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We propose a constitutive relation for finite deformations of nearly incompressible iso-
tropic viscoelastic rubbery adhesives assuming that the Cauchy stress tensor can be writ-
ten as the sum of elastic and viscoelastic parts. The former is derived from a stored
energy function and the latter from a hereditary type integral. Using Ogden’s expression
for the strain energy density and the Prony series for the viscoelastic shear modulus, val-
ues of material parameters are estimated by using experimental data for uniaxial tensile
and compressive cyclic deformations at different constant engineering axial strain rates.
It is found that values of material parameters using the loading part of the first cycle, the
complete first cycle, and the complete two loading cycles are quite different. Further-
more, the constitutive relation with values of material parameters determined from the
monotonic loading during the first cycle of deformations cannot well predict even defor-
mations during the unloading portion of the first cycle. The developed constitutive rela-
tion is used to study low-velocity impact of polymethylmethacrylate (PMMA)/adhesive/
polycarbonate (PC) laminate. The three sets of values of material parameters for the ad-
hesive seem to have a negligible effect on the overall deformations of the laminate. It is
attributed to the fact that peak strain rates in the severely deforming regions are large,
and the corresponding stresses are essentially unaffected by the long time response of the
adhesive. [DOI: 10.1115/1.4029057]
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low-velocity impact

Introduction

Thermoplastic polyurethanes (TPUs) are a class of polymers
composed of soft and hard segments which form a two-phase
microstructure (e.g., see Refs. [1–4]). The soft segments account
for the high extension and elastic recovery, while the hard seg-
ments provide high modulus and strength [5]. The TPUs often ex-
hibit a strain-rate and temperature dependent response to
mechanical deformations. The viscous response is related to rela-
tive sliding of a molecule with respect to its neighbors [6]. It is
quite challenging to model the large strain viscoelastic response
of the TPUs.

The high elasticity, flexibility, resistance to abrasion and
impact, and the ease in processing TPUs have significantly
increased their applications in diverse areas. Their use as bonding
interlayers in structures subjected to impact and blast loading is
believed to increase the survivability of structures. In particular,
Tasdemirci et al. [7] have shown that the choice of an adhesive
interlayer influences the damage induced in a structure subjected
to impact. They used a split Hopkinson pressure bar and numeri-
cal simulations to study the response of an alumina ceramic/
adhesive/glass-epoxy laminate to an incident compressive stress
wave. Considering the damage induced in the glass-epoxy plate as
the critical parameter for impact resistance, they concluded that
the low acoustic impedance of the bonding interlayer reduced the
damage induced in the back plate, since it transmits less stress
from the front layer to the back plate. We note that constituents of
a structure subjected to impact loads usually undergo large strains
and varying strain rates. Thus, the study of the response of TPUs

for large strains and over a wide range of strain-rates (e.g., 10�3

to 103/s) is fundamental to understanding the dynamic response of
structures using TPUs and is of great engineering relevance.

Kihara et al. [8] experimentally measured the impact shear
strength of an electroconductive material and an epoxy resin and
performed finite element (FE) simulations to determine the maxi-
mum shear stress in the sample at fracture. They concluded that
the maximum shear stress equals the impact shear strength of the
adhesive. Boyce et al. [4] experimentally found that the represen-
tative PUs considered in their study transitioned from rubberylike
behavior at strain rate of 10�3 to leathery/glassylike behavior at
strain rates of 103/s. Similar results were obtained by Sarva et al.
[9] who investigated the response of a polyurea and a polyur-
ethane (“PU2”) for compressive strain rates between 10�3 and
104/s. They found that at room temperature the behavior of the
PU2 transitioned from rubbery at strain rates of �0.002/s to leath-
ery at 0.1/s and to glassy at strain rates >103/s.

Numerical simulations are being increasingly used to replace
physical experiments, since they reduce time, cost, and materials.
They also provide details of deformations in the interior of a struc-
ture not easily accessible through experimental measurements.
This requires reliable constitutive equations for all materials used
in a structure including the TPUs. Challenges in modeling the
response of TPUs include large deformations, strain-rate, and
temperature-dependence of their response. The elastic response of
incompressible hyperelastic rubbers has been investigated by Riv-
lin and Saunders [10], Ericksen [11], and Ogden [12] amongst
others. The Mooney–Rivlin material model and the empirical
strain-energy density function proposed by Ogden [12] have been
implemented in many commercial softwares. Arruda and Boyce
[13] proposed an eight-chain network model in which the material
is assumed to be an assembly of cubic material particles, each
containing eight chains originating from the cube centroid and
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ending at its vertices. Using Langevin’s work on chains, they
developed a temperature-dependent strain energy density potential
with a small number of material parameters. Coleman and Noll
[14] employed concepts of materials with fading memory and
developed a hereditary type constitutive relation for finite defor-
mations of viscoelastic materials. Christensen [15] expressed
these constitutive relations as convolution integrals involving a
relaxation moduli and the time rate of the Green–St. Venant strain
tensor and showed that the relaxation moduli can be determined
with a set of simple tests (simple shear, creep). Qi and Boyce [16]
relying on the works of Boyce et al. [17,18] assumed that the
response of a TPU is the sum of a nonlinear elastic contribution
modeled with a Langevin spring and a viscoelastoplastic stress
(nonlinear spring–dashpot system) capturing the rate-dependent
response of the material with both contributions being temperature
dependent. They showed that this model predicts well the
response of a TPU specimen under tensile and compressive cyclic
loadings at strain rates from 0.01/s to 0.1/s.

A challenging and somewhat unresolved issue is that of finding
values of material parameters and what portion of the test data to
use. This is compounded by the observation that most experiments
are conducted at constant nominal strain rates, whereas the mate-
rial response depends upon the current or the true strain rate.
Here, we assume that the viscoelastic response of a TPU can be
modeled as the sum of two terms—elastic represented by Ogden’s
form of the strain energy density function and viscous represented
by a hereditary type integral of the type employed by Christensen.
Of course, the hereditary type integral also includes the instanta-
neous elastic response of the material. We then use the uniaxial
deformations test data at constant engineering axial strain rate for
the first loading, the first complete cycle of loading and unloading,
and the first two loading and unloading cycles to find values of
material parameters appearing in the assumed constitutive rela-
tion. The time delay between the two cycles is also considered.
The number of material parameters in the constitutive relation
needed to reasonably well replicate the experimental uniaxial
stress–uniaxial strain curves varies with the amount of test data
employed. This constitutive relation has been implemented in the
commercial software, LSDYNA, and used to study the low-velocity
impact response of a PMMA/adhesive/PC laminate which is simi-
lar to the work of Antoine and Batra [19].

Constitutive Relations

We assume that a TPU can be modeled as an isotropic, visco-
elastic, and nearly incompressible material. A one-dimensional
mechanical analog of the material model described in this section
is shown in Fig. 1.

The total response of the material consists of a nonlinear spring
(rnlel) accounting for the quasi-static (very low strain rate) elastic

response of the material and the viscoelastic response (rve)
modeled with a Maxwell ladder (Prony series). The kinematic
constraint of incompressibility of the material requires an addi-
tional contribution in the form of a pressure term where the pres-
sure p is a Lagrange multiplier and cannot be found from
deformations of the material but is determined by solving an
initial-boundary-value problem in which normal tractions must be
prescribed on a part of the boundary of the body. Thus, the total
Cauchy stress r at a material point is expressed as

r ¼ rnlel þ rve � pI (1)

where I is the identity tensor.
We assume that the material is hyperelastic. For the strain

energy density potential W, we use the following form proposed
by Ogden [20]:

W ¼
XN

n¼1

ln

an
kan

1 þ kan

2 þ kan

3 � 3
� �

(2)

In Eq. (2), N is an integer, lnf gn¼1;…;N and anf gn¼1;…;N are mate-
rial parameters, and kif gi¼1;2;3 are principal stretches satisfying
the incompressibility constraint k1k2k3 ¼ 1.

In order to motivate the choice of the constitutive equation for
the viscoelastic response of the material, we consider a one-
dimensional linear Maxwell model sketched in Fig. 2. Thus,

r ¼ rk ¼ rg; e ¼ ek þ eg

rg ¼ g _eg; rk ¼ kek

(
(3)

where k is the spring constant, r is the axial stress, e is the axial
strain, g is the viscosity, and a superimposed dot indicates the
material time derivative. Equations (3) give

_r ¼ k _e� k

g
r (4)

Motivated by Eq. (4), the viscoelastic response rve of the material
for three-dimensional deformations is modeled with the following
Prony series:

rve ¼
XM

m¼1

rve
m ;

rve
m

�
¼ 2GmD� bmrve

m

rve
m t¼0 ¼ 0j

8<: (5)

In Eq. (5), rve
m

�
is the Green and Naghdi [21] objective rate-of-

stress tensor, D is the deviatoric part of the strain-rate tensor, Gm

and bm are material parameters that can be thought of as shear
moduli and decay constants, respectively, and M is an integer. We
note that Eq. (5) accounts for geometric nonlinearities, is materi-
ally objective, is valid for finite deformations, and D does not
equal the time rate of a strain tensor unless the present configura-
tion is taken as the reference configuration, e.g., see Ref. [22].

