
+ 3y216}+  i ~-.{3a2(12 - I t)  + 3 a z j ( l  3 -- 14) -- 3x217 

+ y 2 1 5 } ] }  6 c 6 6 P Z G o { f a [ x ~ t l ( ~ O )  + iy~b2(~o)] 

- f  ~t {3a (19- 12) + 3azo(14 - 18) - x2Im + 3y216} 

+ i a y- {3a2(12 - I,) + 3azo(13 - 1 4 )  - 3X217 -4- y215} 1 ) ,  

3 
6P~ 

j=t  

3 
3Pz 

'Tzm = ~ 2 GjsjEOmj{fazj~13(~J ) -- f [azj{~bt(~j) - ~ba(~j)} 
j=l  

- a2(ll l  - 112) -4- x21s - y213 

3P~ 
+ i2xyl4]} - - ~  Gosop,,,{fazo@3(~o) + f [azo{t l (~o)  

- ~2(~o)}-  a:( l l l  -- 112) + X21S -- y213 + i2xyl4]} (15) 

where e, ~j ( j  = 0, 1, 2, 3) and F(q~j, e) ( j  = 0, 1, 2, 3) are 
the same as those in Eq. (11); q,, (k = 1, 2, 3), I~, I12, and L (l = 
1, 2, 3 . . . .  12) are listed in Appendices A and B in Hanson and 
Puja (1997). 
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Exact  Eshelby Tensor for a Dynamic  
Circular Cylindrical  Inclusion 

Z.-Q. Cheng ~ and R. C. Batra 2 

1 Introduct ion 

This work is motivated by Mikata and Nemat-Nasser's (1990) 
study of dynamic transformation toughening of ceramics in which a 
typical dynamic problem of a spherical inclusion was solved. Mikata 
and Nemat-Nasser (1990, 1991), Mikata (1993), and Cheng and He 
(1996) have obtained exact analytic solutions for a dynamic spherical 
inclusion embedded in an infinite linear elastic and isotropic medium. 
However, the corresponding dynamic problem of a circular cylindri- 
cal inclusion has not been studied. Mura (1988) and Mura et al. (1996) 
have reviewed the literature on inclusion problems. 

The time-harmonic elastic field caused by an infinitely long 
circular cylindrical inclusion is obtained in this paper, and a 
closed-form expression is derived for the dynamic Eshelby tensor. 
Unlike the static case, the Eshelby tensor for the dynamic problem 
is not uniform even at interior points within the circular cylinder. 
In the limit of quasi-static deformations the present solution re- 
duces to Eshelby's results. 

2 Analys is  

Following Eshelby (1957, 1959) and Mura (1982), an inclusion is 
referred to a subset of a matrix that has a prescribed eigenstrain (or 
t ransformation strain) and has  the same elastic properties as the matrix. 

Consider the following time-harmonic eigenstrain 

e~(x, t) = e~ (x )A(~ )e - '%  

A ( ~ )  = 0,  x ~ R 3 - ~ (1) 

where ~ is the region occupied by an inclusion that is embedded 
in an infinite (i.e., R 3) isotropic, linear elastic medium, and ~o 
denotes an angular frequency. It is assumed that a time-harmonic 
eigenstrain will induce time-harmonic displacement, strain, and 
stress fields. Henceforth we omit the factor exp(-itot).  Also, a 
comma followed by a subscript i denotes a partial derivative with 
respect to the rectangular Cartesian coordinate x~, a repeated index 
implies summation over the range of the index, Latin subscripts 
range over 1, 2, 3 and Greek subscripts over 1 and 2. 

Equations for determining the displacement field in steady-state 
deformations of a linear elastic isotropic body are 

O'ij J @ ptO2Ui : O, trij : Cijkl[ekl -- e~A(12) ] ,  
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BRIEF NOTES 

eu = ½ (u~d + ut,,), (2) 

where p is the mass density, 

cw, = a8,A,  + ~(8,&, + 8,1g0, (3) 

A and/x the Lam6 constants and 80 the Kronecker delta. The corre- 
sponding displacement field can be expressed as (Mura, 1982) 

u,(x) f~ a , = -- Cjlmnemn(X )gii.t(X - x ' ) d x ' ,  
1 

(4) 

where g~ is the Green function defined by 

1 
gtm(X - x ' )  - 4¢rpoo ~ 

I e i~3r 
× /328}" r 

Jo(kz)H(ol)(kz ') + 2 ~ JM(kz)H(~)(kz ') cos MO, 
M = l  

= (z <z ' )  

Jo(kz')H~l)(kz) + 2 ~ JM(kz')H~)(kz) cos MO, 
M = I  

(z > z ')  

(c) Recurrence relations 

(15) 

d d 
d--z [ZJ,(z)] = ZJo(z), dz [zH~t)(z)] = z H ( ° l ) ( z ) "  (16) 

Here JM(Z) is the Bessel function of order M and H~J)(z) is the 
Hankel function of the first kind of order M. 

