing atoms which at the continuum level may be thought of as
material points. Dugdale [2] considered a similar CZM to simulate
yielding near a crack tip in an elastic–plastic material. The CZM is
often used to analyze fracture problems in monolithic and compo-
site materials because it avoids precisely capturing stress singula-
rities near a crack tip. The CZM describes material separation with a
traction–separation relation. Different forms of the relation have
been developed [4] but they all have similar characteristics. As
the cohesive surfaces start to separate, either the normal or the
tangential or both tractions increase until a maximum value is
reached, and subsequently the tractions decrease with an increase
in the separation and become zero at complete separation. The
fracture energy of the material is characterized by area under the
traction–separation curve. Computed results usually depend upon
the initial slope of this curve, the peak value of the traction and on
the value of cohesive energy, which is not in general equal to the
fracture toughness. Elices et al. [5] used inverse analysis procedure
and the experimental data to determine the softening function in
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the CZM for different materials such as concrete, polymethyl-
methacrylate and steel. Experimentally observed crack paths and
failure loads were well predicted by introducing the determined
softening function.

The CZM has been used in conjunction with the finite element
method (FEM) to simulate fracture in metals, debonding in
adhesives and delamination in composite materials [5–10].
Xu and Needleman [3] have analyzed dynamic crack propagation
in a centered crack plate under tensile loading using the CZM.
Hattiangadi and Siegmund [6] have applied the CZM approach to
analyze coupled thermo-mechanical deformations of composite
laminates with delamination cracks under a temperature gradient
loading. Klein et al. [7] used the CZM approach including a finite
material strength and the work of fracture to study failure of
brittle materials. Meshfree methods were used to adaptively insert
cohesive surfaces at locations where the potential crack based on
fracture mechanics considerations may initiate. Love and Batra
[11] have adopted a similar approach of adaptively introducing
cohesive surfaces at inter-element boundaries where fractures
may initiate based on the analysis of transient deformations of a
thermo-elasto-visco-plastic particulate composite.

Two different traction–separation relations, namely exponen-
tial and piecewise linear, were used by Li and Chandra [8] to study
crack initiation and crack growth resistance in elastic–plastic
materials. They concluded that the crack growth resistance
depends on the cohesive strength, the cohesive energy and the
shape of the traction–separation curve. Sorensen and Jacobsen [9]
used the J-integral based approach to determine the cohesive
relation for a unidirectional glass fiber-epoxy double cantilever
beam (DCB) laminate with uneven bending moments applied to
two segments of the DCB. They found that the mixed mode
cohesive stresses depend on the normal and the tangential crack
opening displacements. Zhang and Paulino [10] used the CZM to

study the fracture of functionally graded materials. They deli-
neated the effect of different material gradations on crack initia-
tion and propagation under mode I and mixed mode loading,
compared numerical results with the corresponding experimental
observations, and concluded that the CZM can be used to satis-
factorily analyze the fracture behavior of FGMs.

The meshless method using the moving least squares (MLS)
basis functions and the CZM has been used in [12] to simulate
mode I failure and delamination under quasistatic loading. Barbieri
and Meo [13] used the CZM and the reproducing kernel particle
method (RKPM) basis functions to study crack initiation and
propagation in composites. When using the MLS and the RKPM
basis functions to approximate a function f , the computation of
derivatives of f requires that the kernel function used to generate
basis functions be differentiable. However, this is not the case in
the SSPH basis functions. Zhang and Batra [14] have elaborated
upon differences between the SSPH, RKPM, MLS and FE basis
functions. In [15] we discussed the relative performance of the
MLS and the SSPH basis functions when analyzing crack initiation
and propagation problems in monolithic materials. Here we use
the CZM and the SSPH basis functions to study crack initiation and
propagation of adhesively bonded joints. Qian et al. [31] have
compared meshless methods with the FEM. A major advantage of
a meshless method over the FEM for crack propagation problems
is that a crack path is independent of the distribution of particles
in the domain whereas in the FEM it depends upon the mesh
design.

The rest of the paper is organized as follows. In Section 2 we
briefly summarize the approach and defer to the Appendix the
review of the SSPH basis functions, and a weak formulation of the
problem including cohesive segments used to simulate failure
initiation and propagation. Experimental work is briefly reviewed
in Section 3. In Section 4 the method of manufactured solutions is

Table 1
Comparison of the SSPH/MLPG method and the FEM for crack propagation in elasto-dynamic problems.

SSPH/MLPG FEM

Weak form Local Global
Data preparation effort Little Considerable
Basis functions Not necessarily polynomials Polynomials
Support of basis functions Compact Compact
Continuity of basis functions Continuously differentiable Normal derivatives discontinuous across element boundaries
Stresses and strains Good everywhere Good values at integration points
Integration rule Higher order (cannot be easily determined) Lower order (can be estimated)
Addition of nodes/particles Easy Involves considerable work
Information needed about
nodes

Locations Locations and element connectivity

Subdomains/elements Circular/rectangular, not necessarily disjoint Polygonal and disjoint
Crack paths Dictated by physics of the problem Generally along element boundaries
Stress singularities Need enriched basis functions Need enriched basis functions
Derivatives of basis functions Different basis functions for the trial solution and its

derivatives
Basis functions for derivatives derived by differentiating basis functions
for the trial solution

Satisfaction of essential
boundary conditions

Requires extra effort Easy to enforce

Mass and stiffness matrices Asymmetric, large band width, not necessarily positive
definite

Symmetric, banded, mass matrix positive definite, stiffness matrix
positive definite after enforcing essential boundary conditions

Sum of elements of mass matrix Not necessarily equal to the total mass of the body Equal to total mass of the body
Mass lumping Generally not used Generally used
Assembly of equations Not required Needed
Time step size for explicit
algorithms

Generally difficult (not possible unless the mass matrix is
diagonalized)

Relatively easy

Total strain energy of the body Difficult (because of overlapping domains used in the weak
formulation)

Easy

Deletion of failed regions Delineation of failed regions requires serious effort Relatively easy because of the assumption of element failure
Continuity conditions at
interfaces between two
materials

Requires using either the method of Lagrange multipliers,
jump function, or discontinuous basis functions

Relatively easy

Locking phenomenon for
constrained problems

No Yes

Implementation of CZM Requires some effort Easy
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used to verify the in-house developed code. Numerical results
obtained using this software for failure of pre-cracked DCB speci-
mens are compared with the corresponding experimental findings
in Section 4 to show dependence of the computed results upon
values of CZM parameters. In Section 5, we describe a technique to
find optimum values of CZM parameters. We use these values of
variables to analyze the failure of DCB specimens under a variety
of loading conditions in Section 6 and compare predictions from
the mathematical/computational model with the corresponding
experimental results. Conclusions of this work are summarized in
Section 7.