Fig. 1 One-dimensional rheological analog interpretation of
the material model Fig. 2 One-dimensional Maxwell model
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The energy dissipated per unit volume, Evisc;ve, during finite
deformations of the material obeying Eq. (5) is given by

Evisc;ve ¼
ð

t

XM

m¼1

bm

2Gm
rve

m : rve
m

� �
dt

" #
(6)

where rve
m : rve

m denotes inner product of second order tensors rve
m

and rve
m . Equation (6) is derived in the Appendix.

Values of the Material Parameters

Analytical Expression for the Axial Stress for Uniaxial Ten-
sile and Compressive Deformations at Constant Engineering
Strain Rate. Of special interest here are cyclic uniaxial tension or
compression tests since viscoelastic materials exhibit hysteresis,
and the area between the loading and the unloading curves is
related to the energy dissipated due to viscous deformations of the
material. These tests are displacement-controlled and are often
performed at constant engineering strain rate by clamping one
end of the sample and prescribing a constant velocity at the other
end. For finite deformations, the difference between the engi-
neering strain rate and the true strain rate cannot be neglected.
Accordingly, we present relations giving the axial Cauchy stress
(or true stress) as a function of the axial stretch and the engineer-
ing axial strain rate for the first and the second loading–
unloading cycles of a cyclic test performed at a constant engineer-
ing strain rate for a material obeying the constitutive relations (1)
with W and rve given by Eqs. (2) and (5), respectively. The deriva-
tion of these expressions is given in the Appendix where expres-
sions for the third and the fourth loading–unloading cycles are
also given.

We use the following notation: rTrue is the true axial stress, k is
the axial stretch, _eEng is the constant engineering strain
rate (taken positive for both loading and unloading), kp

I and kp
II

are the maximum axial stretch of the first and the second
cycles, respectively, and Dt is the delay time between the end of
the first cycle and the beginning of the second cycle. We intro-
duce functions Iload _eEng;G;b; kð Þ and Iunload _eEng;G;b; k0; kð Þ
defined as

Iload _eEng;G; b; k
� �

¼ 3G exp � bk
_eEng

� �
Ei

bk
_eEng

� �
� Ei

b
_eEng

� �� �
(7a)

Iunload _eEng;G;b;k0;k
� �

¼ 3Gexp
bk
_eEng

� �
Ei � bk

_eEng

� �
�Ei

bk0

_eEng

� �� �
(7b)

where Ei xð Þ ¼ �
Ðþ1
n¼�x ððe�n=nÞdnÞ and the integral is understood

as the Cauchy principal value due to the singularity of the inte-
grand at n ¼ 0.

For an incompressible material, expressions giving the true
axial stress as a function of the axial stretch and the engineer-
ing strain rate without explicit reference to time are listed
below:

• First cycle, loading:

rTrue
I;load kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

3Gm exp � bmk
_eEng

� �
Ei

bmk
_eEng

� �
� Ei

bm

_eEng

� �� �
(8)

• First cycle, unloading:

rTrue
I;unload kð Þ¼

XN

n¼1

ln kan�k�an=2
� 	

þ
XM

m¼1

3Gm exp �bm

2kp
I �k
_eEng

� �
Ei

bmkp
I

_eEng

� ��

�Ei
bm

_eEng

� ��
þ
XM

m¼1

3Gm exp
bmk
_eEng

� �
� Ei �bmk

_eEng

� �
�Ei

bmkp
I

_eEng

� �� �
(9)

• Second cycle, loading:

rTrue
II;unload kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

exp �bm Dtþ kþ kp
I � 2

_eEng

� �� �
� Iload _eEng;Gm;bm; k

p
I

� �
þ
XM

m¼1

exp �bm Dtþ k� 1

_eEng

� �� �
� Iunload _eEng;Gm;bm; k

p
I ; 1

� �
þ
XM

m¼1

Iload _eEng;Gm;bm; k
� �

(10)

• Second cycle, unloading:

rTrue
II;unload kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

exp �bm Dtþ kp
I þ 2kp

II � 2� k
_eEng

� �� �
� Iload _eEng;Gm; bm; k

p
L

� �
þ
XM

m¼1

exp �bm Dtþ 2kp
II � 1� k

_eEng

� �� �
� Iunload _eEng;Gm; bm; k

p
I ; 1

� �
þ
XM

m¼1

exp �bm

kp
II � k
_eEng

� �
Iload _eEng;Gm; bm; k

p
II

� �

þ
XM

m¼1

Iunload _eEng;Gm; bm; k
p
II; k

� �
(11)

For monotonic uniaxial compression, the axial stress can be found
from Eq. (8) by substituting a negative value for the constant engi-
neering strain rate.

Materials and Experimental Data. The two model adhesives
considered in this work are the transparent TPUs DFA4700
(Dureflex

VR

A4700) and IM800A (INTER Materials 800A). Sten-
zler [23] has provided test data for these two materials for uniaxial
tests summarized in Table 1. For the cyclic tensile tests, the mate-
rials were deformed up to a prescribed strain, then unloaded to
zero strain, and allowed to relax for Dt¼ 30 s between the cycles.
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The peak engineering strains of the cyclic tests were gradually
increased from 1 for the first cycle to 4 for the fourth cycle.

Method and Results. The material parameters to be deter-
mined are the number N of terms in the Ogden potential and the
corresponding parameters lnf g1�n�N and anf g1�n�N , and the
number M of terms in the Prony series and the corresponding
shear moduli Gmf g1�m�M and decay constants bmf g1�m�M. Val-
ues of N and M are progressively increased until the deviation in
the L2-norm between the experimental stress–strain curve consid-
ered and the corresponding model prediction (Eqs. (8)–(11)) is
less than 15%. The procedure is applied three times for succes-
sively larger test data.

For case 1, we only consider the monotonic compression
(�0.001/s) and tension (5/s) tests and the loading portion of the
first cycle of the cyclic tensile tests at all strain rates (0.01/s, 0.1/s,
0.5/s, and 1.0/s). For case 2, we consider the complete first cycle
of the cyclic tests in addition to the data included for case 1. For
case 3, we consider the data for the first two complete cycles.

The optimal set of parameters is searched using MATHEMATICA

and the “FindFit” function. The functions listed in Eqs. (8)–(11)
are written for assumed values of N and M and a least-square fit of
the stress predictions with the corresponding experimental curves

is performed. The values of N and M are gradually increased till
the L2-norm of the deviation is less than 15%. When the third
cycle was included in the fitting no value of N and M could be
found to achieve the desired deviation. Accordingly, we discuss
results obtained with only two cycles of loading/unloading. More-
over, no acceptable fit could be found for the DFA4700 when the
second cycle was included. Deviations of about 25% are persistent
despite increasing values of N and M. We will present here the
results obtained for N¼ 1 and M¼ 5. Using stress, strain, and
strain-rate relations other than those given by Eqs. (8)–(11) was
not investigated.

Values of material parameters for cases 1, 2, and 3 found using
the above-mentioned procedure are listed in Table 2 for the
DFA4700 and the IM800A.

The percentage deviations between the experimental data and
the model prediction are given in Table 3. For cases 1 and 2, the
deviations between the model predictions and the experimental
results not included in the least-square fit are large. In particular,
more than 200% deviation is observed for DFA4700 between pre-
dictions of the second tensile cycle and the results of case 2 while
smaller deviations are obtained with case 1. Thus, one cannot
hope to correctly predict the experimental data not included in
finding optimal values of the material parameters, and that
improving the agreement with the first complete deformation

Table 2 Values of material parameters for the DFA4700 and the IM800A TPUs

Experimental data considered for the three cases

Experimental data considered Case 1 Case 2 Case 3

Compression � � �
Cycle 1, loading � � �
Cycle 1, unloading � � �
Cycle 2 � � �

Optimal values of the material parameters for the DFA4700

ln (MPa) an ln (MPa) an ln (MPa) an

N¼ 1 0.8716 2.340 6.958� 10�3 7.954 0.03046 5.381
N¼ 2 �0.2815 �6.698 �0.3318 �6.047

Gm (MPa) bm (/s) Gm (MPa) bm (/s) Gm (MPa) bm (/s)

M¼ 1 2.571 8.086 1.189 3.750� 10�3 1.732 1.037� 10�3

M¼ 2 0.9873 0.4183 0.8255 0.5305 0.6344 0.1652
M¼ 3 2.661 6.136 1.24 0.5783
M¼ 4 0.0881 4.2933
M¼ 5 1.740 5.316

Optimal values of the material parameters for the IM800A

ln (MPa) an ln (MPa) an ln (MPa) an

N¼ 1 2.044 1.562 1.363 1.664 0.05349 4.229
N¼ 2 �0.09025 �6.642

Gm (MPa) bm (/s) Gm (MPa) bm (/s) Gm (MPa) bm (/s)

M¼ 1 0.2691 0.9391 0.2480 0.02602 1.496 7.162� 10�4

M¼ 2 0.3587 2.974 0.2875 0.1404
M¼ 3 0.3168 0.9253

Table 1 Test conditions for data available for DFA4700 and IM800A [23]

Type of test Strain rate _eEng (/s) Number of cycles Amplitude

Monotonic compression �0.001 / eEng
min ¼�0.2

Monotonic tension 5.0 / eEng
max¼ 1

Cyclic tension 0.01, 0.1, 0.5 4 eEng
max¼ 1, 2, 3, 4

Cyclic tension 1.0 1 eEng
max¼ 1
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cycle does not imply that the agreement with the second cycle is
also improved.

