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Between Deflection, Buckling
Load, and Frequencies of
Thin Functionally Graded
Material Plates and Those
of Corresponding Homogeneous
Plates
Based on the classical plate theory (CPT), we derive scaling factors between solutions of
bending, buckling and free vibration of isotropic functionally graded material (FGM)
thin plates and those of the corresponding isotropic homogeneous plates. The effective
material properties of the FGM plate are assumed to vary piecewise continuously in the
thickness direction except for the Poisson ratio that is taken to be constant. The corre-
spondence relations hold for plates of arbitrary geometry provided that the governing
equations and boundary conditions are linear. When the stretching and bending stiff-
nesses of the FGM plate satisfy a relation, Poisson’s ratio is constant and the boundary
conditions are such that the in-plane membrane forces vanish, then there exists a physical
neutral surface for the FGM plate that is usually different from the plate midsurface.
Example problems studied verify the accuracy of scaling factors.
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1 Introduction

Transversely nonhomogeneous plates with material properties
varying through the thickness such as sandwich, laminated, and
FGM plates are widely used in engineering structures. An FGM
plate can be designed to have a desired variation of material prop-
erties in one or more directions. A widely used design has material
properties varying only in the thickness direction. We note that
Qian and Batra [1] and Liu et al. [2] have analyzed vibrations of a
plate with material properties continuously varying in two direc-
tions. Whereas, Qian and Batra used a higher-order shear and nor-
mal deformation plate theory (HSNDT) and numerically solved
the governing equations, Liu et al. provided a Levy-type solution
for a rectangular plate with two opposite sides simply supported.

Jha et al. [3] and Swaminathan et al. [4] have reviewed works
on bending, buckling and vibration of the FGM plates that have
employed the CPT, the first-order shear deformation plate theory
(FSDT), the higher-order shear deformation plate theory (HSDT),
the HSNDT, and the three-dimensional linear elasticity theory.
We note that in most engineering applications, the CPT is used to
predict the structural behavior of thin plates. In view of the
immense literature on the FGM plates, it is nearly impossible to
review all the works here. Thus we limit ourselves to reviewing
some of the works on the bending, buckling and free vibration of
the FGM plates based on the CPT that are closely related to our
work.

Yang and Shen [5] investigated free and forced vibration of
in-plane stressed thin rectangular FGM plates resting on a two-
parameter elastic foundation by the differential quadrature method
(DQM). He et al. [6] studied the shape and vibration control of
rectangular FGM plates with integrated piezoelectric sensors and
actuators by using the finite element method (FEM) and the CPT.
Javaheri and Eslami [7] analyzed buckling of simply supported
rectangular FGM plates under different in-plane compressive
loads and derived closed form solution for the critical buckling
load. Samsarn Shariata et al. [8] extended the analytical method
of Refs. [5,7] to investigate the critical buckling of simply sup-
ported rectangular FGM plates with geometric imperfections and
subjected to in-plane compressive loads. Mohammadi et al. [9]
derived a Levy type analytical solution for critical buckling of the
rectangular FGM plates with two opposite edges simply supported
and presented numerical results of the critical buckling load for
different boundary conditions. Chi and Chung [10,11] studied
static bending of simply supported rectangular FGM plates sub-
jected to transverse distributed loads. Analytical solutions using
Fourier series were obtained for Young’s modulus varying in the
thickness direction according to power-law, sigmoid, and expo-
nential functions. Through numerical experiments, they showed
that the effect of the variation in Poisson’s ratio on the mechanical
behavior of the FGM plates is very small. Whereas Poisson’s ratio
may not affect global quantities such as frequencies and buckling
loads, it influences displacements as shown by Nie and Batra [12]
and Zimmerman and Lutz [13].

By using B-splines to discretize the governing differential equa-
tion in the space domain, Yin et al. [14] numerically studied the
free vibration response of thin rectangular FGM plates by intro-
ducing a physical neutral surface. Analytical investigation of the
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free vibration response of thin circular and annular FGM plates
integrated with two uniformly distributed actuator layers made of
piezoelectric materials were carried out by Ebrahimi and Rastgo
[15,16]. Mirtalaie and Hajabasi [17] analyzed free vibration
of FGM thin annular sector plates by using the DQM. Hasani
Baferani et al. [18] presented both the Navier and the Levy type
solutions for free vibration of thin rectangular FGM plates under
various boundary conditions. Vel and Batra [19–21] have
provided exact solutions of static deformations, vibrations, and
transient thermal stresses induced in the FGM plates using the
three-dimensional linear elasticity theory.

