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Rubber Covered Rolls—The 
Nonlinear Elastic Problem1 

The problem of the indentation of a rubberlike layer bonded to a rigid cylinder and in­
dented by another rigid cylinder is analyzed. The rubberlike layer is assumed to be made 
of a homogeneous Mooncy-Rivlin material. The materially and geometrically nonlinear 
problem is solved by using the finite-element code developed by the author. Results com­
puted and presented graphically include the pressure profile at the contact surface, stress 
distribution at the bond surface and the deformed shape of the indented surface. 

Introduction 
Traction in vehicles, the nip action in cylindrical rolls in the pa-

permaking process and in the textile industry, and friction drives are 
some examples of the kind of-problem studied herein. Each of these 
problems involves indentation, by a rigid cylinder, of the rubberlike 
layer bonded to a core made of a considerably harder material. Such 
problems have been studied analytically [1], experimentally [2], and 
numerically [3] by using the finite-element method. In [1] Hahn and 
Levinson solve the indentation problem on the assumption that the 
rubberlike layer is made of a Hookean material and its deformations 
are within the range of applicability of the linear theory. The problem 
is solved by using an Airy stress function and the solution is in terms 
of double infinite series one of which converges slowly. In the nu­
merical study [3], Batra, et al., assume that the rubberlike layer is 
made of a thermorheologically simple material and its deformations 
are small so that the linear strain-displacement relations and a linear 
relation between stress and strain rate can be presumed. The exper­
imental work [2] of Spengos is quite extensive and involves a wide 
range of loads, thicknesses of the rubber layer, and speed differences 
between the mating rollers. Other contact problems involving 
geometries different from the one considered here have been studied 
by Sve and Keer [4], Keer and Sve [5], Itou and Atsumi [6], Alblas and 
Kuipers [7-9], and Batra [10, 11], 

A study of the results of Hahn and Levinson suggests that for 
moderate values of nip width, the value of the maximum principal 
strain is of the order of 20 percent. This observation is also confirmed 
by the experimental investigations of Spengos. It therefore appears 
that the maximum strain commonly encountered in practice is 
probably much higher than what is usually thought to be the range 
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Fig. 1 System to be studied 

of applicability of the linear theory. Thus one needs to develop 
methods to solve the problem when the deformations are large and 
the material of the layer is nonlinear. In this paper we assume that 
the material of the rubberlike layer can be modeled as a Mooney-
Rivlin material and solve the large deformation problem by the fi­
nite-element method. 

A schematic diagram of the system studied is shown in Fig. 1. Since 
the length of rolls is considerably large as compared to their diameters, 
we assume that plane strain state of deformation prevails. Method­
ologies to solve finite plane strain problems for incompressible elastic 
materials have been given by Oden [12] and Scharnhorst and Pian 
[13]. Realizing that these authors had developed computer programs 
tailored to solving specific problems and illustrating the principles 
involved, the author developed a computer code capable of solving 
quasi-static, mixed boundary-value finite plane strain problems for 
Mooney-Rivlin materials. Results obtained for two sample problems 
by using this program compare favorably with those obtained from 
the analytical solution [14]. The indentation problem considered in 
this paper is solved by using this basic program and the techniques 
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developed earlier [3, 10, 11] for solving contact problems numeri­
cally. 

Formulation of the Problem 
We use a fixed set of rectangular Cartesian axes with origin at the 

center of the roll with the rubberlike cover and denote the position 
of a material particle in the reference configuration by X" and the 
position of the same material particle in the current configuration by 
x;. Thus %i = xi(X", t) gives the current position, at time t, of the 
material particle that occupied place X" in the reference configura­
tion. Since the core and the mating cylinder are usually made of a 
material considerably harder than the material of the rubberlike layer, 
we regard these as being rigid and study only the mechanical defor­
mations of the rubberlike layer. Neglecting the effect of body forces 
such as gravity on the deformations of the roll cover, equations gov­
erning the deformations of the rubberlike layer are 

d e t F ; „ = l , Fi„ = X i , „ , (1) 

P&i = Tin,n. 