For small strains, the instantaneous Young’s modulus E0 of the
material is given by

E0 ¼
3

2

XN

n¼1

lnan þ
XM

m¼1

3Gm (12)

where the first term on the righthand side is due to the contribution
from rnlel derived from W, and the second term corresponds to the

contribution from rve. In Fig. 3, we have exhibited contributions
from the elastic and the viscoelastic responses to the initial instan-
taneous Young’s modulus of the DFA4700 and the IM800A mate-
rials. It is clear from the results that when test data from more
cycles are considered to find values of material parameters the
contribution from the elastic part of the constitutive relation to the
initial shear modulus decreases. The decrease is especially large
for cases 2 and 3 for which test data for complete cycle 1, and
complete first two cycles is considered for finding values of mate-
rial parameters. One should note that the contribution to the stress
from rnlel is not negligible at large strains, since the hardening pa-
rameters an have large values. The results depicted in Fig. 3 fol-
low from the observation that if more cycles are considered and
consequently the final time of the test becomes large a part of the
response that was initially considered nonlinear elastic has more
time to relax and gets incorporated into the viscoelastic response
via additional terms in the Prony series that have small decay con-
stants (i.e., large relaxation times).

In Figs. 4 and 5, we have plotted the tangent Young’s modulus
for uniaxial tension or compression (computed as @rTrue

I;load=@k with
different values of _eEng(¼ _k) and k) as a function of the axial
stretch k for different strain rates. The highest strain rate consid-
ered is 103/s, since curves for higher strain rates would be super-
imposed. It is interesting to note that for low strain rates, the
tangent Young’s modulus initially decreases with a change in the
value of the axial stretch from 1 or equivalently small axial
strains. However, this is not the case for axial engineering strain
rates higher than 10/s. Also, the tangent modulus at a constant en-
gineering strain rate is a function of the stretch. Even for small
strains, the tangent modulus is a different function of the

Table 3 Percentage deviations in L2-norm between the experimental and the predicted stress, stretch, and strain-rate curves.
Numbers are in italics when the experimental data was not considered for the least-squares fit.

DFA4700 IM800A

Stress–stretch curve Strain rate _eEng Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Compression �0.001/s 12.2 10.2 16.1 9.52 3.92 7.82
Tension cycle 1 loading 0.01/s 7.01 10.7 24.0 3.17 4.53 12.6
Tension cycle 1 unloading 27.0 4.61 20.3 15.1 2.56 10.1
Tension cycle 2 loading 32.1 142 16.0 7.85 9.65 10.3
Tension cycle 2 unloading 88.3 223 18.1 40.9 36.3 8.98
Tension cycle 1 loading 0.1/s 2.52 5.64 12.6 3.00 4.68 8.14
Tension cycle 1 unloading 19.3 12.9 18.6 8.25 5.56 6.93
Tension cycle 2 loading 20.2 125 12.5 3.70 5.13 8.19
Tension cycle 2 unloading 75.8 218 25.3 31.5 33.4 14.0
Tension cycle 1 loading 0.5/s 3.39 6.74 12.0 1.25 2.14 3.71
Tension cycle 1 unloading 18.0 9.92 15.5 4.35 2.54 6.14
Tension cycle 2 loading 20.2 79 17.7 5.82 3.69 5.71
Tension cycle 2 unloading 55.4 160 22.7 20.4 25.7 12.3
Tension cycle 1 loading 1.0/s 3.65 6.31 10.7 4.00 3.48 7.49
Tension cycle 1 unloading 14.7 8.26 14.6 8.38 3.27 7.79
Tension 5.0/s 2.26 2.35 4.79 3.33 2.64 5.67

Fig. 3 Contributions to the small-strain instantaneous Young’s
modulus from the elastic and the viscoelastic parts of the con-
stitutive relation

Fig. 4 Predicted tangent modulus as a function of the axial
stretch for the DFA4700 material

Fig. 5 Predicted tangent modulus as a function of the axial
stretch for the IM800A material
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magnitude of the axial strain for compressive and tensile deforma-
tions except for large values of the axial strain rate.

In Fig. 6, we have exhibited the tangent Young’s modulus in
uniaxial tension @rTrue

I;load=@k for k¼ 1.1 as a function of the strain
rate of the deformation _eEng¼ _k and for the different fitting meth-
ods used. The choice k¼ 1.1 is motivated by the large change in
the value of the predicted tangent moduli for this value of stretch
(see Figs. 4 and 5). These plots clearly show that the strain-rate
sensitivity of the proposed constitutive relation increases when
data for more loading cycles are considered in finding values of
material parameters. One should note that the range of strain rates
in the experimental data used for the three cases is not the same
(�0.001/s in compression and 0.01 to 5/s in tension). The high
strain rate stiffness of the materials is much less affected by the
fitting method than its low strain rate response. This is because
terms with small decay constants are added to the Prony series
when more deformation cycles are included.

The experimental stress–axial stretch curves are given, respec-
tively, in Figs. 7 and 8 for the DFA4700 and the IM800A materi-
als as well as the corresponding model predictions for the three
methods of finding values of material parameters.

The statement made earlier that the agreement between the
model predictions and the experimental results for the second de-
formation cycle is not necessarily improved by including data

from the unloading part of the first cycle (case 2 compared to case
1) is obvious from results depicted in Fig. 7. Moreover, we see
that predictions of model 1 exhibit a very small hysteresis, since
the curves corresponding to loading and unloading are almost
superimposed. We also note that the blue curves (case 1) are in
close agreement with the loading part of the first cycle while they
do not capture the unloading part and the second cycle. Similar
remarks hold for the IM800A adhesive (Fig. 8). We see that for
both adhesives the agreement between the green curves (case 3)
and the experimental data for the second deformation cycle is not
very good, and in particular the area within the hysteresis loop
(which is related to the energy dissipation) is underestimated. This
is a limitation of the proposed constitutive relation, since no val-
ues of material parameters could be found that improved the cor-
relation between the test data and the model predictions for cyclic
loading.

Loss and Storage Moduli. To find expressions for the storage
and the loss moduli as a function of the frequency of the deforma-
tion, we first derive an expression for the axial stress as a function
of the axial strain for small strains which are typical of dynamic
mechanical analysis (DMA) experiments. We linearize Eq. (A28)
of the Appendix for small strains for which there is no distinction

Fig. 6 Predicted tangent modulus at 10% engineering strain (k 5 1.1) as a function of the
engineering strain rate _eEng ¼ _k

Fig. 7 Experimental and predicted true axial stress as a function of the axial stretch for cyclic
tensile deformations of DFA4700 at 0.01/s
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between the true and the engineering strains, strain rates, and
stresses and obtain the following axial stress–axial strain relation:

rðtÞ ¼
XN

n¼1

3

2
lnan

 !
e tð Þ þ

XM

m¼1

rmðtÞ (13a)

rmðtÞ ¼ 3Gm

ðt

s¼0

e�bmðt�sÞ _eðsÞds (13b)

Equation (13b) is equivalent to the following differential
equation:

_rmðtÞ ¼ 3Gm _eðtÞ � bmrmðtÞ (14)

In terms of complex variables indicated below by a superimposed
hat, we define the complex axial strain �e and the complex axial
stresses �r and �rm as

eðtÞ ¼ Re �eðtÞð Þ; �eðtÞ ¼ êeixt

rðtÞ ¼ Re �rðtÞð Þ; �rðtÞ ¼ r̂eixt

rmðtÞ ¼ Re �rmðtÞð Þ; �rmðtÞ ¼ r̂meixt

(15)

By substituting from Eq. (15) into Eq. (14), we obtain the follow-
ing relation between r̂m and ê featuring the loss and the storage
moduli, E0mðixÞ and E00mðixÞ, corresponding to the mth term of the
Prony series:

r̂m ¼ E0mðixÞêþ iE00mðixÞê;

E0mðixÞ ¼
3Gm

1þ bm=xð Þ2
;

E00mðixÞ ¼
3Gm

bm

x
þ x

bm

(16)

Equations (13)–(16) give

r̂ ¼ E0ðixÞêþ iE00ðixÞê with

E0ðixÞ ¼
XN

n¼1

3

2
lnan þ

XM

m¼1

3Gm

1þ bm=xð Þ2

E00ðixÞ ¼
XN

m¼1

3Gm

bm

x
þ x

bm

8>>>>>><>>>>>>:
(17)

In Fig. 9, we have depicted the storage modulus and
tanðdÞ ¼ E00=E0 as a function of the angular frequency x of the de-
formation for the two materials and for different methods of find-
ing values of the material parameters described above. Note that
the shear storage and loss moduli G0ðixÞ and G00ðixÞ are related
to Young’s storage and loss moduli E0ðixÞ and E00ðixÞ by
G0ðixÞ ¼ E0ðixÞ= 2ð1þ �Þð Þ ¼ E0ðixÞ=3 and G00ðixÞ ¼ E00ðixÞ
=3, since the materials are incompressible and the deformations
are small.