Some authors have investigated nonlinear deformations of the
thin FGM plates using the CPT and incorporating von K�arm�an’s
nonlinear strain–displacement relations. By using a semi-
analytical approach, Yang and Shen [22] studied large deflection
and postbuckling response of rectangular FGM plates resting on a
two-parameter elastic foundation under transverse and in-plane
loads. The nonlinear partial differential equations were solved by
a perturbation technique. Nonlinear free vibration behavior of rec-
tangular FGM plates was studied by Woo et al. [23] who used the
Fourier series and presented numerical values of the fundamental
frequency versus the centroidal amplitude for different boundary
conditions. Zhang and Zhou [24] used a physical neutral surface
to decouple the stretching–bending deformations in FGM plates
and derived equations in terms of the deflection and the stress
function similar to those of a homogeneous plate. For infinitesimal
deformations, analytical solutions of bending of a clamped circu-
lar FGM plate under uniformly distributed load, and of buckling
and free vibration of a rectangular FGM plate with simply sup-
ported edges were presented. Recently, Batra and Xiao [25] have
pointed out that there is no stress tensor that is work conjugate of
the von K�arm�an strain tensor. Thus, one should neither use the
principle of minimum potential energy nor use the Hamilton prin-
ciple to derive governing equations when considering the von
K�arm�an nonlinear strains.

Different from the conventional analyses to find specific solu-
tions for static and dynamic responses of FGM plates by using ei-
ther analytical or numerical approaches, for static bending of
simply supported polygonal FGM plates, Cheng and Batra [26]
and Cheng and Kitipornchai [27] presented explicit relations
between displacements based on the FSDT and the deflection of a
homogeneous Kirchhoff plate. It can be reduced to a proportional
relation between deflections of the FGM and the homogeneous
Kirchhoff plates by neglecting the shear deformation. Abrate
[28,29] investigated the relation between static bending, buckling
and free vibration of FGM plates and corresponding homogeneous
plates by examining extensive results available in the literature.
He showed that the natural frequencies, the in-plane buckling
loads, and the deflections of an FGM plate were proportional to
those of the corresponding homogeneous plate. Even though these
numerical results were obtained using the classical, the FSDT,
and the TSDT, he found that the proportionality is generally appli-
cable, the scaling factors depend on the through-the-thickness var-
iation of the elastic modulus, and the extension-bending coupling
in governing equations of thin FGM plates based on the CPT can
be eliminated by using a new reference surface that is different
from the midplane of the plate. However, theoretical investiga-
tions have revealed that the proportionality relation between
responses of the FGM plates and those of their homogeneous
counterparts is not valid when transverse shear deformations are
considered. By examining the analytical bending solution of a cir-
cular FGM plate given by Reddy et al. [30] based on the FSDT
and that presented by Ma and Wang [31] based on Reddy’s
TSDT, it can be found that there is no proportional relation
between the solutions of the FGM plates and those of the corre-
sponding homogeneous ones. However, Cheng and Batra [32]
have shown that the critical buckling load and the vibration fre-
quency for the polygonal FGM plates under in-plane hydrostatic
pressure and resting on a Winkler–Pasternak elastic foundation
can be expressed in terms of the eigenvalue of the clamped

membrane having the shape of the plate. They showed that this
correspondence is valid when the polygonal FGM plate’s defor-
mations are governed by either the TSDT, or the FSDT or the
CPT, and whether or not Poisson’s ratio varies through the plate
thickness. Furthermore, the plate material could be transversely
isotropic with the thickness direction coincident with the axis of
transverse isotropy. It seems that all conditions on stiffnesses of
inhomogeneous plates that must be satisfied for such correspon-
dence relations to hold may not have been delineated.