In (1) p is the present mass density, T,„ is the first Piola-Kirchoff 
stress tensor, a superimposed dot indicates material time differen­
tiation, a comma followed by an index a indicates partial differen­
tiation with respect to X", Fj„ is the deformation gradient, and the 
usual summation convention is used. Equation (l)i is the continuity 
equation in referential description and signifies that the mass density 
stays constant. The first Piola-Kirchoff stress tensor T;„ and the 
Cauchy stress tensor aij are related by 

07/ = — Ti„Fj„ (2) 
Po 

in which po is the mass density in the reference configuration. For 
incompressible materials, p = po and (2) simplies to oij = Ti„Fj„. 
Equation (1) is to be supplemented by constitutive relation for T;„ 
and side conditions such as boundary conditions. Before we state 
these, we give the following assumptions to simplify the problem. 

We assume that the material of the roll cover is homogeneous and 
can be modeled as a Mooney-Rivlin material, contact between the 
indentor and the roll cover is frictionless, and that the effect of all 
dynamic forces on the deformation of the roll cover is negligible. We 
note that the mass density of rubber is quite low (comparable to that 
of water). Therefore, for practical geometries and speeds in the range 
of 500 rpm, the effect of centrifugal force on the stress distribution 
is very small. Under these assumptions the indentation problem be­
comes quasi-static and equation (1) is replaced by 

det.F;„ = 1, 

0 = Tia.a 

(F~lUTw = Sae = piC'^fi + 2Ci<5„/3 + 2C2(/1<5„/3 - Ca0), 

. C„@ = Fi„Fip, I\ = C„„. (3) 

In these equations, C„g is the right Cauchy-Green tensor, C\ and C2 

are material constants, p is the hydrostatic pressure not determined 
by the deformation of the roll cover but can be found from the 
boundary conditions, 6a/j is the Kronecker delta, I\ is the first in­
variant of the strain tensor C„/j and S„p is the second Piola-Kirchoff 
stress tensor. 

In practice the length of the cylindrical rollers is significantly larger 
than their diameters so that it is reasonable to presume that plane 
strain state of deformation prevails. Thus X3 = &aaX" and equation 
(3)2 for i = 3 is identically satisfied. Furthermore, deformations of the 
roll cover are symmetrical about the line joining the centers of the 
rollers. Because of this symmetry, we study the deformations of the 
upper half of the roll cover. 

Equation (3)i and the set of equations obtained by substituting (3)3 
into (3)2 are three equations for the three unknown fields p , x\, and 
%2- These equations are to be solved under the following boundary 
conditions. At the inner surface X„Xa = Ri, 

"; = Xi - &t„X" = 0, (4) 

at the outer surface X„X„ = /Jo, 

eiTiaNa = 0, (5) 

ni TiaNa = 0, if 8 = arc tan I—J > 0O, 

= f(0), if arc tan I—j < 0O, (6) 

f(6o) = 0, 

and at the plane through the center line of rollers, 

1/2 = 0, 

Tiz = 0. (7) 

In equations (4)-(7), 2V„ is an outward unit normal to the surface in 
the reference configuration, e; is an unit tangent vector to the surface 
in the current configuration, and n; is an unit outward normal to the 
surface in the current configuration. The boundary condition (4) 
implies that there is perfect bonding between the core and the rub­
berlike layer, and the boundary conditions (5) and (6) signify that the 
part of the roll cover not in contact with the indentor is traction free 
whereas that in contact with the indentor has a normal pressure acting 
on it. Note that do defines half nip width in the reference configura­
tion. The boundary condition (6)3 insures that a contact problem 
rather than a punch problem is being solved. 

We note that the half nip width 80 and the pressure f(6) at the 
contact surface are unknown and are to be determined as a part of the 
solution. These two should assume values such that the deformed 
surface of the rubber like layer matches with the profile of the in­
dentor. In practice the load P, given by 

J*flo 

f(6)dd, (8) 
0 

pressing the two rolls together is specified. However for ease in com­
putation, we prescribe OQ and find the required load. Of course one 
could equally well prescribe the indentation it0> as is done in [10], 
between the two rolls and compute the necessary load. Specification 
of P and then finding do and the indentation uo, though feasible, re­
sults in significantly more computing time. The indentation Uo equals 
the distance through which the two rolls move closer when loaded and 
is the value of the radial displacement of that point on the outermost 
surface of the roll cover that lies on the center line of the rollers. 

The problem as just formulated is too difficult to solve analytically, 
so we solve it by the finite-element method. 