For the DFA4700, the model predicted values of the storage
and the loss moduli for f>10 Hz and cases 1, 2, and 3 do not
show any significant differences. The storage modulus predicted
at high frequencies for case 2 is about 17.2 MPa, while it is
16.6 MPa for the two other cases considered (3.6% difference).
For the IM800A adhesive and f>10 Hz, the predicted values of
the storage moduli vary between 5.60 MPa (case 1) and 6.64 MPa
(case 3), which gives a difference of approximately 19%. Besides
these observations, the largest difference in the predictions is the
following: the consideration of the first unloading and of the sec-
ond complete deformation cycle in the data used to find values of
material parameters causes a large difference in the very low
strain-rate (<10�4 Hz) response of the material. This is true for
both materials, and for DFA4700 (IM800A), the predicted storage
modulus at very low strain-rates is 5.88 MPa (4.79 MPa) in case 1,
3.11 MPa (4.31 MPa) in case 2, and 0.23 MPa (0.343 MPa) in case
3. This gives a factor of 25 and 14 between the quasi-static storage
moduli of cases 1 and 3 for the DFA4700 and the IM800A,
respectively. Moreover, we notice that for both adhesives values
of material parameters found in case 3 introduce a very large peak
in the value of the tangent delta at low strain rates, since the tan-
gent delta is greater than one for some frequencies, which means
that at those frequencies the loss modulus is greater than the stor-
age modulus. Since the storage modulus at very low strain-rates is
the small strain Young’s modulus of the nonlinear elastic response
of the material (see Eq. (17) when x! 0) this is consistent with
the remarks made for results shown in Fig. 3.

Stenzler [23] performed DMA of DFA4700 and IM800A sam-
ples at 1 Hz for temperatures between �150 and þ100 �C. From
the experimental results, one can read the tan(d) at room tempera-
ture (assumed to be 20 6 5 �C) for imposed cyclic deformation at
1 Hz. These values are compared to the corresponding model pre-
dictions in Table 4.

With the material parameters found in cases 1 and 2, the pre-
dicted value of tan(d) for the DFA4700 is comparable to the ex-
perimental value. However, in case 3, the predicted value is about
40% smaller than that obtained from the DMA data. For the
IM800A adhesive, the predicted values are far smaller than the

Fig. 8 Experimental and predicted true axial stress as a function of the axial stretch for cyclic
tensile deformations of IM800A at 0.1/s
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experimental ones in all three cases. We note that the experimen-
tal tan(d) of the IM800A is quite small and corresponds to a
6.3 6 1.1 deg phase difference between the prescribed stress and
the measured strain.

When test data for case 3 is used to find values of material pa-
rameters, the constitutive relation shows the most rate sensitivity
and the predicted tan(d) for 1 Hz at room temperature is smaller
than that found for cases 1 and 2. This is because most of the
strain-rate dependency for case 3 occurs at very low frequencies
in Fig. 9 the peak in the value of tan(d) occurs at 10�5–10�4 Hz
frequencies. These results suggest that by improving the agree-
ment between the model predictions and the experimental data for
the second cycle of deformations the model predictions for the
first deformation cycles are worsened. A large part of the visco-
elastic response of the material is attributed to very small relaxa-
tion times which results in smaller value of tan(d) at room
temperature and 1 Hz frequency. These remarks are also valid for

the IM800A material even though the tan(d) for it has small
values.

Shear Response. We note that for simple shear deformations,
the orthogonal matrix R in the polar decomposition of the defor-
mation gradient F is not identity as it is for uniaxial deformations.
Thus, the analysis of the viscoelastic part of the stress–strain curve
becomes more interesting. Simple shear deformations in the
xy-plane are described by

x ¼ X þ cY; y ¼ Y; z ¼ Z (18)

where lower (upper) case letters correspond to the position of a
material point in the current (reference) configuration, and the
shear strain c is given by c ¼ _ct with _c being the constant engi-
neering shear strain rate. The condition rzz ¼ 0 is used to deter-
mine the hydrostatic pressure. Since rzx ¼ rzy ¼ 0, the
deformation is plane-stress. The differential equation giving the
shear stress rxy as a function of c and _c is integrated numerically
using the “NDSolve” function of MATHEMATICA (see the Appendix
for more details). The tangent shear modulus calculated as
@rxy=@c is plotted as a function of the shear strain c for different
values of _c in Fig. 10 for the DFA4700 and in Fig. 11 for the
IM800A.

For cases 1 and 2 of the DFA4700 and case 2 of the IM800A—
for which there are terms with negative exponents in the strain

Fig. 9 Storage modulus, loss modulus, and tangent delta as a function of the frequency f 5 x=ð2pÞ for uniaxial deformations.
Note that the frequency is plotted by using the logarithmic scale.

Table 4 Comparison of experimental and predicted values of
tan(d) at room temperature (20 6 5 �C) and 1 Hz loading rate

Predicted tan(d)

Material Experimental tan(d) Case 1 Case 2 Case 3

DFA4700 0.37 6 0.04 0.34 0.32 0.22
IM800A 0.11 6 0.02 0.021 0.071 0.023
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energy density function W—one can observe that the tangent
shear modulus becomes very large at large strains while it remains
quite small for the other cases. It is clear that the strain-rate de-
pendency of the DFA4700 material is stronger than that of the
IM800A, which is consistent with the results in uniaxial
deformation.

The tangent shear modulus is strain rate dependent even for
cases 1 and 2 (see insets in the figure) but the scale of the y-axis is
so large that it is not obvious in the plots of all of the data. We
note that for cases 1 and 2 the tangent shear modulus at high
strains has most of the contribution from the nonlinear elastic part
of the stress–strain curve which is strain-rate independent. How-
ever, for case 3, the contribution to the tangent shear modulus
from nonlinear elastic deformations is small which explains the
much lower value of the tangent modulus at high strains. There-
fore, it appears that having data for shear deformations of adhe-
sives at large shear strains (even for only one strain rate) is
essential for capturing the shear response of the adhesive, since
the latter is strongly affected by the stored energy function W.
However, we note that the deformation field given by Eq. (18) can-
not be easily used in experiments, since it leads to nonzero tractions
on the material faces orthogonal to the Y-axis in the undeformed
configuration, while in a shear lap test (for instance) those bounda-
ries would be free (and the deformation nonuniform). Another pos-
sibility is to study the Couette flow between two cylinders.

Discussion of the Constitutive Relations. The proposed con-
stitutive relation does not account for irreversible processes that
can take place during large deformations of TPUs such as rear-
rangement of molecular networks (see Ref. [16]), since when the
material is unloaded and t!1 the material completely “forgets”

its deformation history as contributions from the Prony series van-
ish and the material retrieves its original shape. The temperature
dependence of material parameters and the relaxation times has
not been considered. The latter could be incorporated via the Wil-
liam–Landel–Ferry equation, e.g., see Ref. [24], and assuming
that the stored energy function also depends upon the temperature
change. These factors may explain why the model cannot well cap-
ture the second deformation cycle of the DFA4700 and IM800A.
Furthermore, one should compare predictions from the constitutive
relation with test data for other types (especially, three-
dimensional) of deformation that have not been used to find values
of material parameters. However, this has not been done because of
the lack of availability of the test data in the open literature.

Ideally, one should consider test data under a variety of loading
conditions to find values of material parameters. However, it is
not possible since testing materials under controlled conditions
and accurately measuring stresses and strains is rather difficult.

The considerable deviation remaining between the predictions
and the experimental data of the second deformation cycles in
Figs. 7 and 8 are a limitation of the model. Several different
initial points (i.e., sets of values) have been used for the least
square fitting of the material parameters but all of them eventu-
ally yielded values reported in Table 2 of the manuscript (or
sets of values giving a worse agreement with experimental
data).

For strain-rates varying from 10�3 to 103/s, one probably needs
a nonlinear dependence of the Cauchy stress upon the strain-rate
tensor. One could potentially include dependence of the Cauchy
stress upon D

2, D
3, second invariant of D, and third invariant of D

with the resulting increase in the number of material parameters.
Whether or not it will improve correlation between test results
and model predictions remains to be explored.

Fig. 10 Predicted tangent shear modulus for simple shear deformations of the DFA4700
material
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We believe that the constitutive relation is applicable for gen-
eral three-dimensional deformations of rubberlike materials as
similar material models have been used for analyzing finite defor-
mations, e.g., see Refs. [15,24].

We note that Yu and Batra [25–27] have studied initial-boundary-
value problems with two materially objective constitutive rela-
tions that express a stress tensor as a linear function of the time
history of the appropriate strain-rate tensor for finite deformations.
Whereas the two constitutive relations predict identical results for
infinitesimal deformations, they give different results for finite
deformations.

The inverse problem of finding values of material parameters
for a thermo-elasto-viscoplastic material from the test data by
solving initial-boundary-value problems was also studied in
Ref. [28].

Application: Simulations of Low-Velocity

Impact of Laminate

The constitutive equations presented above have been imple-
mented in the explicit commercial FE software LS-DYNA as a user-
defined subroutine. The quasi-static response of the material is
computed from the deformation gradient to avoid writing the cor-
responding constitutive equation in a rate form. For a perfectly
incompressible material, the pressure term is a Lagrange multi-
plier and cannot be determined from deformations of the material
(e.g., see Ref. [22]). However, for numerical work, the kinematic
constraint of incompressibility is often relaxed and the pressure is
simulated by penalizing volumetric strains (e.g., see Ref. [29]).
Alternatively, one can use a mixed formulation in which the pres-
sure is an unknown variable and is determined as a part of the so-
lution of the problem, e.g., see Ref. [24]. A mechanical analog of
the former approach is depicted in Fig. 12. Thus,

r ¼ rnlel þ rve þ rvol (19)

The Cauchy stress rnlel is found from the following modified
strain energy density function:

W ¼
XN

n¼1

ln

an

ekan

1 þ ekan

2 þ ekan

3 � 3
� 	

where

eki ¼
ki

k1k2k3ð Þ1=3
; i ¼ 1; 2; 3

(20)

The Cauchy stress rvol is derived from the strain energy density
potential Wvol defined in Eq. (21), where J is the Jacobian of the
deformation gradient.