In this paper, we use the CPT to analytically derive correspon-
dence relations between solutions for bending, buckling and free
vibrations of the FGM plates, and those of the corresponding
reference homogeneous plate (RHP) with the same geometry,
loading, and boundary conditions as the FGM plate. This corre-
spondence is valid for arbitrary shaped plates and boundary condi-
tions provided that the governing equations and the boundary
conditions are linear. By using the origin of the rectangular Carte-
sian coordinate system in the plate midsurface, we derive a condi-
tion on the plate stiffness for the existence of the physical neutral
surface. The significance of the work is that the correspondence
relation enables one to solve problems for the FGM plates from
the solution of the corresponding problem for the RHP. The corre-
spondence relation is also valid for laminated plates provided that
they can be modeled as isotropic, and the governing equations and
the boundary conditions are linear.

2 Problem Solutions

2.1 Governing Equations. Consider a thin flat isotropic
FGM plate of thickness h, with piecewise continuous variation of
material properties in the thickness direction. Without loss of gen-
erality, we select a rectangular Cartesian coordinate system
ðx; y; zÞ with the x- and the y-axes located in the geometric mid-
plane of the plate, and the z-axis along the normal to the plate
midsurface. We assume that material properties of the FGM plate,
such as Young’s modulus, E, Poisson’s ratio, �, and the mass den-
sity, q, are piecewise continuous functions over the thickness, and
can be described by

PðzÞ ¼ PbwPðzÞ (1)

where Pt and Pb denote, respectively, the material property values
at points on the top and the bottom surfaces of the plate, and
wPðzÞ is a piecewise continuous function of z that satisfies
wPð�h=2Þ ¼ 1 and wPðh=2Þ ¼ Pt=Pb at the bottom and the top
surfaces, respectively.

In the CPT the displacement field is assumed to be given by

u x; y; z; tð Þ ¼ u0 x; y; tð Þ � z
@w0

@x
(2a)

v x; y; z; tð Þ ¼ v0 x; y; tð Þ � z
@w0

@y
(2b)

wðx; y; z; tÞ ¼ w0ðx; y; tÞ (2c)

where t is time, and u, v, and w are the x, y, and z components of
the displacement field, respectively; u0, v0, and w0 are the dis-
placement components defined at the geometric mid-surface.

By using the linear strain–displacement relations and Hooke’s
law, we obtain the following expressions for the resultant forces
and the bending moments:
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In Eq. (3) the in-plane strains and curvatures are given by

e0
x ; e

0
y ; c

0
xy

� �
¼ @u0

@x
;
@v0

@y
;
@v0

@x
þ @u0

@y

� �
(4a)

jx; jy;jxyð Þ ¼ � @
2w0

@x2
;� @

2w0

@y2
;�2

@2w0

@x@y

 !
(4b)

and the resultant forces and the bending moments are defined as

ðNx;Ny;NxyÞ ¼
ðh=2

�h=2

ðrx;ry; sxyÞdz (5a)

ðMx;My;MxyÞ ¼
ðh=2

�h=2

ðrx; ry; sxyÞzdz (5b)

The stiffness coefficients in Eq. (3) have the following
expressions:

A11;A12;A33ð Þ ¼
ðh=2

�h=2

E

1� �2
1; �;

1� �
2

� �
dz (5c)

B11;B12;B33ð Þ ¼
ðh=2

�h=2

zE

1� �2
1; �;

1� �
2

� �
dz (5d)

D11;D12;D33ð Þ ¼
ðh=2

�h=2

z2E

1� �2
1; �;

1� �
2

� �
dz (5e)

One can show that these stiffness coefficients satisfy

A12þ2A33¼A11; B12þ2B33¼B11; D12þ2D33¼D11 (6)

Ignoring in-plane inertia forces, equations of motion of the
plate are

@Nx

@x
þ @Nxy

@y
¼ 0;

@Nxy

@x
þ @Ny

@y
¼ 0 (7a,b)

@2Mx

@x2
þ2

@2Mxy

@x@y
þ@

2My

@y2
þNx0

@2w0

@x2
þ2Nxy0

@2w0

@x@y
þNy0

@2w0

@y2

þq¼ �qh
@2w0

@t2
(8)

where q¼ qðx;yÞ is a transverse distributed load; Nx0, Ny0, and
Nxy0 are membrane forces in the undeformed configuration due to
the applied in-plane forces at the plate edges, and �q is the mean
areal mass density defined by

�q ¼ 1

h

ðh=2

�h=2

qdz (9)

Substituting from Eqs. (3) and (4) into Eqs. (7) and (8), and using
relations given in Eq. (6), we get the following equations of
motion in terms of displacement components:

A11

@2u0

@x2
þ A33

@2u0

@y2
þ A12 þ A33ð Þ @

2v0

@x@y
¼ B11

@

@x
r2w0 (10)

A11

@2v0

@y2
þ A33

@2v0

@x2
þ A12 þ A33ð Þ @

2u0

@x@y
¼ B11

@

@y
r2w0 (11)

D11r4w0þ�qh
@2w0

@t2
¼qþNx0

@2w0

@x2
þ2Nxy0

@2w0

@x@y
þNy0

@2w0

@y2

þB11r2 @u0

@x
þ@v0

@y

� �
(12)

where r2¼ð@2=@x2þ@2=@y2Þ is the Laplace operator and
r4¼r2r2.

2.2 Correspondence Relations. Differentiating both sides of
Eqs. (10) and (11), respectively, with respect to x and y, adding
respective sides, and using Eq. (6), we obtain

r2 @u0

@x
þ @v0

@y

� �
¼ B11

A11

r4w0 (13)

Substitution from Eq. (13) into Eq. (12), gives the following
uncoupled equation of motion in terms of the transverse
deflection w0:

r4w0�
1

D�
Nx0

@2w0

@x2
þ 2Nxy0

@2w0

@x@y
þNy0

@2w0

@y2

 !
þ �qh

D�
@2w0

@t2
¼ q

D�

(14)

where

D� ¼ D11 � B2
11=A11 (15)

is the equivalent flexural stiffness coefficient of the plate. Abrate
[29] derived Eq. (14) by selecting a reference surface different
from the geometric midsurface to eliminate the extension–
bending coupling. Here, we select an RHP with material proper-
ties of the bottom surface (E ¼ Eb, � ¼ �b, q ¼ qb) and define
dimensionless stiffness and inertia coefficients as

/0 ¼
A11

Cb
; /1 ¼

B11

hCb
; /2 ¼

D11

Db
; �/0 ¼

�q
qb

(16)

where Cb ¼ Ebh=ð1� �b
2Þ and Db ¼ Cbh2=12 are the tension and

the bending stiffnesses of the RHP, respectively. Substituting
from Eq. (16) into Eq. (15), the equivalent bending stiffness coef-
ficient D� can be written as

D� ¼ Db

c
; c ¼ 1

/2 � 12/1
2=/0

(17)

where c is a dimensionless parameter which integrates effects of
the transverse inhomogeneity of the plate material. We note that
c ¼ 1 for the RHP.

From the three coupled equilibrium Eqs. (10)–(12) in terms of
the three displacement components at a point on the plate’s geo-
metric midsurface, we have derived the uncoupled governing
Eq. (14) for the transverse deflection of the plate midsurface. This
equation with D� replaced by Db is the transverse deflection equa-
tion for the RHP. By assuming that Poisson’s ratio is a constant
and using the concept of the physical neutral surface to eliminate
the bending–tension coupling in the deformation, Zhang and Zhou
[24] also derived Eq. (14).

2.3 Physical Neutral Surface. In the absence of constraints
at the boundaries to prevent in-plane movements, the membrane
forces will vanish. Thus,

Nx ¼ A11

@u0

@x
þ A12

@v0

@y
� B11

@2w0

@x2
� B12

@2w0

@y2
¼ 0 (18)
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Ny ¼ A12

@u0

@x
þ A11

@v0

@y
� B12

@2w0

@x2
þ B11

@2w0

@y2
¼ 0 (19)

Nxy ¼ A33

@u0

@y
þ @v0

@x

� �
� 2B33

@2w0

@x@y
¼ 0 (20)

If the stiffnesses also satisfy the relation, A11B12 ¼ A12B11, then
from Eqs. (18)–(20) one can deduce that

@u0

@x
¼ z0

@2w0

@x2
;

@v0

@y
¼ z0

@2w0

@y2
;

@u0

@y
þ @v0

@x
¼ 2z0

@2w0

@x@y

(21a,b,c)

where the constant z0 is given by

z0 ¼
B11 � B12

A11 � A12

¼ B33

A33

¼ B11

A11

¼ h/1

/0

(22)

Recalling Eqs. (3) and (5), the relation A11B12 ¼ A12B11 implies
that the Poisson effect for stretching and stretching–bending cou-
pling deformations is the same.