Brief Description of the Finite-Element Formulation 
We use the total Lagrangian formulation and the principle of sta­

tionary potential energy. That is, the potential energy 

E = Ciw + -(Ia-l)\dV- ChauadA (9) 

takes an extremum value [12, p. 253] for all admissible displacement 
fields that satisfy the displacement boundary condition. In (9), h is 
the surface traction acting on a unit area in the reference configura­
tion, W is the strain-energy density and ^3 = det C is the third in­
variant of C. For Mooney-Rivlin materials 

W = Cdh ~ 3) + C2(/2 - 3), / 2 = / 3- 1(C- 1)„„. (10) 

SE = 0 gives 

JScpSEapdV = JhaSuadA, J6p(7 3 - l )dV = 0, (11) 

in which E = (C - l)/2. 
We assume that the load f(6) at the contact surface is applied in M 

equal increments and denote the incremental change in the value of 
say u caused by the (N + l)st load increment by Au, i.e., 

U N + I = UN+ A U , E W + 1 = EN+ AE. (12) 
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Fig. 2 Finite-element grid Fig. 3 Stress distribution at the bond surface; comparison of present results 
with those of Hahn and Levinson 

From equations (3)4, (1)2, (4) and the definition of E, we obtain 

AE„p = Ae„p + Ar/,v/5, Ar/„3 =
 lkAuy<„Auy4i, 

Ae„,3 = V2(Au„,0 + Aufi,„ + uNyiaAuytfj + u A ,
7 jAu 7 , „ ) (13) 

We note that AI3 = 2(C~1)«pAE„/,. The relation between As, AE and 
Ap is given in reference [13]. Setting 5-E,,̂  = hAE„p, 5u„ = 8Au„, and 
bp = <5Ap in (11) we obtain 

S(Sttfs
N + ASa/3)dAE„pdV = Jh„N+lbAu„dA, 

JSApiC^-^AE^dV = -VaJ-SApt/yv - l)dV. 

(14) 

(15) 

We now make the assumption that the increment in the load is small 
so that 

ASaf,bAEal3 ^ ASa0&Aeafj, 

(CNrj5AEalt <* ( C ^ 5 A e a / 9 , etc. (16) 

Hence an approximation to equations (14) and (15) is 

SASlvP5Ae„l}dV+ SS^bAij^dV =* Sh«N+1bAu„dA 
- SSB0N8AealldV (17) 

S5Ap(C»)$AealidV ~ - % S^P(hN - DdV. (18) 

We use equilibrium iterations [15], i.e., iterations within a load step, 
to insure that equations (17) and (18) are satisfied within a prescribed 
error. 

A finite-element program based on equations (17) and (18) and 
employing 4-node isoparametric quadrilateral elements with 2 X 2 
Gaussian integration rule has been written. The hydrostatic pressure 
p is assumed to be constant within an element. The pressure load 
between two surface nodal points a and b is replaced by lumped nodal 
loads given by 

hi° = hib = f(8*)eaij(xjb - xj°). 

Here eijk is the permutation symbol and it equals 1 or - 1 according 
as i, j , k form an even or an odd permutation of 1, 2, and 3 and is zero 
otherwise and 0* is the value of 0 for the midpoint of the line joining 
nodes a and b. The loads for the {N + l) th load step are calculated 
based upon the positions of the nodes after the JVth load step. 

The accuracy of the developed finite-element code has been es­
tablished by comparing results for two sample problems with their 
analytical solution [14]. This program has been modified to solve the 
contact problem. 

Computation and Discussion of Results 
In order to solve the problem by the finite-element method, we 

consider the quarter of the roll cover lying in the first quadrant and 

assume that the surface along the vertical plane is traction-free. This 
assumption is motivated by previous studies on this problem in which 
it has been found that stresses decay rather rapidly with the distance 
from the contact region. This assumption is verified to be true in the 
present study too. This portion of the roll cover is divided into 
quadrilateral elements as shown in Fig. 2. The mesh is finer within 
approximately one and a half times the contact width. 