Wvol ¼ K J � 1� lnðJÞð Þ (21)

Fig. 11 Predicted tangent shear modulus for simple shear deformations of the IM800A
material

Fig. 12 One-dimensional rheological analog interpretation of
the constitutive relation for an incompressible material
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The value of the bulk modulus K must be much greater than that
of the shear modulus of the material. In the present work, unless
otherwise specified, the value of K has been determined by assum-
ing that the initial Poisson’s ratio (at zero strain) of the nearly
incompressible material equals 0.4995.

Viscous deformations of the material are assumed to depend
only on the deviatoric part Ddev of the strain rate tensor.

rve ¼
XM

m¼1

rve
m ;

rve
m

�
¼ 2GmDdev � bmrve

m

rve
m




t¼0
¼ 0

8<: (22)

The energy dissipated per unit current volume due to viscous
effects Evisc;ve is calculated at each time step in the user defined
material subroutine, and the total energy dissipated due to viscous
deformations is obtained by integrating over the deformed volume
(i.e., by summing elemental contributions).

The impact problem studied here, shown schematically in
Fig. 13, is the same as that analyzed by Antoine and Batra [19]
where a complete description of the problem, the mathematical
model, and details of the computational work are described. The
difference between that work and the one reported here is in the
constitutive relations of the DFA4700 and the IM800A and values
of material parameters. Here, results have been computed for the
three sets of test data used to find values of material parameters
for the two adhesives.

For the sake of completeness, we give a brief description of the
material model for the PC and the PMMA. The same set of consti-
tutive equations is used for the two materials, only values of the
material parameters differ. We assume that the Cauchy stress r is
the sum of a nonlinear elastic contribution rB (restoring force
from phase B) and of two viscoelastoplastic contributions ra and
rb (from phases a and b), i.e., r ¼ rB þ ra þ rb. The contribu-
tion of phase B is

rB ¼
CR

3

ffiffiffiffiffi
Nl

p

kp L�1 kp

Nl

� �
B0B (23)

Here, B0B is the deviatoric part of BB ¼ ðJÞ�2=3
FFT,

kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr BB

� �
=3

q
, L�1 is the inverse of the Langevin function

LðbÞ � coth b� 1=b, Nl is the limiting stretch, CR � nRkh, h is
the temperature in Kelvin, k is Boltzmann’s constant, and nR a
material parameter.

The constitutive equations of the two other phases a and b rely
on the decomposition of the deformation gradient into elastic and
plastic parts, e.g., see Refs. [30] and [31].

F ¼ Fe
aFp

a ¼ Fe
bF

p
b (24)

The rate of the plastic deformation gradient is given by

_Fp
a ¼ Fe�1

a
eDp

aF; _Fp
b ¼ Fe�1

b
eDp

bF ; (25)

where eDp
i is the plastic stain-rate tensor in phase i ¼ a; b (It has

been assumed that the plastic spin tensors are identically zero.)
The Hencky elastic strain tensor and the Cauchy stress tensor in

phase i ¼ a; b are given by

ee
i ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
Fe

i FeT

i

q� �
; ri ¼ 1

det Fe
ið Þ 2lie

e
i þ kitrðee

i Þ1
� 


(26)

The plastic rate-of-strain tensors in phases a and b are collinear
with the deviatoric Cauchy stress tensor of their respective phases
and have magnitude _c p

i given by

_cp
i ¼ _cp

0i exp �DGi

kh
1� si

tiŝi þ ap
i p

� �� �
(27)

Here, _cp
0i, DGi, ap

i are material parameters, si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5tr r

0
ir
0
i

� �q
,

ŝi ¼ 0:077l= 1� �ið Þ where �i is Poisson’s ratio of phase i ¼ a;b,
p ¼ �trðrÞ=3, ti is an internal variable whose initial value is 1.0
and whose evolution is described by

_ti ¼
hi

ŝ0
i

1� ti

t ss
i

� �
_cp
i (28)

The energy dissipated by plastic deformations is converted into
heat and deformations are assumed to be adiabatic (which is a rea-
sonable assumption for impact problems) resulting in Eq. (29) for
the rate of change of temperature, _h.

q0c _h ¼ _Q ¼ J 	 ra : eDp
a þ rb : eDp

b

� 	
(29)

Fig. 13 Schematic sketch of the impact problem studied

Table 5 Values of material parameters for the PC

Phase a Phase b Phase B Common

�i 0.38 0.38
_cp
0i (/s) 2.94� 1016 3.39� 105

DGi (J) 3.744� 10�19 3.769� 10�20

ap
i 0.168 0.245

hi (MPa) 125 400
tss
i 0.33 2.00

CR at 300 K (MPa) 35.0
Nl 12.25
c (J/(g	K)) 1.20
q (g/cm3) 1.20
E (GPa) at 300 K, 5000/s 1.678 0.344

Table 6 Values of material parameters for the PMMA

Phase a Phase b Phase B Common

�i 0.35 0.35
_cp
0i (/s) 6.95� 10219 1.77� 103

DGi (J) 5.528� 10�18 6.036� 10�20

ap
i 0.260 0.260

hi (MPa) 200 500
tss
i 0.73 0.45

CR at 300 K (MPa) 14.0
Nl 2.10
c (J/(g	K)) 1.46
q (g/cm3) 1.14
E (GPa) at 300 K, 5000/s 2.604 1.748
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In Eq. (29), c is the specific heat of the material, and q0 is the ini-
tial mass density.

Values of material parameters and approximate values of
Young’s moduli of phases a and b are given in Table 5 for the PC
and in Table 6 for the PMMA.

In Fig. 14, time histories of the contact force for the normal
incidence impact of the clamped PMMA/DFA4700/PC and the
PMMA/IM800A/PC plates at 22 m/s by a 28.5 g hemispherical-
nosed rigid impactor are depicted. The closeness of the numerical
results for the three sets of values of material parameters is

consistent with those depicted in Fig. 6 which shows that the
response of the interlayer material at high strain rates (which are
typical of the impact problem) is essentially independent of the
method used to find values of material parameters. We now com-
ment on the experimental value of the peak contact force at
0.1 ms. For each laminate and the impact velocity, Stenzler [23]
conducted three tests but gave only one curve (“Representative
force and displacement traces are given for each interlayer and
velocity” [23]). For the PMMA/DFA4700/PC assembly and 22 m/
s impact velocity he did not mention if the peak in the contact
force at 0.1 ms was present in all three experiments. Stenzler [23]
provided in the Appendix of his thesis a summary of the charac-
teristics of the reaction force history. There in the column “first
force peak” and row “PMMA/DFA4700/PC, 22.7 m/s” is written
1.14 kN, which does not correspond to the peak value of 1.4 kN at
0.1 ms shown in the figure, but to the value of the contact force at
about 0.3 ms. It thus appears that this peak in the contact force did
not occur in all of the three tests.

The postimpact fracture patterns in the PMMA layer are shown
in Fig. 15 (Fig. 16) for plates with the DFA4700 (the IM800A)
interlayer.

The fracture patterns are qualitatively and quantitatively similar
for cases 1, 2, and 3 for both adhesives. We observe that the
circular-shaped cracks near the center of impact in the PMMA
layers have essentially the same radii, except for the IM800A ad-
hesive and case 1 in which no such pattern formed. Moreover, the
in-plane extension of cracks is the same as also evidenced by the
time histories of the computed maximum in-plane extension of a

Fig. 15 (a) Experimental (from Ref. [23]) and simulated ((b)–(d)) postimpact crack pat-
terns in the PMMA layer of the PMMA/DFA4700/PC assembly impacted at 22 m/s. The
three sets of material parameters for the DFA4700 interlayer are used in the simulations.

Fig. 14 Time histories of the experimental [23] and the com-
puted contact force for the impact of the (a) PMMA/DFA4700/PC
and (b) PMMA/IM800A/PC plates
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crack in the PMMA plate provided in Fig. 17. We note that no
such experimental data are available.

The principal sources of energy dissipation for the impact prob-
lem are the “eroded energy” due to the material failure and the
subsequent crack formation in the PMMA layer, the energy due to
plastic deformations of the PMMA and the PC layers, and the
energy of viscous deformations of the adhesive interlayer. Their

values in mJ are listed in Table 7. We note that the kinetic and the
strain energies of the PMMA, the PC, and the adhesive layers are
not listed in the table. The energy dissipated due to viscous defor-
mations of the adhesive is a miniscule part of the kinetic energy
of the impactor. For the DFA4700 (IM800A), the choice of the set
of material parameters for the adhesive used in the simulations
induces a variation in the energy dissipated due to cracking of the

Fig. 16 (a) Experimental (from Ref. [23]) and simulated ((b)–(d)) postimpact crack patterns in
the PMMA layer of the PMMA/IM800A/PC assembly impacted at 22 m/s. The three sets of mate-
rial parameters for the IM800A interlayer are used in the simulations.