By integrating Eqs. (21a) and (21b), it is easy to get a general
solution for the in-plane displacements

u0 ¼ z0

@w0

@x
þ f y; tð Þ; v0 ¼ z0

@w0

@y
þ g x; tð Þ (23)

where f ðy; tÞ and gðx; tÞ are arbitrary functions. Substituting
Eq. (23) into Eq. (21c) yields

@f y; tð Þ
@y

¼ � @g x; tð Þ
@x

¼ a1 tð Þ (24)

which gives

f ðy; tÞ ¼ a1yþ a2; gðx; tÞ ¼ �a1xþ a3 (25)

where ai (i ¼ 1; 2; 3) are at most functions of time, t. One can eas-
ily show that f ðy; tÞ and gðx; tÞ are the rigid body displacements
which vanish in a plate if boundary conditions at its edges rule out
rigid body motion. Henceforth, we assume that this is the case.
Substituting from Eq. (23) (with f ¼ g ¼ 0) into Eqs. (2a) and
(2b) we get

u x; y; z; tð Þ ¼ z0 � zð Þ
@w0

@x
; v x; y; z; tð Þ ¼ z0 � zð Þ

@w0

@y
(26a,b)

Thus the physical neutral surface of the FGM plate [14,24] is
given by z ¼ z0. By using Eq. (26), or the definition of the physi-
cal neutral surface, one can also uncouple governing Eq. (14)
instead of eliminating the in-plane displacements from Eqs.
(11)–(13). It should be noted that Eqs. (18)–(20) together with the
constraint A11B12 ¼ A12B11 must hold for the physical neutral sur-
face to exist. Therefore, if either the boundary conditions at the
plate edges constrain the in-plane displacements or geometric
nonlinearities are considered or the material inhomogeneity is
such that A11B12 6¼ A12B11, then Eq. (26) cannot be derived.

Substituting from Eq. (23) into Eq. (3) and assuming that the
Poisson ratio is constant through the plate thickness, we can
express bending moments in terms of curvatures as

Mx ¼ �D�
@2w0

@x2
þ � @

2w0

@y2

 !
(27a)

My ¼ �D�
@2w0

@y2
þ � @

2w0

@x2

 !
(27b)

Mxy ¼ �2 1� �ð ÞD� @
2w0

@x@y
(27c)

Furthermore, substitution from Eq. (27) into equilibrium equations

@Mx

@x
þ @Mxy

@y
¼ Qx;

@Mxy

@x
þ @My

@y
¼ Qy (28a,b)

yields

Qx ¼ �D�
@

@x
r2w0; Qy ¼ �D�

@

@y
r2w0 (28c,d)

where Qx and Qy are the resultant shear forces per unit length
along the x- and the y-axes, respectively. In summary, we have
derived Eqs. (14) and (26)–(28) for the FGM plate which are the
same as those for the RHP when D� is replaced by Db. Of course,
the boundary conditions for the two plates must also have similar
correspondence.

3 Correspondence Relations Between Solutions for the

FGM Plate and the RHP

3.1 Static Bending. For static bending of a plate, we have
w0ðx; y; tÞ ¼ �wðx; yÞ and Eq. (14) reduces to

Db

c
r4 �w ¼ q (29)

For c ¼ 1, Eq. (29) is the governing equation of the RHP sub-
jected to the same loading as the FGM plate. If �whðx; yÞ is the par-
ticular solution of Eq. (29) for c¼ 1 and the specified boundary
conditions, then

�wðx; yÞ ¼ c �whðx; yÞ þ Uðx; yÞ (30)

where �wðx; yÞ is the solution for the FGM plate and the function
Uðx; yÞ satisfies the differential equation r4Uðx; yÞ ¼ 0 and the
associated homogeneous boundary conditions. The theory of lin-
ear differential equations with the homogeneous boundary condi-
tions gives Uðx; yÞ � 0. Thus, we have �wðx; yÞ ¼ c �whðx; yÞ,
where the scaling factor c is given by Eq. (17). We note that solu-
tions of Chi and Chung [10] for the deflection of the simply sup-
ported rectangular FGM plate satisfy Eq. (30).