2. Approach

We numerically and experimentally study crack propagation in
an adhesively bonded joint, find optimum values of parameters in
the CZM relation, and compare computed results with the experi-
mental ones for different loading conditions. As suggested by a
referee, we refer the reader to the Appendix for the pertinent
equations, and have summarized in Table 1 differences between
the SSPH basis functions with the meshless local Petrov–Galerkin
formulation used here and the traditional FEM.

3. Experimental work

DCB specimens were prepared and tested to study the failure
behavior of adhesively bonded systems, and find mode I and mode
II fracture energies of the adhesive layer to be used in the
numerical work. By comparing the test findings with predictions
from simulations, we will validate the mathematical model of the
problem.

3.1. Standard DCB specimen

DCB specimen adherends consisted of rectangular aluminum
6061-T6511 bars with nominal dimensions of 305�25.4�
12.7 mm3, and having 6 mm diameter holes for loading pins
drilled 10 mm from one end of each adherend. The adherends
were abraded with #220 sandpapers, rinsed with de-ionized (DI)
water for 2 min, and then heated in an oven at 110 1C for 1 h to
remove moisture from their surfaces.

The adherends were chemically treated by placing them in 10%
(weight) NaOH solution for 10 min, rinsing with DI water for
2 min, placing them in HNO3:H2O¼1:1 (volume) until gray sur-
faces appeared white metallic to the naked eye. The adherends
were rinsed again with DI water for 2 minutes, and then placed in
an oven heated to 110 1C for an hour. A commercial epoxy adhesive
(J-B INDUSTRO-WELD structural adhesive, J-B Weld Company,
Sulfur Springs, TX 75483, USA) was used to bond the adherends.
The epoxy and hardener were mixed according to manufacturer's
specifications. For bonding after drying, two shims were placed at
the two ends to control bondline thickness at 0.3 mm. After
applying the adhesive, the two adherends were held with C-
clamps to maintain alignment. Each specimen was cured at room
temperature for 24 h, minimizing residual thermal stresses caused
from thermal effects of chemical reactions. The initial crack length
was created in the adhesive by conducting the pure mode I test (e.
g., see Fig. 1 below) and loads were released once the crack length
reached the setup value.

3.2. Fracture energy of DCB specimen

Testing of the specimens was conducted on a dual actuator load
frame described in Refs. [19,20]. The bonded end of the adherends

was clamped in a vise at the base, and actuators could indepen-
dently apply loads through clevises and loading pins attached to
the two arms at the debonded end of the specimen, allowing for
control of mode mixity. The fracture energy was calculated with
the corrected beam theory (CBT) [21,22] that includes corrections
to the measured crack length due to the transverse shear stress
and the beam root rotation at the crack tip and the clamping point.
Under the hypothesis of infinitesimal elastic deformations, stress
fields resulting from mixed mode loadings can be obtained by
linear superposition of the stress fields resulting from pure mode
I and pure mode II loadings. Therefore, loads applied on the
adherends in Fig. 1 can be partitioned into loads for mode I and
mode II components as follows:

FI ¼ ðF1þF2Þ=2;
FII ¼ ðF1�F2Þ=2; ð3:1Þ
where subscripts I and II denote mode I and II components,
respectively. Positive values of F1 and F2 imply, respectively, forces
acting on the top and the bottom adherends as shown in Fig. 1, and
δ1 and δ2 represent the applied displacement on the top and
bottom adherends, respectively. The mode I component of the
applied strain energy release rate (SERR, or GI) is calculated by
using the equation [21]:

GI ¼
F2I ðaþΔÞ2

BEI
;

I ¼ 1
12

Bh3; ð3:2Þ

where a is the observed crack length, B is the width of the
adherend, E and h are, respectively, Young's modulus of the
adherend material and the thickness of one adherend, Δ is
the correction to the crack length calculated from the negative
intercept of the plot of C1=3 versus the crack length in the mode I
test as shown in Fig. 2; here C (compliance)¼δ=F I. The crosshead
displacement rate is set at 0.1 mm/min for a quasi-static analysis.

The mode II component of the SERR is given by [22]:

GII ¼
9F2IIðaþ0:42ΔÞ2

EB2h3
; ð3:3Þ

Adherend

Adherend

Adhesive

1,F1

Adherend

Adherend

Adhesive

(F1 + F2)/2,
( 1 + 2)/2

Adherend

Adherend

Adhesive

(F1  F2)/2,
( 1 2)/2

=

+

H/2

a

2,F2 L
x

y

Fig. 1. Splitting of loads into pure mode I and mode II deformations of the DCB
specimen.
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The mode mixity angle, Ψ , is defined as

Ψ ¼ tan �1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GII=GI

p
Þ: ð3:4Þ

Five, three and two specimens were tested, respectively, in
mode I, mode II and mixed mode loadings. (Though testing
additional specimens could have provided more confidence in
the results obtained, results for each group of specimens ranged
from 710% to 714%, which was deemed to be typical of fracture
results.) Cracks in the adhesive propagated stably in all of these
specimens. From experimental values of FI , FII and a, fracture
energy values at different mode mixity angles were calculated
from Eqs. (3.2–3.4). Experimental and computational results are
discussed in Sections 5 and 6.

4. Verification of the codes for numerical simulation

4.1. Verification of the code by the method of manufactured solutions

The method of manufactured solutions [23,24] is used to verify the
in-house developed code. Consider plane strain deformations of a
cantilever-like beam of length L¼ 10 mm and H¼ 1:0 mm, and made
of a homogeneous and isotropic linear elastic material having
E¼ 1:0 MPa, and υ¼ 0:3. We arbitrarily choose the following dis-
placement field (any other smooth displacement field will be fine too):

u1 ¼ �0:01 x2�
H
2

� �
½3x1ð2L�x1Þþx2ðx2�HÞ�ex1=10L;

u2 ¼ 0:005 x21ð3L�x1ÞþðL�x1Þ x2�
H
2

� �2

þH2x1

" #
ex1=10L: ð4:1Þ

Note that for the displacement field (4.1) u1 and u2 vanish only at the
point (0, H/2) and not on the entire edge x1¼0. Furthermore, stresses
derived from Eq. (4.1) and Hooke's law do not give null tangential
tractions on the top and the bottom surfaces of the beam. Using these
displacements we find the stress field from Eqs. (A.24) and (A.26) and
the body force from Eq. (A.18) required to satisfy the balance of linear
momentum. With surface tractions on the top, bottom and right
surfaces found from the stress field, essential boundary conditions on
the left surface and computed values of body force as input into the
code, the problem is numerically solved with the developed code. The
computed displacements and stresses are compared with the assumed
analytical displacements defined by Eq. (4.1) and stresses derived
from them.