Fig. 17 Time histories of the in-plane extension of cracks formed in the PMMA layer for the
normal impact of the (a) PMMA/DFA4700/PC and (b) PMMA/IM800A/PC plates

Journal of Applied Mechanics FEBRUARY 2015, Vol. 82 / 021001-13

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 12/19/2014 Terms of Use: http://asme.org/terms



PMMA layer of about 11% (19%). The energy dissipated due to
plastic deformations of the PC layer varies by about 10% (4%) for
the laminate using DFA4700 (IM800A). As expected, values of
material parameters for the adhesive noticeably influence the
energy dissipated due to viscous deformations of the adhesive
interlayer. However, energies dissipated due to deformations of
the adhesive are negligible as compared to that due to plastic
deformations of the PC layer. The energy dissipated due to crack-
ing and plastic deformations of the PMMA layer is approximately
one-fourth of that due to plastic deformations of the PC layer.

For the three sets of values of material parameters for the two
adhesives, contours of the plastic strain on the back face of the PC

layer are not much affected either qualitatively or quantitatively,
as shown in Figs. 18 and 19.

The results given in Table 7 imply that the energy due to vis-
cous dissipation does not increase between cases 1 and 3, which
seems to contradict results included in Fig. 3 that indicate that the
viscoelastic contribution to the instantaneous elastic response of
the materials increases. In order to investigate this further, we
assume that relaxation effects are negligible (i.e.,

2GmDdev
�� ��
 bmrve

m

�� �� for all m, deformations are isochoric (i.e.,
J¼ 1), and rotation effects are negligible (i.e., the deformation
gradient F is nearly symmetric). These assumptions imply that
rve

m � 2Gmedev, where edev is the deviatoric part of the Hencky

Table 7 Impact energy and sources of energy dissipation for the impact of the laminated plates. Energies are given in mJ.

PMMA/DFA4700/PC plate PMMA/IM800A/PC plate

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Initial kinetic energy of impactor 6900 6900 6900 6900 6900 6900
Final kinetic energy of impactor 4620 4640 4620 4830 4730 4760
Energy due to cracking of PMMA 210 189 195 238 280 261
Energy of plastic deformations of the PMMA 18.1 18.9 20.3 29.5 21.3 26.4
Energy due to viscous deformations of the adhesive 6.33 4.92 3.43 0.288 0.965 0.318
Energy of plastic deformations of the PC 794 846 867 817 785 810
Total energy dissipated 1028 1059 1086 1085 1087 1098

Fig. 18 Fringe plots of the effective plastic strain near the center of the back surface of the PC layer of the PMMA/DFA4700/PC
laminate

Fig. 19 Fringe plots of the effective plastic strain near the center of the back surface of the PC layer of the PMMA/IM800A/PC
laminate
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strain tensor. In this approximation, the energy dissipated per unit
volume by the mth term of the Prony series, Evisc;ve

m , is given by

Evisc;ve
m ¼

ð
t

bm

2Gm
2Gmedev : 2Gmedev

� �
dt ¼ 2Gmbm

ð
t

edev : edevdt

¼ 3Gmbm

ð
t

�e2dt (30)

where �e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
edev : edev

q
is the effective strain.

To ensure that Eq. (30) gives reasonably good estimate of the
energy dissipated due to viscous effects, we compare at the final
time of impact simulation the normalized total dissipation

Êvise;ve
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3V0tf Gmbm

ð
V0

Evise;ve
m





t¼tf

� �
dV0

s
(31)

obtained by using the actual dissipation calculated during the sim-
ulation, and its approximation

ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V0tf

ð
V0

ðtf

t¼0

�e2dt

� �
dV0

s
(32)

calculated during the postprocessing of results. The values given
in Table 8 clearly indicate that the approximate expression listed
in Eq. (32) gives a very good estimate of the energy dissipated
due to viscous effects. Moreover, one can see that the average
strain ê is essentially the same for the three sets of values of mate-
rial parameters.

We now use the approximate expression of Eq. (30) to explain
that the viscous dissipation can decrease even if the viscoelastic
contribution to the response of the material increases. Since values
of ê given in Table 8 are virtually independent of the choice of the
set of material parameters, the term

Ð
t
�e2dt in Eq. (30) is the same

for cases 1, 2, and 3 at the corresponding locations in the PMMA,
the adhesive, and the PC and times. Rewriting Eq. (30) as

Evisc;ve ¼
XM

m¼1

3Gmbm

ð
t

�e2dt

� �
¼
ð

t

�e2dt
XM

m¼1

3Gmbm½ � (33)

we see that the term Evisc;ve=
PM

m¼1 3Gmbm is nearly the same for
the three data sets. This is confirmed by the total normalized vis-

cous dissipation ~Evisc;ve ¼
Ð

V0
Evisc;vedV0

h i
= tf V0

PM
m¼21 3Gmbm

h i
(we added the tf V0 term to obtain a dimensionless number) plotted
in Fig. 20.

The curves in Fig. 20 are close to each other for the DFA4700
while for the IM800A the black curve is quantitatively different
from the other two (20% difference at the final time). It follows
from Eq. (30) that the energy dissipated due to viscous effects is
proportional to

PM
m¼1 Gmbm. Thus, even though

PM
m¼1 Gm is larger

in case 3 as compared to that in the other two cases, it does not
imply that

PM
m¼1 Gmbm is also larger. The decrease in the relaxa-

tion times bm’s is so large that it more than compensates for the
increase in the value of Gm’s and the energy dissipated decreases.
This explains why the IM800A with the set of material parameters
for case 3 has less energy dissipated due to viscous deformations
than that for values of material parameters for case 1. While the
total viscoelastic contribution to the response is more important in
case 3 the reduction by several orders of magnitude of some decay
constants bm results in a decrease in the energy dissipated. We
note that the curves corresponding to the DFA4700 adhesive are
below those corresponding to the IM800A adhesive which is
related to the higher stiffness of the DFA4700 material and the
consequent lower strains.

Conclusions

We have considered a simple constitutive equation for finite
deformations of viscoelastic adhesives. For uniaxial tensile and
compressive deformations at constant engineering axial strain
rates, equations for the true axial stress have been derived as func-
tions of the axial stretch and the axial stretch rate. Experimental
data for uniaxial tests performed at constant engineering strain
rates have been used to find values of material parameters for two
adhesives, the DFA4700 and the more compliant IM800A. It is
shown that depending upon the data used for monotonic loading,
one cycle of loading and unloading, and two cycles of loading and
unloading, values of material parameters are quite different. The
tangent modulus at given values of the axial stretch and the axial
stretch rate depends upon the data used to find values of material
parameters. Thus, even for uniaxial deformations, one cannot cor-
rectly predict the experimental data not included in finding opti-
mal values of the material parameters, and that improving the
agreement with the first complete deformation cycle does not
imply that the agreement with the second cycle is also improved.

Table 8 Normalized energy dissipations found by using
Eqs. (31) and (32). Deviations between Êvisc;ve

m ’s and ê are given
in parentheses (using the Êvisc;ve

m ’s as reference values).

PMMA/DFA4700/PC Case 1 ê 0.0845
Êvisc;ve

1 0.0829 (þ1.9%)

Êvisc;ve
2 0.0832 (þ1.6%)

Case 2 ê 0.0841
Êvisc;ve

1 0.0827 (þ1.7%)

Êvisc;ve
2 0.0827 (þ1.7%)

Êvisc;ve
3 0.0824 (þ2.0%)

Case 3 ê 0.0887
Êvisc;ve

1 0.0874 (þ1.5%)

Êvisc;ve
2 0.0874 (þ1.5%)

Êvisc;ve
3 0.0874 (þ1.5%)

Êvisc;ve
4 0.0872 (þ1.7%)

Êvisc;ve
5 0.0872 (þ1.8%)

PMMA/IM800A/PC Case 1 ê 0.161
Êvisc;ve

1 0.152 (þ5.9%)

Case 2 ê 0.144
Êvisc;ve

1 0.136 (þ5.9%)

Êvisc;ve
2 0.136 (þ6.0%)

Case 3 ê 0.138
Êvisc;ve

1 0.139 (�0.4%)

Êvisc;ve
2 0.139 (�0.4%)

Êvisc;ve
3 0.139 (�0.3%)

Fig. 20 For values of material parameters corresponding to
cases 1, 2, and 3, the normalized total energy ~Evise;ve due to vis-
cous deformations as function of time for the impact of PMMA/
adhesive/PC plates with either DFA4700 or IM800A as adhesive
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The validity of the constitutive relations for three-dimensional
deformations of the adhesive cannot be ascertained due to the non-
existence of the test data in the open literature. Values of the tan-
gent modulus in simple shear deformations have been plotted as
functions of the shear strain and the shear strain rate.

The constitutive equation has been implemented in the com-
mercial FE software LS-DYNA and used to analyze transient defor-
mations of a laminated plate impacted at low velocity by a rigid
hemispherical nosed impactor. We found that the energy dissi-
pated by viscous deformations of the adhesive interlayers
decreased when more deformation cycles were included to find
values of material parameters for the adhesive materials. How-
ever, the energy dissipated due to viscous deformations of the ad-
hesive is miniscule relative to the kinetic energy of the impactor
and the energy dissipated due to plastic deformations of the PC
layer and cracking of the PMMA layer. Furthermore, it is found
that plastic deformations of the PC layer, the fracture of the
PMMA layer and the total energy dissipated are not sensitive to
the values of material parameters used for the interlayer for the
impact problem studied. This is due to the fact that using larger
set of test data for finding values of the material parameters for
the adhesive significantly affected their predicted low strain-rate
response without impacting much their high strain-rate response.
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Appendix

Constitutive Relation for Viscoelastic Materials. We assume
that the deformation gradient F and the strain-rate tensor D are
given with respect to the global rectangular Cartesian coordinate
axes.