3.2 Static Buckling. For the static buckling of an FGM plate,
Eq. (15) becomes

r4 �w � c

Db
Nx0

@2 �w

@x2
þ 2Nxy0

@2 �w

@x@y
þ Ny0

@2 �w

@y2

 !
¼ 0 (31)

where the initial in-plane membrane forces can be independently
determined by solving prebuckling deformations of the plate. We
assume that the in-plane loads are such that

Nx0 ¼ k1P; Ny0 ¼ k2P; Nxy0 ¼ k3P (32)

where P is a load parameter and ki ði ¼ 1; 2; 3Þ are scaling con-
stants. Substitution from Eq. (32) into Eq. (31) yields

r4 �w þ cP

Db
k1

@2 �w

@x2
þ 2k3

@2 �w

@x@y
þ k2

@2 �w

@y2

 !
¼ 0 (33)

For c ¼ 1, Eq. (33) reduces to

r4 �wh �
Ph

Db
k1

@2 �wh

@x2
þ 2k3

@2 �wh

@x@y
þ k2

@2 �wh

@y2

 !
¼ 0 (34)

that governs the buckling of the RHP. If Phcr is a critical buckling
load for the RHP, or the minimum eigenvalue of differential
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Eq. (34) with the prescribed boundary conditions and �whcr is the
corresponding buckling mode shape, then the similarity between
Eqs. (33) and (34) gives

�wcr ¼ c �whcr; Pcr ¼ Phcr=c (35)

where Pcr and �wcr are the critical buckling load and the related
mode shape of the FGM plate.

3.3 Free Vibration. Setting q ¼ Nx0 ¼ Ny0 ¼ Nxy0 ¼ 0 in
Eq. (15) yields the equation of motion for free vibrations of the
FGM plate. Furthermore, assuming a harmonic response of the
system given by

w0ðx; y; tÞ ¼ �wðx; yÞcos xt (36)

and substituting it into Eq. (15) yields the following equation gov-
erning the mode shape �w:

r4 �w � x2 cqhqb

Db
�w ¼ 0; cq ¼ c�/0 (37)

Here, x is a natural frequency of the FGM plate. For cq ¼ 1,
Eq. (37) reduces to the following governing equation for the RHP:

r4 �wh � xh
2 qbh

Db
�wh ¼ 0 (38)

Here xh is a natural frequency of the RHP. The similarity between
Eqs. (37) and (38) yields

�w ¼ c �wh; x ¼ xh=
ffiffiffiffiffi
cq
p

(39)

3.4 Discussion of Boundary Conditions. When homogene-
ous essential boundary conditions (i.e., either w0 or ð@w0=@xÞ or
ð@w0=@yÞ or their linear combination) are prescribed at an edge
then both �whðx; yÞ and �wðx; yÞ will satisfy them.

Natural boundary conditions involve specifying either the bend-
ing moments or the resultant shear forces. Substitution of w0 ¼
�w ¼ c �wh into Eqs. (27) and (28) yields

Mx ¼ Mhx; My ¼ Mhy; Mxy ¼ Mhxy (40a,b,c)

Qx ¼ Qhx; Qy ¼ Qhy (41a,b)

where quantities with the superscript, h, are those for the RHP.
Thus, the shear forces and bending moments for the FGMP are
the same as those of the RHP. So, if solution �wh satisfies the natu-
ral boundary conditions

Mhn ¼ M�n; Rhn ¼ Qhn þ
@Mhsn

@s
¼ R�n (42)

at boundary Sr, then the deflection, �w, satisfies boundary condi-
tions for the FGMP on Sr. Here M�n and R�n are the prescribed
moment and force at Sr, n and s represent, respectively, the unit
normal and the unit tangent at a boundary point.

4 Example Problems

In this section, numerical results for the FGM plate (FGMP) are
presented to show the validity of the proposed correspondence
between quantities for the FGMP and those for the RHP. It is
assumed that the FGMP is composed of a ceramic (alumina) and a
metal (aluminum) with the function wPðzÞ in Eq. (1) given by

wP ¼ 1þ Pt

Pb
� 1

� �
1

2
þ z

h

� �n

(43)

where n is the material gradient parameter having values in the
interval ½0;1Þ. The Poisson ratio is assumed to be constant,
� � 0:3. Values assigned to Young’s modulus and the mass den-
sity are [9,14]

ceramic (alumina): Ec¼Et¼ 380GPa, qc¼ qt¼ 3800kg=m3

metal (aluminum): Em¼Eb¼ 70GPa, qm¼ qb¼ 2707kg=m3

Substituting for functions wEðzÞ and wqðzÞ from Eq. (43) into
Eqs. (5) and (16) yields