For generating SSPH basis functions, the Gauss weight function
and the radius of the compact support of the weight function
associated with a particle equal to four times the smallest distance
of the particle from its nearest neighbor and complete polynomials
of degree two for generating SSPH basis functions were found to
give reasonably accurate results in [15] and are used in this work.
Integrals on Ω appearing in Eq. (A.29) are evaluated by using
the 9�9 Gauss integration rule and those on Γ by employing
the 9 Gauss point integration rule. Three different particle

distributions placed in uniform rectangular grids of 11�9, 21�9
and 21�11 are used for analyzing the boundary-value problem
described above.

The computed displacement and stress fields are compared
with the corresponding analytical ones in Fig. 3. It is clear that the
converged numerical results agree well with the corresponding
analytical solutions.

4.2. Verification of implementation of the CZM

In order to verify that the CZM has been accurately implemen-
ted in the computer code, we have analyzed a rather simple

Fig. 2. Plot of C1=3 vs. the crack length.
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problem schematically depicted in Fig. 4. Two flat adherend beams
bonded together with an adhesive layer and subjected to normal
and tangential loads are assumed to undergo plane strain defor-
mations by applying surface tractions to their bounding surfaces as
shown in Fig. 4. Values of material parameters are E¼1 TPa
(3 GPa), ν¼0.33 (0.3) for the adherend (adhesive). The CZM
parameters for mode I and mode II are: initial stiffness¼1 GPa/
mm and critical stress¼5 MPa, GIc¼0.05 J/m2, GIIc¼0.1 J/m2. Thus
adherends are assumed to be essentially rigid to focus on the
predictions of the CZM model. Boundary conditions are: the
bottom surface is rigidly clamped and displacements, δn and δt ,
are applied on the top surface for normal and tangential loading
conditions, respectively.

Uniformly distributed 200�200 and 1000�50 particles are
placed in each adherend and the adhesive, respectively, and the
distance between adjacent particles on the cohesive segment is
0.01 mm. Computed reactions per unit surface area of the cohesive
segment against the relative displacements for mode I deforma-
tions are compared in Fig. 5 with the corresponding analytical
values. Similar results obtained for mode II deformations are not
shown here. It is clear that the two sets of values agree well with
each other; the maximum relative errors are 0.0041% and 0.0063%
for mode I and mode II deformations, respectively.

4.3. Comparison of computed and experimental results
for mode I loading

A schematic sketch of the plane strain problem studied is
shown in Fig. 1 and the specimen is loaded by incrementing
δ1¼δ2. We analyze the problem experimentally studied by Pirondi
et al. [25] and numerically by Alfano et al. [26] using the FEM in
order to show that the SSPH method gives results identical to
those given by the FEM; the fracture parameters assumed for this
problem are taken from their work. We set L¼120 mm, H/
2¼10 mm and the starter crack length a¼40 mm, E¼ 70 GPa,

and υ¼ 0:30 for the adherend material. Values assigned to the
CZM parameters are the same as those used in [26]; i.e., fracture
energy GIc ¼ 550 J=m2 and critical cohesive stress τIcr ¼ 3:5 MPa.
The effect of adhesive thickness is neglected in the simulations,
i.e., the two adherends are tied together and the cohesive zone
segments are placed at the interface. For particles uniformly
distributed in the domain, dx and dy equaling the distance
between adjacent particles in the adherends along x and y
directions, respectively, and dxc equal to the distance between
adjacent particles on the interface between the two adherends,
results were computed for (dx,dy,dxc)¼(1,1,0.1), (0.5,1,0.05),
(0.5,1,0.010). For three different particle distributions the com-
puted load–displacement curves (not shown here) overlapped
each other signifying that computed results are essentially the
same for the three particle distributions.

In Fig. 6, the presently computed load–displacement curve for
particle distribution 3 is compared with that obtained experimentally
by Pirondi et al. [25] and also with that computed by Alfano et al. [26]
using the FEM. It can be observed that the presently computed results
are very close to the experimental ones and also agree well with those
of Alfano et al. Differences in the two numerically predicted peak loads
and the experimental one of 1290 N are 3.1% and 6.7% for themeshless
and the FE methods, respectively. Differences in the crosshead
displacement at which peak loads occur are 8.8% and 2.9% for the
meshless and the FE methods. Since Alfano et al. [26] did not report
that their results are fully converged with respect to the FE mesh used,
it is difficult to pin point reasons for differences between numerical
results obtained by the FE and the SSPH methods.

5. Determination of optimum values of CZM parameters

5.1. Mode I deformations

Recalling that values of the peak surface traction τIcr and the
initial stiffness KI

0 of the traction–separation relation in the CZM
affect computed results whereas the area under the traction–
separation curve is fixed by the experimental value of the critical
SERR, we now describe an algorithm for finding optimum values of
τIcr . We note that the area under the traction–separation relation
(i.e., the critical SERR) is determined from the test data and is a
material dependent property. Thus it is not used when finding
optimum values of parameters for the CZM. We analyze the plane
strain boundary value problem for the DCB specimen tested in our
laboratory. Values of material properties for the adherend and the
adhesive layer taken from manufacturer's website are: E¼ 70 GPa
and υ¼ 0:33 for the adherend; E¼ 3:0 GPa, and υ¼ 0:30 for the
adhesive. The value of mode I fracture energy, GIc , found from

Adherend

Adherend Adhesive

L=100 mm

Cohesive segmentsH

h=0.5 mmH=10 mm

Fig. 4. Schematic sketch of the DCB problem analyzed to verify implementation of
the CZM.
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Eq. (3.2) and the experimental data is 466.3 J/m2. As was done in
experiments, the specimen is deformed by prescribing the vertical
displacement, δ1 and δ2, on the top and the bottom adherends,
respectively. Although not shown, plots of GIc from all the five
specimens vs. crack length were relatively flat and the variation is
within 710% of the mean value used herein.

The distribution of particles and the geometry of the initial
crack tip with initial crack opening displacement of 0.02 mm are
exhibited in Fig. 7. The conical crack-tip exhibited in Fig. 7 is an
artifact of joining adjacent particles by straight lines. In the SSPH
formulation, particles are not connected with each other, thus the
crack-tip is not as sharp as that exhibited in Fig. 7. Results are
computed for three particle distributions listed in Table 2.

The central composite design technique described in [27] is
used to find optimal values of the cohesive parameters in the CZM
by assuming a second order relation (a complete polynomial of
degree 2).