Based on the formulas (12), (15), and (16), the integral (10) can 
now be calculated for a circular cylindrical inclusion. 

r 2= (Xe--X~)(Xk--X~,), Or2_ Pw2 /3z_  pw2 (6) f ( x , k )  
A + 2/* '  /x ( 

If a , [ em,,(X) in Eq, (1) is constant over ~,  then the displacement and 
strain can be expressed as (Mikata and Nemat-Nasser, 1990) 

= 

Ui(X) = Jikl(X)e~, e0(x ) _ a - Miju(x)e u, (7) 

for both inside and outside of the inclusion, where 

Mijkt(x) = ½ [Jm0(x) + Jjk1,i(x)], (8) 

1 
Jiu(x) = 47rp~o z {}kSkl f ,  imm(X, Og) "q- 2 ~ [ f ,  ikl(X , Og) -- f j k l ( X ,  / 3 ) ]  

- /x/3218ikf.,(x, /3) + 8itf.k(X, /3)]}, (9) 

(10) f 
i e ikr 

f(x,  k) = - -  dx ' .  
r 

Mikata and Nemat-Nasser (1990) called M~jkt(x) in Eq. (8) the 
dynamic Eshelby tensor. The expression in Eq. (9) slightly differs 
from that given by Mikata and Nemat-Nasser (1990) since we have 
used 

f.,~m(X, /3) + /32f.,(X, /3) = 0 ( l l )  

to simplify (9). For a spherical inclusion, Mikata and Nemat- 
Nasser (1990) evaluated the integral (10) in closed form and hence 
computed the exact dynamic Eshelby tensor. Here we evaluate this 
integral for an infinitely long circular cylindrical inclusion 12: x~ + 
x~ < a 2 and - ~  < x3 < ~, and then find the corresponding 
Eshelby tensor. To do this, we recall the following formulas 
(Gradshteyn and Ryzhik, 1965). 

(a) Integral formula. 

f ~ e ikr 
- -  dx; = izrH~')(kR), 

r 
(12) 

R 2 = ( x . - x : ) ( x . - x : ) = z  2 + z  ' 2 - 2 z z ' c o s O ,  (13) 

x,,x" 
Z 2 = x . x . ,  Z '2=x '~x ' ,  c o s 0 -  . (14) 

ZZ ~ 

(b) Addition theorem. 

H~i)(kR) 

z z , , , x 3 - - ,  
r 

\ ~ o  ~z / "o 
x ~ 1 2  

(,, ( 2~ (® e,~, 
J, z 'dz '  I dO I dx; - ,  x ~ R 3 - ~  

0 'J 0 ~ - ~  r 

[ zJl(kz)Ht°ll(kz) + aJo(kz)H~ll(ka)R 3 
27r2i 

- zJo(kz)Hll)(kz), x E 
k 

aJl(ka)H~ol)(kz), x ~ - 

(17) 

Furthermore, by using 

2i 
J°(kz)H~l)(kz) - Jl(kz)H~ll(kz) - wkz '  (18) 

(17) can be simplified to 

[1 1 f (x ,  k) --= N(z, k) = -47 r  ~ A ( ~ )  + cb(k)Xrgo(kz) , 

where 

(19) 

' ~ ( k )  = 

i ~ T a  
- ~ - H l ' ) ( k a ) ,  x E 

i'n'a 
- - ~ -  Jl(ka),  x ~ R 3 - ~1 

Jo(kz), x ~ 
~o(kz) = H~l)(kz), x ~ R 3 - ~ ' (20) 