/0 ¼ 1þ rE � 1

nþ 1
; /1 ¼

n rE � 1ð Þ
2 nþ 1ð Þ nþ 2ð Þ ;

/2 ¼ 1þ 3 rE � 1ð Þ n2 þ nþ 2ð Þ
nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ ;

�/0 ¼ 1þ rq � 1

nþ 1

(44)

where rE ¼ Et=Eb, rq ¼ qt=qb. Substitution from Eq. (44) into
Eqs. (17) and (37) gives the transition parameters, c and cq, as

Table 1 Values of the dimensionless coefficients /i ði50; 1;2Þ, �/0, c, and cq for specified values of the material gradient index, n

n 0 0.5 1 3 5 7 10 100 1
/0 5.4286 3.9524 3.2143 2.1071 1.7381 1.5536 1.4026 1.0438 1
/1 0 0.2952 0.3691 0.3321 0.2636 0.2153 0.1678 0.0215 0
/2 5.4286 3.7837 3.2143 2.5500 2.2653 2.0702 1.8671 1.1265 1
�/0 1.4038 1.2692 1.2019 1.1009 1.0673 1.0505 1.0367 1.0040 1
c 0.1842 0.2842 0.3696 0.5204 0.5601 0.5840 0.6149 0.8919 1
cq 0.5085 0.6006 0.6665 0.7569 0.7731 0.7833 0.7984 0.9463 1

Table 2 Dimensionless deflections at the centroid of a simply supported square FGM plate under either a transverse uniform dis-
tributed load, q0, or a concentrated force, F

n

0 0.2 0.5 1 2 3 10 100 1
�wcDb

q0a4
� 103 0.7483a 0.9127 1.1543 1.5012 1.9238 2.1137 2.4976 3.6230 4.0620

0.7483b 0.9127 1.1544 1.5013 1.9239 2.1138 2.4977 3.6232 4.0622
�wcDb

Fa2
� 103 2.1371a 2.6066 3.2968 4.2876 5.4947 6.0370 7.1333 10.348 11.602

2.1371b 2.6066 3.2968 4.2876 5.4947 6.0370 7.1333 10.348 11.602

aBy Eq. (30).
bBy FEM; �wc is deflection at the plate centroid.
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functions of the power index, n. Values of coefficients
/iði ¼ 0; 1; 2Þ and �/0 for some values of n are listed in Table 1.

In Table 2, dimensionless centroidal deflections for different
values of n of a simply supported square FGMP subjected to either

uniformly distributed load, q0, or concentrated force, F, at the
plate center computed by two methods are compared. In Table 3,
dimensionless centroidal deflections of a thin circular FGM plate
under axisymmetric bending subjected to a uniformly distributed
load and computed by using the correspondence relation are com-
pared with those available in the literature [24,30,31] for the cir-
cular FGMP with R being the radius of the circular plate.
Excellent agreement between the present results and those in the
literature shows the validity of Eq. (30) for giving an accurate
bending solution of an FGMP in terms of that of the RHP.

Another example problem studied is the buckling of a rectangular
FGMP with length a, width b, and thickness h subjected to in-plane
compressive forces k1P and k2P in the x- and the y-directions,
respectively, as shown in Fig. 1. In Table 4, we have listed the criti-
cal buckling load, Pcr, of the FGMP with SSSS (all edges simply
supported) and SCSC (two opposite edges simply supported and the
other two edges clamped) boundary conditions obtained from Eq.
(35), the FEM and the Levy analytical solution [9], respectively. It is
clear that results from Eq. (35) agree well with those given by the
two other approaches.