Y ¼ β0þβ1X1þβ2X2þβ3X
2
1þβ4X

2
2þβ5X1X2; ð5:1Þ

where coefficients β0, β1…β5 are to be determined, and Xi is the

design variable and Y is the objective function. We take

Y ¼ λ ~Ef þð1�λÞ ~Ep

¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
ððf iexp� f inumÞÞ2

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
ðf iexpÞ2

s !
þð1�λÞ ðPexp�PnumÞ

Pexp

����
����

ð5:2Þ
where f is the load at a given displacement, P is the maximum
load, n equals the number of values of displacements where the
load is evaluated, and λ, 0rλr1, is the weight assigned to ~Ef in
Eq. (5.2). Subscripts “exp” and “num” on f denote its values from
the experimental data and the numerical results, respectively. The
objective function, Y, is composed of two parts: the relative
difference in the experimental and the computed values of loads
for n values of displacements, ~Ef , and the relative difference in
peak values of the experimental and the computed loads, ~Ep, as
shown in Fig. 8.

For n¼ 100, computed values of CZM parameters for λ¼0,
0.5 and 1 are listed in Table 3. For λ¼0.5, we have given in Table 4
values of ~Ef and ~Ep for mode I loading with three different particle
distributions listed in Table 2. As expected values of ~Ef and ~Ep

decrease monotonically with a decrease in the distance between
adjacent particles in x and y directions. For λ¼0, 0.5 and 1, the
computed load–displacement curves are compared with the
experimental ones for pure mode I loading in Fig. 9. For λ¼0,
0.5 and 1, differences in the computed and the experimental peak
loads equal, respectively, 0.9%, 1.24% and 5.21%. Thus the error in
the computed peak load can be minimized by setting λ¼0.
However, then the error in the computed and the experimental
peak loads for mixed mode deformations may not be minimized.

Adherend layer

Adherend layer

Initial crack

Adhesive layer

Cohesive segment

Initial crack tip

=0.02 mm

Fig. 7. Distribution of particles in the DCB specimen and the geometry of the initial crack.

Table 2
Values in mm of dx, dy in the adherend and the adhesive and dx in the cohesive
segment.

Particle distribution Adherend Adhesive Cohesive segment

1 4, 2 0.10, 0.10 0.10
2 2, 1 0.05, 0.05 0.05
3 2, 1 0.02, 0.03 0.01
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We suggest that one take λ¼0.5. For λ¼0.5, the response surface,
i.e., Y as a function of the critical cohesive stress and the initial
interface stiffness, is shown in Fig. 10. The function has the
minimum value when τIcr ¼ 11:6 MPa; KI

0 ¼ 2940 MPa=mm for
mode I deformations.

5.2. Mode II deformations

The approach outlined in subsection 5.1 to find optimum values
of τIIcr and KII

0 gave inappropriate values of these variables. We set

KII
0 ¼ 1105 MPa/mm which equals the adhesive shear modulus/

adhesive thickness, and found τIIcr ¼ 40:0 MPa by minimizing ~Ef for
the nearly linear part of load–displacement curves. The best fit
traction value in shear is considerably higher than that obtained
for mode I, a somewhat surprising result if these terms were
directly related to yield phenomenon, though others have shown
poor correlations of these fitted peak tractions with other physical
properties [32]. Recognizing the much higher fracture energy in
shear and the noted susceptibility of adhesive bonds to peel
stresses, this difference may be appropriate. GIIc ¼ 1897 N=m is
found by averaging the values found by using Eq. (3.3) and the
data for the three tests. For these values of τIIcr and KII

0 the
computed load–displacement curve is compared with the experi-
mental ones in Fig. 11. In the experimental results, the load
monotonically increases whereas in numerical simulations it
attains a peak value. These differences could be due to (i) the
poor reproducibility of test values of GIIc [28], (ii) neglecting in the
numerical work friction at the crack surfaces, (iii) the adhesive
stress–strain curve not obeying Hooke's law, (iv) the adhesive not
being a homogeneous material, and (v) damage mechanisms such
as the initiation and propagation of inclined microcracks [29] not
considered in the mathematical model. We note that Ameli et al.
[30] used the FEM to study the plastic zone evolution with crack
growth.

fexp-fnum

peak load difference

Fig. 8. The load–displacement curves for experimental and simulation results for
mode I loading.

Table 3
For λ¼0, 0.5 and 1.0, optimum values of the CZM parameters for mode I
deformations.

λ τIcr (MPa) KI
0 (MPa/mm)

0.0 10.8 3058
0.5 11.6 2940
1.0 9.2 3024

Table 4
For three different particle distributions, values of ~Ef and ~Ep for mode I loading.

Particle distribution ~Ef
~Ep

1 0.116 0.018
2 0.108 0.015
3 0.103 0.012
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Fig. 9. For three values of the weight λ, load vs. displacement curves for pure mode
I loading.

Fig. 10. Variation of the objective function Y with the critical cohesive stress and
the initial interface stiffness for mode I loading.
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Fig. 11. Experimental and numerical computed load vs. displacement curves for
mode II loading.
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6. Comparison of numerical and test results for mode I and
mixed mode deformations

6.1. Mode I deformations

Three DCB specimens with the same geometry as that
mentioned in Subsection 5.1, but different crack length
a¼80 mm, were tested in mode I loading. The numerically
predicted load–displacement curves using the optimal mode I
CZM parameters are shown in Fig. 12 along with the experi-
mental ones. It is evident that for all three tests there is good
agreement between numerical and experimental results with
the maximum difference between the computed and the mea-
sured peak loads less than 7.0%. In Fig. 13, we have compared the
computed load vs. the crack length with the corresponding
experimental results. The close agreement between the two sets
of results implies that the failure behavior of the DCB specimen
under mode I loading is accurately described by the proposed
mathematical and computational model. The variation with the
crack length of the computed T-stress at the point 0.01 mm
away from the crack tip [15,30] exhibited in Fig. 14 reveals
that the T-stress increases as the crack propagates. Negative
values of the T-stress imply stable crack growth as observed in
experiments.

6.2. Mixed mode deformations

Three DCB specimens were tested under mixed mode loading
with the applied displacement ratio R¼Δδ1/Δδ2 where Δδ1 and
Δδ2 equal increments in δ1 and δ2, respectively. Using Eqs. (3.2–3.4),
we find that the mode mixity angle, Ψ , varies approximately from
20 3 to 75 3 as the crack propagates; e.g. see Table 5.

The experimental and the computed load–displacement curves for
the top adherend are compared in Fig. 15. It is clear that the computed
peak failure load agrees well with the experimental one with the
largest relative error in the peak load of 2.8%. However, subsequent to
the peak load, the difference between the numerical and the experi-
mental loads increases with an increase in the mode mixity angle.
Using Eq. (A.14), the total fracture energy can be expressed as

Gtotal ¼ GIþGII ¼ ½ð1�αÞ=GIcþðαÞ=GIIc��1; ð6:1Þ
where α¼ tan 2ðΨ Þ=½1þ tan 2ðΨ Þ�.