In order to determine the contribution rnlel to the total Cauchy
stress tensor r we first find the eigensystem (i.e., eigenvectors

bif gi¼1;2;3 and eigenvalues gif gi¼1;2;3) of the left Cauchy–Green
tensor B:

B ¼ F 	 FT ¼
X3

i¼1

gi bij i bih j (A1)

where bij i bj

� 

 denotes the tensor product between vectors bi and
bj. The principal stretches kif gi¼1;2;3 are related to the eigenvalues
gif gi¼1;2;3 by ki ¼

ffiffiffiffi
gi
p

, i¼ 1, 2, 3. The Cauchy stress for the non-
linear elastic deformations can thus be written as [22]

rnlel ¼ l

J

X3

i¼1

ki
@W

@ki
bij i bih j

¼ 1

k1k2k3

X3

i¼1

XN

n¼1

l ~kan
i �

1

3
~kan

1 þ ~kan

2 þ ~kan

3

� 	� �
bij i bih j

(A2)

where ~ki ¼ ki= k1k2k3ð Þ1=3
.

The Green–Naghdi stress rate requires that the rotation matrix
R in the polar decomposition of the deformation gradient F be
known. It is found from the relation

R ¼
X3

i¼1

1

ki
bij i bih j

 !
	 F (A3)

Thus, the constitutive relation (5) for the viscoelastic contribution
can be written as

d

dt
RT 	 rve

m 	 R
� 


¼ 2GmRT 	 Ddev 	 R� bmRT 	 rve
m 	 R (A4)

Introducing r̂ve
m ¼ RT 	 rve

m 	 R and D̂
dev ¼ RT 	 Ddev 	 R, the con-

tribution of the mth term of the Prony series rve
m to the total

Cauchy stress tensor can be incrementally updated according to

rve
m tþDtj ¼ R tþDtjð Þ 	 r̂ve

m tþDtj
� �

	 R tþDtjð ÞT;

r̂ve
m tþDtj ¼ r̂ve

m tj þ 2Gm D̂
dev

tþDtj
� 	

� bm r̂ve
m tj

� �� 	
Dt

(A5)

In order to find the pressure for an incompressible material, the
volume change is penalized by adding a contribution derived from
the strain energy density function Wvol ¼ K J � 1� lnðJÞð Þ which
results in adding the contribution rvol to the total Cauchy stress of
the material where

rvol ¼ K 1� 1

J

� �
I ¼ K 1� 1

k1k2k3

� �
I (A6)

In Eq. (A6), I is the identity tensor, and the bulk modulus K is
given by

K ¼ 2 1þ vð Þ
3 1� 2vð Þ

1

2

XN

n¼1

lnan þ
XM

m¼1

Gm

" #
(A7)

where � is Poisson’s ratio of the material at zero strain.

Viscous Dissipation. We additively decompose the deviatoric
strain-rate tensor into elastic and viscous parts

Ddev ¼ Del
m þ Dvisc

m (A8)

The constitutive relation (5) of the viscoelastic contribution can
then be rewritten as

rve
m

�
¼ 2GmDdev � bmrve

m ¼ 2Gm Ddev � b
2Gm

rve
m

� �
¼ 2GmDel

m

(A9)

where we have set

Dvisc
m ¼ bm

2Gm
rve

m (A10)

which is valid for both incompressible and nearly incompressible
materials. For an incompressible material, Ddev ¼ D.

For an incompressible material, the rate of internal energy
(work done to deform the material) per unit volume in the refer-
ence configuration equals Jr : D ¼ r : Ddev and

r : Ddev ¼ rnlel þ
XM

m¼1

rve
m � pI

 !
: Ddev (A11a)

¼ _Wþ
Xm

m¼1

rve
m : Del

mþ
Xm

m¼1

rve
m : Dvisc

m �ptr Ddev
� �

(A11b)

Since tr Ddev
� �

¼ 0, Eq. (A11b) can be rewritten as

r : Ddev ¼ _W þ
Xm

m¼1

rve
m : Del

m þ
Xm

m¼1

rve
m : Dvisc

m (A12a)

021001-16 / Vol. 82, FEBRUARY 2015 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 12/19/2014 Terms of Use: http://asme.org/terms



r : Ddev ¼ _W þ _Eel;ve þ _Evisc;ve (A12b)

where _W is the rate of energy of the nonlinear elastic contribution,
_Eel;ve is the rate of elastic energy of the viscoelastic contribution,

and _Evisc;ve is the rate of energy dissipated due to viscous deforma-
tions. We can use Eq. (A10) to obtain the following expression for
the energy per unit volume dissipated due to viscous
deformations:

Evisc;ve ¼
ð

t

XM

m¼1

bm

2Gm
rve

m : rve
m

� �
dt

" #
(A13)

Recalling Eqs. (1) and (5), we get

Jr : D ¼ J rnlel þ rvol þ
XM

m¼1

rve
m

 !
: D (A14a)

¼ _Wþ _WvolþJ
XM

m¼1

rve
m : Del

mþJ
XM

m¼1

rve
m : Dvisc

m

þ J
XM

m¼1

rve
m : D�Ddev
� �

(A14b)

In order to prove that rve
m : D� Ddev
� �

¼ 0, we start with
D� Ddev ¼ 1

3
tr Dð ÞI and simplify Eq. (A14b) by noticing that

rve
m : D� Ddev
� �

¼ tr rve
m 	

1

3
tr Dð ÞI

� �
¼ 1

3
tr rve

m

� �
tr Dð Þ (A15)

We apply the trace operator to the constitutive relation (A9) which
uses the Green–Naghdi stress-rate and obtain

tr R 	 d

dt
RT 	 rve

m 	 R
� 


	 RT

� �
¼ 2Gmtr Ddev

� �
� bmtr rve

m

� �
(A16)

Equation (A16b) can be simplified and used with rve
m t¼0j ¼ 0 to

give the differential equation and the initial condition

d

dt
tr rve

m

� �� 

¼ �bmtr rve

m

� �
; tr rve

m

� �
t¼0j ¼ 0 (A17)

It follows from Eq. (A17) that tr rve
m

� �
¼ 0 at all times, which

leads to the simplified expression:

Jr : D ¼ _W þ _Wvol þ J
XM

m¼1

rve
m : Del

m þ J
XM

m¼1

rve
m : Dvisc

m (A18a)

¼ _W þ _Wvol þ _Eel;ve þ _Evisc;ve (A18b)

Here, _W is the rate of elastic energy of the deviatoric nonlinear
elastic contribution, _Wvol is the rate of elastic energy due to the
volumetric strain, _Eel;ve is the rate of elastic energy of the visco-
elastic contribution, and _Evisc;ve is the rate of energy dissipated by
viscous deformations. Using Eq. (A10), we get the following
expression for the energy per unit undeformed volume dissipated
due to viscous deformations:

Evisc;ve ¼
ð

t

J
XM

m¼1

bm

2Gm
rve

m : rve
m

� �
dt

" #
(A19)

Stress–Strain Relations for Cyclic Tensile Tests. We recall
the notations: F is the deformation gradient, k is the axial stretch,
kT is the transverse stretch, eTrue is the true axial strain, eEng is the

engineering axial strain, _eEng is the engineering axial strain rate of
the test, and kp

I , kp
II, kp

III, and kp
IV are the peak axial stretches

reached during cycles 1, 2, 3, and 4, respectively. We will use
rTrue for the true (or Cauchy) axial stress and rEng for the engi-
neering axial stress

Constitutive Relations for Incompressible Material Under Uni-
axial Loading. Since test data are available for large strains, we
need to distinguish between engineering and true (or logarithmic)
strains and strain rates. The engineering strain eEng and the engi-
neering stress rEng are related to eTrue and rTrue by

eTrue ¼ ln 1þ eEng
� �

¼ ln kð Þ; rTrue ¼ 1þ eEng
� �

rEng ¼ krEng

(A20)

With a proper choice of the coordinate system, we have

F ¼
k

kT

kT

0@ 1A (A21)

and since its determinant is one we have kT ¼ k�1=2. It is clear
from Eq. (A21) that the rotation matrix in the polar decomposition
of F is the identity matrix at all times. Therefore, in the fixed
frame of the experiment, the constitutive equations for the visco-
elastic contribution can be simplified to give

drve
m

dt
¼ 2GmD� bmrve

m ; rve
m t¼0j ¼ 0 (A22)

where we have used D ¼ Ddev. The solution of Eq. (A22) is the
convolution integral

rve
m ¼ 2Gm

ðt

s¼0

e�bm t�sð ÞDðsÞds (A23)

where the strain-rate tensor D is given by

D ¼ 1

2
_FF
�1 þ F�T _FT

� 	
¼

_k
k

1

�1=2

�1=2

0@ 1A (A24)

The quasi-static or elastic contribution to the material response is

rnlel ¼
XN

n¼1

ln

kan

kan
T

kan
T

0@ 1A
¼
XN

n¼1

ln

kan

k�an=2

k�an=2

0@ 1A (A25)

Using Eqs. (A23) and (A25), we obtain the stress–strain relation

r ¼ �pIþ
XN

n¼1

ln

kan

k�an=2

k�an=2

0@ 1A
þ

XM

m¼1

2Gm

ðt

s¼0

e�bm t�sð Þ
_k
k







s

ds

" #
1

�1=2

�1=2

0@ 1A
(A26)

To find the pressure p, we use the condition that the lateral faces
of the body are traction-free, i.e., r22 ¼ r33ð Þ ¼ 0, and, therefore,

p ¼
XN

n¼1

lnk
�an=2 �

XM

m¼1

Gm

ðt

s¼0

e�bm t�sð Þ
_k
k







s

ds (A27)
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Thus, the axial stress rTrue ¼ r11 is given by

rTrue ¼
XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

3Gm

ðt

s¼0

e�bm t�sð Þ
_k
k







s

ds

(A28)

Cauchy Stress as Function of Axial Stretch for Deformations at
Constant Engineering Strain Rate. We use here the convention
that _eEng is positive for the cyclic tensile tests in both loading and
unloading. It represents the global engineering strain rate of the
test and not the actual strain rate at which the material deforms.
For the uniaxial compression test, _eEng is negative. We will now
give recursive relations that can be used to find the axial stress–
axial stretch relations for an arbitrary number of cycles.