Finally, we study free vibration of a square FGMP. In order to
show the validity of the correspondence relation for the frequen-
cies, the first five dimensionless frequencies of the square FGMP

Table 3 Comparison of dimensionless centroidal deflection, W0 5 64Db=ðq0R4 �w 0Þ, of circular FGM plates obtained by Eq. (30)
with those in the literature (Et=Eb50:396, mb5mt 50:288)

Clamped Roller-supported

n Ref. [30] Ref. [31] Ref. [24] Eq. (30) Ref. [30] Eq. (30)

0 5.525 5.525 5.525 5.5253 10.386 10.368
2 1.388 1.389 1.388 1.3882 5.700 5.6996
4 1.269 1.269 1.269 1.2690 5.210 5.2099
6 1.208 1.208 1.208 1.2076 4.958 4.9581
8 1.169 1.169 1.169 1.1692 4.800 4.8002
10 1.143 1.143 1.143 1.1427 4.692 4.6916
20 1.080 1.080 1.080 1.0800 4.434 4.4340
30 1.056 1.056 1.056 1.0555 4.334 4.3336
40 1.043 1.043 1.048 1.0425 4.280 4.2801
50 1.034 1.034 1.034 1.0344 4.247 4.2450
100 1.018 1.018 1.018 1.0177 4.178 4.1781
105 1.000 — — 1.0000 4.106 4.1062

Fig. 1 Rectangular plates subjected to in-plane uniformly dis-
tributed loads

Table 4 Critical buckling load Pcr (MN/m) for an FGMP with different boundary conditions for specified values of the gradient
index n and aspect ratio a/b (h/b 5 0.01)

k1 ¼ 1; k2 ¼ 0; k3 ¼ 0 k1 ¼ 1; k2 ¼ 1; k3 ¼ 0

BCs N a/b FEM Equation (35) [9] FEM Equation (35) [9]

SSSS 0 0.5 2.1444 2.1466 2.1466 1.7155 1.7173 1.7172
1 1.3727 1.3738 1.3738 0.6863 0.6869 0.6869

1 0.5 1.0689 1.0698 1.0699 0.8551 0.8559 0.8559
1 0.6842 0.6847 0.6848 0.3421 0.3423 0.3424

2 0.5 0.8341 0.8349 0.8349 0.6672 0.6679 0.6679
1 0.5339 0.5343 0.5343 0.2669 0.2672 0.2672

SCSC 0 0.5 2.6381 2.6417 2.6416 2.0318 2.0348 2.0347
1 2.6359 2.6417 2.6416 1.3137 1.3154 1.3154

1 0.5 1.3149 1.3166 1.3167 1.0127 1.0141 1.0142
1 1.3138 1.3166 1.3167 0.6548 0.6556 0.6556

2 0.5 1.0261 1.0275 1.0274 0.7903 0.7914 0.7914
1 1.0252 1.0275 1.0274 0.5109 0.5116 0.5116

SFSF 0 0.5 1.3376 1.3370 1.3369 1.3097 1.3086 1.3085
1 0.3271 0.3271 0.3271 0.3203 0.3202 0.3202

1 0.5 0.6667 0.6663 0.6664 0.6528 0.6522 0.7225a

1 0.1631 0.1630 0.1630 0.1596 0.1596 0.1712
2 0.5 0.5202 0.5200 0.5200 0.5094 0.5090 0.5089

1 0.1272 0.12721 0.1272 0.1246 0.1245 0.1245

aHigher buckling mode.
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with the SSSS and SCSC boundary conditions, obtained from
Eq. (39), the FEM and that computed using the nonuniform
rational B-spline basis functions [14] are presented in Table 5 for
some values of n. It is obvious that results from Eq. (39) match
well with those deduced from the other two approaches.

5 Remarks

The correspondence relations (30), (35), and (39) enable one to
determine global quantities for an FGM plate from those of the
corresponding RHP. However, local stresses in an FGM plate are
not determined from those of the RHP. Since more than one
through-the-thickness distributions of material properties can give
us the same values of the parameter c defined by Eq. (17), there-
fore different FGM plates can have the same global response even
though through-the-thickness stress distributions and the maxi-
mum principal stresses in them are quite different. Thus values of
the local quantities will need to be determined from knowledge of
the precise spatial variations of material parameters.

6 Conclusions

We have used the CPT to analytically deduce the exact propor-
tional relations between solutions for bending, buckling and free
vibration of the FGM plates with an arbitrary through-the-
thickness variation in the material properties and those of the RHP
of the same geometry, loadings and boundary conditions as the
FGM plate. Thus, solutions for isotropic FGM and other inhomo-
geneous (e.g., laminated) isotropic plates can be derived from
those of the corresponding homogeneous plates available in the
literature. However, a physical neutral surface for the FGM plates
exists provided that bending and stretching stiffnesses satisfy a
condition, the Poisson ratio is constant, and there are no in-plane
forces induced by the boundary conditions.
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