Thus, the exact steady-state Eshelby tensor for an infinite cir- 
cular cylindrical inclusion is readily obtained from Eqs. (8), (9), 
and (19). As can be seen from these equations, unlike for the 
quasi-static problem (Eshelby, 1957), the dynamic Eshelby tensor 
varies even within the inclusion. The calculation of the dynamic 
Eshelby tensor (8) requires the following expressions for the 
derivatives of the potential function fix,  k). 

f,3(x, k) = 0, f,,~(x, k) = x .DN,  

f,.t3(x, k) = 6~t3DN + x~x~D2N, 

f,.t~(x, k) = (x.St3o~ + xt38,o . + x,.6.t3)D2N + x.xt3x,oD3N, 

f,.t3~p(x, k) = (8.t38,o o + 8.o,8t3 p + 8.pS~,~)DZN 
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+ (x.x[38~oo + x~x~oS[3o + x.xoS[3,o + xox~8,  o 

+ X[3Xp8.~ + x~,,xoS~a)D3N + x.xl3x,oxoD4N, (21) 

where D = d/ (zdz)  and 

D W  = -4"tr - dp(k)~t (kz ) ,  (1--> 1), 

• ~(kz) = - ~ D~qto(kz), (l-> 1), 

Jt(kz) ,  x ~ 
• ~(kz) = H}~)(kz), x ~ R 3 - f~ ' 

( l = - 0 ,  1, 2 . . . .  ), no sum on l. (22) 

3 Quasi-stat ic  Deformat ions  
The classical Eshelby tensor S~jk~ for quasi-static deformations 

can be recovered from the present dynamic Eshelby tensor (8) by 
taking the limit o9 ~ 0, i.e., 

Sijkt(X) = lim Mijkl(X ) = ~1 [Jikld(X + Jfkl.i(X)], (23) 
oo---~0 

where 

J~kl(X) = lira Jiu(x) - A + ix 
~ 0  A + 2~  toj~t(x) 

A 
A + 2/x 8k~4)"(x) - 8'kqb't(x) - 8"qS'k(x)' (24) 

if, lf, 1 = = - dx ' .  (25) to(x) ~-~ rdx ' ,  6(x)  ~ r 

Note that the two integrals (25) over an infinite circular cylinder 
diverge, However, the derivatives of the potential functions t0(x ) 
and 45(x) appearing in (24) converge. The derivatives of ~x )  and 
qb(x) can be calculated in the same form as the derivatives o f f  in 
(21), Since a detailed discussion on to(x) and th(x) for a general 
ellipsoidal inclusion has been given by Mura (1982), only the 
relevant results for an infinite circular cylindrical inclusion are 
given below, 

1, 
- Z ,  X ~  

D2to = a 2 a 4 
~z2 + 4z---4, x ~ R 3 - ~ ' 

- ~ ,  x E ~  

D4) = a 2 (26) 
2z 2, x E R 3 - 

By using (26), and recalling S~j,t = Sjzkt = S0~,, the nonzero 
components of the classical Eshelby tensor can be expressed as 

4v - 1 3 - 4v 
S~°"[3- 8(1 - v) 8~8,o0 + 8(1 - v--------)(8.o~[30 + 8~o~0oo), 

BRIEF NOTES 

l 1) 
S3p313 : ~ 8[3p, Stop33 - 2(1 - v) 8top, 

for the inside of the circular cylinder, and 

: A ooo[3 ~ - ~4 

--2B,,,,p.[3( ~ -  ~ ) q -  4Cow,,/3(' ~ 6 

a 2 a 2 

S3p313 "~- ~Z 2 3[3 0 -- ~ 4 Xf3Xp' 

(27) 

3a2  

va 2 / 1 2 
S t o p 3 3  - 2(f  -- v) 3,00 - ~ x ~ /  , (28) 

for the outside of the circular cylinder, where v is the Poisson ratio 
and 

B,oo.[3 = x.x[38~op + x~x~8~o + x.xoTt3o~ + x[3xooS,w 

+ x[3xoS., o + x,oxpS.[3, 

C~ooal3 : XaXl3X~oXp, 

D,.o. ~ = ~ ~ 8"[38~o + 3.o,813 p + 8.p813~o 

2 /  2v  
~ ~ x J o ~ [ 3  + x~x,oSt~ p 

+ xoxoS[3 ~ + x~x~8~ o + x[3xoS.~ ) . (29) 

These expressions for the classical Eshelby tensor agree with those 
given in Mura (1982). 
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