We introduce the exponential integral function Ei defined by
Ei ¼ �

Ðþ1
n¼�x ðe�n=ndnÞ where the integral is understood as the

Cauchy principal value due to the singularity of the integrand at 0.

• First cycle, loading

During the loading part of the first cycle, we have _k ¼ _eEng

(constant), and k ¼ 1þ t _eEng. Thus, the convolution integral in
Eq. (A28) can be simplified to

rTrue
I;load kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

3Gm

ðt

s¼0

e�bm t�sð Þ _eEng

1þ s _eEng
ds (A29)

The time and the axial stretch are related by t ¼ k� 1ð Þ= _eEng, and
we introduce for later use the function

Iload _eEng;G;b;k
� �

¼3G

ð k�1ð Þ= _eEng

s¼0

exp �b
k�1

_eEng
�s

� �� �
_eEng

1þs _eEng
ds

(A30a)

¼ 3G exp � bk
_eEng

� �
Ei

bk
_eEng

� �
� Ei

b
_eEng

� �� �
(A30b)

Thus, the axial stress as a function of the axial stretch is given by

rTrue
I;load kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

Iload _eEng;Gm; bm; k
� �

(A31a)

¼
XN

n¼1

ln kan�k�an=2
� 	

þ
XM

m¼1

3Gm exp �bmk
_eEng

� �
Ei

bmk
_eEng

� ��
�Ei

bm

_eEng

� ��
(A31b)

which does not explicitly depend upon time.

• First cycle, unloading

The end time of the loading phase of the first cycle is given by
tp
I ¼ kp

I � 1ð Þ= _eEng. To obtain the expression for the stress in the
unloading phase, we first note thatðt

s¼0

e�bm t�sð Þ
_k
k







s

ds ¼
ðtp

I

s¼0

e�bm t�sð Þ
_k
k







s

dsþ
ðt

s¼tp
I

e�bm t�sð Þ
_k
k







s

ds

(A32a)

¼ e�bm t�tp
Ið Þ
ðtp

I

s¼0

e�bm tp

I
�sð Þ _k

k







s

ds

þ
ðt�tp

I

n¼0

e�bm t�tp
Ið Þ�nð Þ _k

k







tP
I
þn

ds (A32b)

Between tp
I and t (unloading), we have _k ¼ � _eEng and

k ¼ kp
I � n� tpIð Þ _eEng, which leads to

ðt�tp

I

n¼0

e�bm t�tp
Ið Þ�nð Þ _k

k







tP
I
þn

ds ¼
ðt�tp

I

n¼0

e�bm t�tp
Ið Þ�nð Þ � _eEng

kp
I � n _eEng

ds

(A33)

In terms of the function

Iunload _eEng;G;b;k0;k
� �

¼3G

ð k0�kð Þ= _eEng

n¼0

exp �b
k0�k
_eEng
�n

� �� �
� � _eEng

k0�n _eEng
ds (A34a)

¼3Gexp
bk
_eEng

� �
Ei � bk

_eEng

� �
�Ei �bk0

_eEng

� �� �
(A34b)

the stress as a function of the stretch for the unloading phase of
the first cycle is given by

rTrue
I;unload kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

(A35a)

þ
XM

m¼1

exp �bm;
kp

I �k
_eEng

� �
Iload _eEng;Gm;bm;k

p
I

� �
þ
XM

m¼1

Iunload _eEng;Gm;bm;k
p
I ;k

� �
(A35b)

Substitution for Iload from Eq. (A30b) and for Iunload from
Eq. (A34b) into Eq. (A35b) gives

rTrue
I;unload kð Þ¼

XN

n¼1

ln kan�k�an=2
� 	

þ
XM

m¼1

3Gm exp �bm

2kp
I �k
_eEng

� �
Ei

bmkp
I

_eEng

� �
�Ei

bm

_eEng

� �� �

þ
XM

m¼1

3Gm exp
bmk
_eEng

� �
Ei �bmk

_eEng

� �
�Ei �bmkp

I

_eEng

� �� �
(A36)

where there is no explicit dependence upon the time.

• Results for other cycles

One can obtain expression for the axial stress–axial stretch dur-
ing subsequent cycles by using the integral splitting method in
Eqs. (A32a) and (A32b) and functions Iload and Iunload. That is, the
stress during a loading (or unloading) phase of a cycle is the sum
of the viscoelastic stress derived for the first loading (or unload-
ing) cycle and of the viscoelastic stress existing at the beginning
of the current phase with an exponential decay. The following
expressions give the axial true stress as a function of the axial
stretch without explicit dependence upon time (the stretch is a
function of time). In order to show how they can be derived their
expressions have not been fully simplified
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rTrue
II;load kð Þ ¼

XN

n¼1

ln kan � k�an=2
� 	

þ
XM

m¼1

exp �bm

kp
I � 1

_eEng
þ Dtþ k� 1

_eEng

� �� �
Iload _eEng;Gm; bm; k

p
I

� �
þ
XM

m¼1

exp �bm Dtþ k� 1

_eEng

� �� �
Iunload _eEng;Gm;bm; k

p
I ; 1

� �
þ
XM

m¼1

Iload _eEng;Gm; bm; k
� �

(A37)

rTrue
II;unload kð Þ¼

XN

n¼1

ln kan �k�an=2
� 	

þ
XM

m¼1

exp �bm

kp
I �1

_eEng
þDtþkp

II�1

_eEng
þkp

II�k
_eEng

� �� �
Iload _eEng;Gm;bm;k

p
I

� �
þ
XM

m¼1

exp �bm Dtþkp
II�1

_eEng
þkp

II�k
_eEng

� �� �
Iunload _eEng;Gm;bm;k

p
I ;1

� �
þ
XM

m¼1

exp �bm

kp
II�k
_eEng

� �
Iload _eEng;Gm;bm;k
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Stress–Strain Relations for Simple Shear. We consider the plane
stress finite shear deformation at constant engineering shear strain rate
of an incompressible material. The deformation field can be written

x ¼ X þ cY; y ¼ Y; z ¼ Z (A43)

where ðx; y; zÞ and ðX;Y;ZÞ are coordinates of the points occupied
by the same material particle in the current and the reference con-
figurations, respectively. Here, c is the engineering shear strain,
and since _c is constant, c ¼ _ct (here t is the time and the deforma-
tion starts at t ¼ 0). The deformation gradient F is given by

F ¼
1 c

1

1

0@ 1A (A44)

We find the polar decomposition F ¼ V 	 R with V symmetric
positive definite and R proper orthogonal matrices. We denote by

v1; v2; v3f g and k1; k2; k3f g, respectively, the normalized eigen-
vectors and the eigenvalues of V. Their values are
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k1¼ 1; k2¼
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and the rotation matrix R is given by

R ¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2

p cffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2

p 0
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The Cauchy stress corresponding to the nonlinear elastic
contribution is

rOgden ¼
XN

n¼1

ln

X3

i¼1

kan
i vij i vih j

" #
(A47)

To find the viscoelastic contribution we recall that the strain-rate ten-
sor is the symmetric part of the velocity gradient L ¼ _F 	 F�1, and af-
ter defining the corotated quantities r̂ve

m ¼ RT 	 rve
m 	 R and

D̂ ¼ RT 	 D 	 R (see Eq. (A4)) the contribution of the mth term of the
Prony series to the viscoelastic response of the material is given by

d

dt
r̂ve

m

� �
¼ 2GmD̂� bmr̂ve

m ¼ GmRT 	
0 _c
_c 0

0

0@ 1A 	 R� bmr̂ve
m

(A48)

With the condition r̂ve
m




t¼0
¼ 0 the differential equation (A48) is

numerically solved for the six independent components of the
symmetric tensor r̂ve

m using the “NDSolve” function of MATHEMA-

TICA. Thus, rve
m ¼ R 	 r̂ve

m 	 RT.
We find the hydrostatic pressure from the condition

rzz ¼ �pþ
PN

n¼1 lnþ
PM

m¼1 rve
m

� �
zz
¼ 0. We note that due to the

structure of the rotation matrix R the differential equation for
rve

m

� �
zz

is uncoupled from the differential equations for the
remaining components, and we get rve

m

� �
zz
¼ 0 identically.

The (engineering) shear stress rxy can be computed from
Eq. (A47) and from the numerical solution of Eq. (A48). The tan-
gent shear modulus is then defined as GT ¼ @rxy=@c and is
numerically evaluated.
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