Fig. 16 shows the experimental discrete data of the total fracture
energy versus the mode mixity angle, Ψ , and the plot of Eq. (6.1). In
the range of 151oΨo551, the failure criterion (A.14) (or Eq. (6.1))
successfully describes the experimental observations. For 551o
Ψo801, deviations between values from Eq. (A.14) and the experi-
mental data increase rapidly with an increase in Ψ . Thus, for the
adhesive studied herein, the failure criterion given by Eq. (A.14) can be
successfully applied to simulate the failure behavior of the DCB
specimen for Ψo551. Since the values of fracture energy increase
with the growth of crack length in tests with high mode mixity angles,
this model underestimates the fracture energy for Ψ4551. Attempts
to increase the value of GIIc , though producing better agreement at
large mode mixity angles, resulted in poorer fit at intermediate angles,
where we have the greatest confidence in the experimental data.
Obtaining meaningful mode II fracture energies for tougher adhesives
is complicated by the large plastic zones that may be induced, as
recently noted by Blackman et al. [33], so less emphasis has been
placed on obtaining model agreement for large mode mixity angles.

The computed T-stress and the mode mixity angle plotted in
Fig. 17 against the crack length suggest that that the value of the

0

100

200

300

400

500

600

700

800

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Lo
ad

 (N
)

Crosshead displacement, (mm)

Mode I-Exp

Numerical simulation

Fig. 12. Comparison of the computed and experimental (3 specimens) load–
displacement curves under mode I loading.
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Fig. 13. Comparison of the computed and the experimental load vs. crack length for
the DCB specimen under mode I loading.
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Fig. 14. For mode I deformations of the DCB specimen variation of the computed
T-stress with the crack length.

Table 5
Values of the initial crack length and the displacement ratio R for DCB specimens
deformed under mixed mode loading.

Experiment Initial crack
length (mm)

R Mode mixity angle
range (degree)

MM-Exp01 80 �2.0 20–40
MM-Exp02 130 �2.0 35–55
MM-Exp03 80 �1.3 50–75
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T-stress increases with an increase in the mode mixity angle
implying that the crack may become unstable for large values ofΨ.

7. Conclusions

We have computationally and experimentally studied static
deformations of DCB specimens under mode I, mode II and mixed
mode loading. The experimental work has employed a unique dual
force actuator that enables continuous variation of the mode-
mixity angle. The computational work based on meshless method

has used symmetric smooth particle hydrodynamics (SSPH) basis
functions. A jump function has been used to ensure continuity of
surface tractions across an interface between two different mate-
rials, and the CZM has been implemented to simulate crack
initiation and propagation. The developed software has been
verified by the method of manufactured solutions. Values of the
CZM parameters for mode I deformations have been determined
through a composite design technique that minimizes an objective
function.

The computed load–displacement curves for DCB specimens
deformed in mode I have been found to agree well with the
corresponding test findings with the maximum difference
between the computed and the experimental peak loads being
less than 7%. Furthermore, computed values of the T-stress
ahead of the crack tip imply stable crack growth which is
consistent with test results.

For mode II deformations the strain energy release rate (SERR)
found from experimental results increases with an increase in the
crack length. However, in computational work we have used a
constant value of the critical SERR. The computed results for
mixed mode deformations have been found to be close to the
corresponding experimental ones only for the mode mixity angle
less than 50o. Computed values of the T-stress monotonically
increase with an increase in the mode mixity angle implying that
a crack may become unstable for high values of the mode
mixity angle.
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Fig. 15. Experimental and numerically computed load–displacement curves for the
top adherend for (a) R¼�2, initial crack length¼80 mm, (b) R¼�2, initial crack
length¼130 mm, and (c) R¼�1.3, initial crack length¼80 mm.
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Appendix

A.1 Symmetric smoothed particle hydrodynamics (SSPH) basis
functions

The value of function f ðxÞ having continuous derivatives up to
(mþ1) order at a point ξ¼ ðξ1; ξ2; ξ3Þ in the domain of definition
of f ðxÞ can be approximated in terms of values of f ðxÞ and of its
derivatives at the point x¼ ðx1; x2; x3Þ by the following finite Taylor
series:

f ðξÞ ¼ ∑
m

k ¼ 0

1
k!

ðξ1�x1Þ
∂
∂x1

þðξ2�x2Þ
∂
∂x2

þðξ3�x3Þ
∂
∂x3

� �k
f ðxÞ: ðA:1Þ

Eq. (A.1) can be viewed as expressing f ðξÞ in terms of complete
polynomials of order m in ξ. Here we set m¼2, and rewrite
Eq. (A.1) in terms of matrices Pðξ;xÞ and Q ðxÞ as
f ðξÞ ¼ Pðξ; xÞQ ðxÞ; ðA:2Þ
where

Pðξ; xÞ ¼ ½1; ξ1�x1; ξ2�x2; ξ3�x3; ðξ1�x1Þ2;
ðξ2�x2Þ2; ðξ3�x3Þ2; ðξ1�x1Þðξ2�x2Þ;
ðξ2�x2Þðξ3�x3Þ; ðξ3�x3Þðξ1�x1Þ�;

Q ðxÞ ¼ ½f ðxÞ; ∂f ðxÞ
∂x1

;
∂f ðxÞ
∂x2

;
∂f ðxÞ
∂x3

;
1
2
∂2f ðxÞ
∂x21

;
1
2
∂2f ðxÞ
∂x22

;
1
2
∂2f ðxÞ
∂x23

;

∂2f ðxÞ
∂x1∂x2

;
∂2f ðxÞ
∂x2∂x3

;
∂2f ðxÞ
∂x3∂x1

�:

Elements of matrix Q ðxÞ, i.e., the function f ðxÞ as well as its first
and second derivatives, are unknowns to be found. Elements of
matrix Pðξ; xÞ are known and are complete polynomials of degree
2. In order to find elements of matrix Q ðxÞ, we premultiply both
sides of Eq. (A.2) with Wðξ; xÞPðξ; xÞT and obtain

Wðξ; xÞPT ðξ; xÞf ðξÞ ¼Wðξ;xÞPT ðξ; xÞPðξ; xÞQ ðxÞ;
¼ ½PT ðξ; xÞWðξ; xÞPðξ; xÞ�Q ðxÞ; ðA:3Þ

where Wðξ; xÞ is a weight function of compact support associated
with particle x as shown in Fig. A1. Let there be NðxÞ particles in
the compact support of Wðξ; xÞ. Eq. (A.3) is evaluated at every
particle I in the compact support of Wðξ; xÞ, and summed to obtain