Half nip width do and the form of the function f(6) are assumed. 
The presumed load is divided into 30 equal steps and within each load 
step upto 15 equilibrium iterations [15] are performed to insure that 
displacements are accurate to within 1 percent of their values. The 
deformed surface of the roll cover is calculated and a check is made 
to insure that the deformed surface in the assumed contact zone 
matches, within a prescribed tolerance, with the circular profile of the 
indentor and that the nodal point just outside the assumed contact 
area has not penetrated into the indentor. If the second condition is 
not satisfied implying thereby that the nodal point outside the pre­
sumed contact width has penetrated into the indentor, either the value 
of Do is increased or the total load is decreased. However, if the second 
condition is satisfied but the first is not, the form of f{6) is suitably 
modified until both preceeding conditions are satisfied simulta­
neously. The deformed surface of the roll cover is taken to match with 
the profile of the indentor if the distance of each nodal point on the 
contact surface from the indentor is within 1 percent of the indenta­
tion Uo- Usually, with a little experience, one can make pretty good 
estimates of 6Q and f{8) so that the entire process converges in four 
or five iterations. 

In order to insure that the modifications made in the program to 
solve contact problems are correct, we compare results computed from 
the present program with those given by Ha f l n and Levinson. As is 
clear from Fig. 3, the values of shear stress obtained by these two 
different methods are quite close. As for the difference in the values 
of the radial stress we remark that a similar difference exists between 
Hahn and Levinson's results and those of Betz and Levinson [16] who 
used the finite-element method to solve the problem. It should be 
added that Hahn and Levinson's solution is in the form of a double 
series and the computation of numerical results does involve con­
vergence errors. However, the appreciable difference between the 
analytical solution and the finite-element solution can only be at­
tributed to different methodologies. 

Fig. 4 depicts the pressure profiles obtained by Spengos [3] and the 
present solution using the nonlinear theory. The two compare fa­
vorably. The difference between the two is possibly due to the fact 
that the assumption of plane strain state of deformation made in the 
present work is not quite valid for Spengos' experimental set up 
wherein the length-to-diameter ratio of rollers was of the order of one. 

, Whereas Spengos reports that when the experimental contact widths 
are corrected by accounting for the finite size of the recording in-
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Fig. 4 Stress distribution at the contact surface; comparison of experimental 
and numerical results 
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Fig. 5 Stress distribution at the contact surface; comparison of results from 
linear and nonlinear theories 

struments, the pressure profiles for various nip widths match, we 
obtain slightly different pressure profiles for different contact widths. 
In the results presented in Figs. 4-7, the values of various geometrical 
parameters correspond to those for run number 30 of Spengos. (That 
is, R\ = 47.2 mm, R0 = 60.7 mm, R = 76.2 mm.) In Fig. 5 is shown the 
pressure profile obtained by using the linear and the nonlinear theory. 
In the linear theory entire load is applied in one step and no account 
is taken of the deformation of the surface on which the load is applied. 
Also the strain-displacement relation and the stress-strain relations 
are linear. In the nonlinear theory, the problem is solved incrementally 
and each increment in load is applied on the surface deformed up to 
the application of that load increment. We remark that in Fig. 5, the 
pressure profile at the contact surface represents the nondi-
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Fig. 6 Stress distribution at the bond surface 
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Fig. 7 Deformed surface of the rubberlike layer 

mensionalized Cauchy stress. It should be added that in the linear 
theory 6(Ci + C2) equals Young's modulus. 

Results presented in Fig. 6 verify the assumption that stresses decay 
rapidly at points away from the contact zone. This insures that the 
assumption that the vertical surface of the quarter roll cover consid­
ered is traction-free does not introduce any significant error in the 
computed results. 

Fig. 7 depicts the deformed surface of the roll cover. Because of 
symmetry, only half of the deformed surface is shown. Also due to 
different scales along the horizontal and vertical axes, the undeformed 
roll cover as well as the indentor plot as ellipses. The radius of cur­
vature of the deformed surface changes near the point where rubber 
leaves the indentor. 

For plane strain deformations of Mooney-Rivlin materials, one can 
show that [14] the values of displacement and components an, (T22, 
and 0-12 of the Cauchy stress depend upon the material constants Ci 
and C2 only through their sum C\ + Ci. Thus results presented herein 
are valid for all values of C1/C2 so long as the sum Ci + Ci is kept 
fixed. The values of the hydrostatic pressure p and the stress 0-33 
normal to the plane of deformation do depend upon Ci/C2 even when 
(Ci + Ci) is constant. 

Further extension of this work should involve the inclusion of the 
effects of friction at the contact surface, slipping at some points on 
the contact surface, and the deformations of the core and the in­
dentor. 
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