∑
NðxÞ

I ¼ 1
f ðξIÞWðξI; xÞPðξI; xÞ ¼ ∑

NðxÞ

I ¼ 1
½PT ðξI; xÞWðξI;xÞPðξI; xÞ�Q ðxÞ; ðA:4Þ

where ξI denotes coordinates of the Ith particle. We set

Hðξ; xÞ ¼ ½PT ðξ1; xÞ;PT ðξ2; xÞ;…;PT ðξNðxÞ; xÞ�;

Wðξ; xÞ ¼

Wðξ1; xÞ 0 ⋯ 0

0 Wðξ2;xÞ ⋯ ⋮
⋮ 0 ⋱ 0
0 0 ⋯ WðξNðxÞ; xÞ

2
666664

3
777775;

FT ðξÞ ¼ ½f ðξ1Þ; f ðξ2Þ;…; f ðξNðxÞÞ�:

Thus, Eq. (A.4) can be written as

Cðξ;xÞQ ðxÞ ¼Dðξ; xÞFðξÞ; ðA:5Þ
where

Cðξ;xÞ ¼Hðξ; xÞWðξ; xÞHT ðξ; xÞ; Dðξ; xÞ ¼Hðξ; xÞWðξ; xÞ: ðA:6Þ
In Eqs. (A.5) and (A.6), values of elements of matrices Hðξ; xÞ,

Wðξ; xÞ and FðξÞ depend upon coordinates, the weight function,
and on values of the function f ðxÞ at all particles in the compact
support of Wðξ; xÞ. Thus Q ðxÞ can be found from Eq. (A.5) by
inverting Cðξ; xÞ: That is,
Q ðxÞ ¼ Kðξ; xÞFðξÞ; ðA:7Þ
where Kðξ; xÞ ¼ ½Cðξ;xÞ��1Dðξ; xÞ: The sufficient condition for
matrix Cðξ; xÞ to be invertible is that the number, NðxÞ, of particles
in the compact support of Wðξ; xÞ be at least equal to the number
of unknowns in matrix Q ðxÞ. The first two rows and the fifth row
of elements of the matrix Q ðxÞ can be written explicitly as

f ðxÞ ¼ ∑
NðxÞ

i ¼ 1
K1iFi;

∂f ðxÞ
∂x1

¼ ∑
NðxÞ

i ¼ 1
K2iFi;

∂2f ðxÞ
∂x21

¼ ∑
NðxÞ

i ¼ 1
2K5iFi: ðA:8Þ

In the FE terminology, functions K1i, K2i and 2K5i are shape
functions for f ðxÞ, ∂f ðxÞ=∂x1 and ∂2f ðxÞ=∂x21, respectively. We note
that K2ia∂K1i=∂x1 and 2K5ia∂K2i=∂x1. That is, K2i is not obtained
by differentiating K1i with respect to x1.

A.2 Cohesive zone model (CZM)

The CZM model describes a traction–separation law which
relates the cohesive stress τ and the displacement jump ν between
abutting particles of the cohesive segment. Problems studied
herein involve monotonic loading, and plane strain (2-D) deforma-
tions. Accordingly, we discuss the traction–separation relation
only for monotonic loading. We assume this relation to be linear
until the relevant stress component (i.e., either the normal stress,
τI , or the tangential stress, τII) on the cohesive segment reaches its
maximum value and subsequently an affine relation till this stress
decreases to zero; e.g., see Fig. A2. For pure mode I and mode II

x=(x1,x2,x3)

=( 1, 2, 3)

Fig. A1. Distribution of particles in the compact support of Wðξ; xÞ associated with
point x.
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Fig. A2. Traction–separation law used for the CZM.
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deformations the traction–separation relation can be written as

τ¼ SðvÞv; ðA:9Þ
where

τ¼ τI 0
0 τII

" #
; S ¼ S0

IðvIÞ 0
0 S0

IIðvIIÞ

" #
; v¼ vI 0

0 vII

" #
;

τi is the cohesive stress component and vi is the relative displace-
ment between initially abutting particles for mode iði¼ I; IIÞ. SIðvIÞ
and SIIðvIIÞ are, respectively, the interface stiffnesses of modes I and
II. It is postulated that the cohesive segment begins to weaken or
the damage initiates when the jump in the appropriate component
of displacements of the two adjoining points reaches the critical
value, vi0ði¼ I; IIÞ. Subsequently, until the jump in vi equals vif , a
softening law is assumed in the sense that the relative traction
between the two surfaces affinely decreases with an increase in the
relative displacement until it becomes zero for vi ¼ vif when the two
layers either separate from or slide over each other. The relation
between τi and vi is expressed by piece-wise continuous functions
listed in Eq. (A.10).

Si0ðviÞ ¼

τicr
vi0
; 0rvirvi0;

τicr
vi0

vif =v
i �1

vi
f
=vi0 �1

� �
vi0rvirvif ;

0 vi4vif :

8>>>>><
>>>>>:

ðA:10Þ

For vi0rvirvif , Eq. (A.10) can be written as

τi ¼ τicr
vif �vi0

ðvif �viÞ ðA:11Þ

and is thus a polynomial of degree 1 in vi.
The area under the entire traction–separation curve equals the

critical fracture energy, i.e.,

Gic ¼
1
2
τicrv

i
f ; ðA:12Þ

where τicr and vif ði¼ I; IIÞ are, respectively, the critical cohesive
stress and the critical displacement jump, respectively, for mode I
and mode II, and GIc and GIIc are, respectively, the fracture energies
for mode I and mode II.

For mixed mode loading, damage is assumed to initiate when
the following criterion quadratic in stresses is satisfied [16].

τI

τIcr

� �2

þ τII

τIIcr

� �2

¼ 1; τI40: ðA:13Þ

If τIr0 then there is no mode I and hence no mixed mode failure.
We note that the separation between the two layers occurs only
when the normal traction between the two contacting surfaces is
tensile; otherwise one layer can slide over the other. Crack growth
is simulated by using the following criterion between the energy

release rates and their respective fracture energies:

GI

GIc
þ GII

GIIc
¼ 1; τI40: ðA:14Þ

For monotonically increasing values of vi, GI and GII are given by
Eq. (A.15). That is, the energy release rate in each mode equals the
area under the corresponding traction–separation curve. When
Eq. (A.14) is satisfied, the crack surfaces are assumed to have fully
developed. For τI40 preceding this instant, the adjoining surfaces
separate from each other and τI and τII are set equal to zero.

Gi ¼
1
2 τ

ivi virvi0
1
2½τicrvi0þðτiþτicrÞðvi�vi0Þ� vi0ovirvif

8<
: ði¼ I; IIÞ: ðA:15Þ

As mentioned above, problems analyzed in this work involve
monotonic loading. Thus further discussion of computing GI and
GIIfor any value of τI and τII during unloading and reloading is not
provided. For values of τI and τII corresponding to point C in Fig.
A2,Gi equal area OACE.

We note that the above description of the CZM is with respect
to local coordinates. Thus surface tractions and displacements will
need to be converted from global to local coordinates and vice
versa for proper implementation of the CZM.

A.3 Modeling discontinuity at the interface between two materials by
using jump function

A characteristic of basis functions in a meshless method is that
the trial solution and its spatial derivatives are generally contin-
uous everywhere in the domain. Thus the satisfaction of continuity
of surface tractions at the interface between two distinct materials
of the body (e.g., a composite, a bonded joint) requires special
treatment such as either the method of Lagrange multipliers or the
introduction of a jump function [17] or a technique to generate
discontinuous MLS basis function. For 1-D heat conduction and
wave propagation problems, Batra et al. [18,34] have shown that
these methods give essentially identical solutions. Here we intro-
duce a jump function defined at points on the interface AB
between two regions Ω1 and Ω2 composed of different materials;
e.g., see Fig. A3. Particles in regions Ω1 and Ω2 are denoted by
open and filled circles, respectively, and those on the interface AB
by open squares. We denote the distance of a point from the
interface by r as shown in Fig. A3, and approximate function f (e.g.,
a displacement component) at point P near the interface by

f ðxÞ ¼ ∑
NðxÞ

i ¼ 1
K1iFiþ

s
l
qDþ 1�s

l

� 	
qC

h i
γðrÞ ðA:16Þ

where parameter s equals the length of the arc CE, l the length of
the 2-node element CD, and γðrÞ is the jump function. The
distance, r, in Eq. (A.16) is taken positive for particles on one side
of the interface and negative for particles on the other side of the
interface. For example, r for point P is negative while r for point Q
is positive in Fig. A3. The jump function, γðrÞ, is given by

γðrÞ ¼
�1

6
jrj
dm

� 	3
þ1

2
jrj
dm

� 	2
�1

2
jrj
dm

� 	
þ1

6;
jrj
dm
r1

0; jrj
dm
41

8><
>: ðA:17Þ

where dm is a preassigned real number. Plots of the jump function
and its derivative are shown in Fig. A4. One finds values of qC and
qD as a part of the solution of the boundary-value problem. Only
those particles inΩ1 andΩ2 whose distance from the interface AB
is less than dm contribute to the discontinuity in the normal
derivative of f in Eq. (A.16). Numerical experiments suggest that a
good value of dm is four times the distance between adjacent
particles in Ω1 and Ω2 near the interface AB.
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Fig. A3. Interface AB between domains Ω1 and Ω2 of different materials, particles
in Ω1 and Ω2, and the definition of r.
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A.4 Governing equations

The balance of linear momentum, in rectangular Cartesian
coordinates, for static 2-D deformations of a body occupying the
domain Ω is

sij;jþbi ¼ 0; xAΩ; i¼ 1;2; ðA:18Þ

where sij is the Cauchy stress, bi is the body force per unit volume,
a comma followed by index i denotes partial differentiation with
respect to xi, and a repeated index implies summation over the
range of the index. For simplicity, we write boundary conditions as

ui ¼ ui; xAΓu ; ðA:19Þ

sijnt
j ¼ ti; xAΓt ; ðA:20Þ

sijnc
j ¼ τiðviÞ; xAΓc ; ðA:21Þ

viðxÞ ¼ uiΩ1
ðxÞ�uiΩ2

ðxÞ; xAΓc : ðA:22Þ

Eqs. (A.19) and (A.20) are essential and natural boundary condi-
tions, respectively, ui (ti) is the prescribed displacement (traction)
on the boundary Γu(Γt), nt

j (n
c
j ) is the unit outward normal vector

to the boundary Γt(Γc), and τiðviÞ the surface traction on the
cohesive segment Γc where tractions depend on the displacement
jump, vi; e.g., see Fig. A5.

We introduce local rectangular Cartesian coordinate axes x1, x2
with the x1-axis aligned along Γc as shown in Fig. A6. For the relative
displacement, vi, in Eqs. (A.10) and (A.11) with respect to axes x1 and
x2, we get

v¼
v1
v2

" #
¼ cos θ sin θ

� sin θ cos θ

" #
uc1
1 �uc2

1

uc1
2 �uc2

2

" #
: ðA:23Þ

Here θ is the angle between x1- and x1-coordinate axes.
Tractions from the traction–separation relation are first com-

puted with respect to xi-coordinate axes and then transformed to
the global coordinate axes.

The constitutive equation for 2-D deformations of a linear
elastic homogeneous and isotropic material can be written as

r¼Dε; ðA:24Þ

where D is the matrix of elastic constants and ε is the strain tensor
corresponding to infinitesimal deformations. The 3�3 matrix D is
given by

D¼ E'

1�υ'2

1 υ' 0
υ' 1 0
0 0 ð1�υ'Þ=2

2
64

3
75; ðA:25Þ

where E'¼ E=ð1�υ2Þ, υ'¼ υ=ð1�υÞ for plane strain, and E'¼ E,
υ'¼ υ for plane stress deformations; E is Young's modulus and υ is
Poisson's ratio.

The strain–displacement relation is

ε¼ Lu; ðA:26Þ

where

ε¼
ε11
ε22
2ε12

2
64

3
75; u¼

u1

u2

" #
; L ¼

∂
∂x1

0

0 ∂
∂x2

∂
∂x2

∂
∂x1

2
664

3
775; ðA:27Þ

and u is the displacement vector. Substitution for ε from Eq. (A.27)
into Eq. (A.24) and the result into Eq. (A.18) gives coupled partial
differential equations for u1 and u2 that are to be solved under
boundary conditions (A.19–A.22).
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Fig. A4. Plot of the jump function and its derivative.
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Since the SSPH basis functions for spatial derivatives of a
function are different from those for the function, we have

LuI ¼ ∑
N

J ¼ 1

KI
2J 0

0 KI
3J

KI
3J KI

2J

2
6664

3
7775

ûJ
1

ûJ
2

2
4

3
5

8>>><
>>>:

9>>>=
>>>;

ðA:28Þ

where ûJ
1 is the ficticious nodal displacement of node J in the x1-

direction.

A.5 Weak formulation of the problem

The meshless local Petrov–Galerkin (MLPG) formulation is used
to find an approximate solution of the above formulated
boundary-value problem. For particle I with coordinates xIi the
weak form incorporating essential boundary conditions satisfied
by the penalty method can be written as (e.g., see [15]).R
Ω1

WI
i;jsij dΩþRΩ2

WI
i;jsij dΩþα

R
Γu1

WI
iui dΓþα

R
Γu2

WI
iui dΓ�Z

Γu1

WI
isijnj dΓ�

Z
Γu2

WI
isijnj dΓþ

Z
Γc

WI
iτiðviÞdΓ ¼

Z
Γt1

WI
iti dΓþZ

Γt2

WI
iti dΓþα

Z
Γu1

WI
iui dΓþα

Z
Γu2

WI
iui dΓþ

Z
Ω1

WI
ibi dΩ

þ
Z
Ω2

WI
ibi dΩ; ðA:29Þ

where WI
i is a test function associated with point xIi and α is a

penalty parameter. Here Γc is common to Ω1 and Ω2,
Γt1;Γu1AΩ1 and Γt2;Γu2AΩ2. For simplicity, α is taken to be
the same for every particle on Γu1 and Γu2. However, it could have
been taken to be function of xi.

For approximating the displacement field at the interface Γc ,
we place particles such that particles on Γc and in domain Ω1 and
Ω2 are along the normal to Γc . Thus s¼ 0 in Eq. (A.16), and

u1ðxÞ ¼ ∑
N

J ¼ 1
K1J û

J
1þq1γðrÞ;

u2ðxÞ ¼ ∑
N

J ¼ 1
K1J û

J
2þq2γðrÞ; ðA:30Þ

where q1 and q2 are amplitudes of the jump function. Using Eqs.
(A.24) and (A.26) the continuity of surface tractions on the inter-
face give the following equation for finding q1 and q2.

q¼
q1
q2

( )
¼ ∑

N

J ¼ 1
½A��1½BJ �

ûJ
1

ûJ
2

2
4

3
5

8<
:

9=
;¼ ∑

N

J ¼ 1
½qJ �

ûJ
1

ûJ
2

2
4

3
5

8<
:

9=
; ðA:31Þ

where

½A� ¼
A11 A12

A21 A22

" #
; ½B� ¼

B11 B12

B21 B22

" #

and elements of matrices ½A� and ½B� are given by

A11 ¼
1
2
ðD2

11þD1
11Þn1

∂r
∂x1

þ1
2
ðD2

33þD1
33Þn2

∂r
∂x2

;

A12 ¼
1
2
ðD2

33þD1
33Þn2

∂r
∂x1

þ1
2
ðD2

12þD1
12Þn1

∂r
∂x2

;

A21 ¼
1
2
ðD2

33þD1
33Þn1

∂r
∂x2

þ1
2
ðD2

21þD1
21Þn2

∂r
∂x1

;

A22 ¼
1
2
ðD2

33þD1
33Þn1

∂r
∂x1

þ1
2
ðD2

22þD1
22Þn2

∂r
∂x2

;

BJ
11 ¼ ðD1

11�D2
11Þn1K2JþðD1

33�D2
33Þn2K3J ;

BJ
12 ¼ ðD1

12�D2
12Þn1K3JþðD1

33�D2
33Þn2K2J ;

BJ
21 ¼ ðD1

33�D2
33Þn1K3JþðD1

21�D2
21Þn2K2J ;

BJ
22 ¼ ðD1

33�D2
33Þn1K2JþðD1

22�D2
22Þn2K3J ;

where ns ¼
n1

n2

( )
is the normal vector on the interface,

½D1� ¼
D1
11 D1

12 0

D1
21 D1

22 0

0 0 D1
33

2
664

3
775; ½D2� ¼

D2
11 D2

12 0

D2
21 D2

22 0

0 0 D2
33

2
664

3
775;

are elastic constants for materials of sub-domains, Ω1 and Ω2,
respectively.

Overlapping particles from domains Ω1 and Ω2are placed on
the cohesive segment region. Substitution from Eqs. (A.24), (A.26)
and (A.30) into Eq. (A.29) gives

∑
N

J ¼ 1
ðΚ0

IJþΚ00
IJÞû

J ¼ F I ðA:32Þ

where

Κ0
IJ ¼

Z
Ω1

ðLW IÞTDV J dΩþ
Z
Ω2

ðLW IÞTDV J dΩþα
Z
Γu1

W IMJ dΓ

þα
Z
Γu2

W IMJ dΓ�
Z
Γu1

W INDV J dΓ�
Z
Γu2

W INDV J dΓ;

Κ00
IJ ¼

R
Γc
W ISΦJ dΓ; vov0;

�RΓc
W IT 0ΦJ dΓ; v4v0;

8<
:

F I ¼
F I ; vov0;

F I�
R
Γc
W IT dΓ v4v0;

(

F I ¼
Z
Γt1

W It dΓþ
Z
Γt2

W It dΓþ
Z
Ω1

W Ib dΩþ
Z
Ω2

W Ib dΩ

þα
Z
Γu1

W Iu dΓþα
Z
Γu2

W Iu dΓ;

W I ¼ WI 0
0 WI

" #
;V J ¼

KI
2JþqI1J

∂γðrI Þ
∂x1

0

0 KI
3JþqI2J

∂γðrI Þ
∂x2

KI
3JþqI2J

∂γðrI Þ
∂x2

KI
2JþqI1J

∂γðrI Þ
∂x1

2
66664

3
77775; S ¼

SII0 0

0 SI0

" #
;

T 0 ¼
τIIcr

ðvII
f
�vII0 Þ

0

0 τIcr
ðvI

f
�vI0Þ

2
664

3
775;T ¼

vIIf τ
II
cr

ðvII
f
�vII0 Þ

vIf τ
I
cr

ðvI
f
�vI0Þ

8>><
>>:

9>>=
>>;; v0 ¼

vII0
vI0

( )
;

MJ ¼
KI
1JþqI1JγðrIÞ 0

0 KI
1JþqI2JγðrIÞ

2
4

3
5;N ¼

n1 0 n2

0 n2 n1

" #
;

ΦJ ¼
Kc1
1J 0 �Kc2

1J 0

0 Kc1
1J 0 �Kc2

1J

2
4

3
5:

Kc1
1J and Kc2

1J are the SSPH basis functions for particles located on
the boundaries Γc1 and Γc2, respectively. We derive an algebraic
equation similar to Eq. (A.32) for each particle in the domain Ω,
thereby obtain the following system of equations.

½K�fUg ¼ fFg; ðA:33Þ
where NΩ1

and NΩ2
are number of particles for domains Ω1 and

Ω2, respectively.

U¼
UΩ1

UΩ2

" #
; UΩ1

¼

u1
1

u1
2

⋮

u
NΩ1
1

u
NΩ1
2

2
666666664

3
777777775
; UΩ2

¼

u1
1

u1
2

⋮

u
NΩ2
1

u
NΩ2
2

2
666666664

3
777777775

NΩ1
and NΩ2

are number of particles for domains Ω1 and Ω2,
respectively.
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