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We first reduce existing equations for nonlinear thermoelectroelasticity to the case of large electric
fields, small strains, and infinitesimal temperature variations. These equations are then specialized
to the case of thin plates with completely electroded major surfaces, and it is shown that 1n this case
the charge equation of electrostatics is satisfied trivially to the lowest order. An example 1s given to
illustrate the effect of heat conduction on the response of a thin electroded plate subjected to time

harmonic voltages on the two major surfaces.

l. INTRODUCTION

Piezoelectric materials in intelligent structures are often
subjected to strong driving voltages. Based on his general
formulation for nonlinear thermoelectroelasticity,’ Tiersten®
has recently derived a set of equations quadratic in electric
fields that are suitable for studying deformations of piezo-
electric materials subjected to strong driving voltages. He
has also specialized these equations to fully electroded very
thin plates.” These equations are also used to derive a set of
two-dimensional equations for piezoelectric plates subjected
to strong driving voltages,” and to analyze a composite elas-
tic plate with piezoelectric actuators.”

In Ref. 2, only the piezoelectric effect is considered. In a
recent review article,” Rao and Sunar have pointed out that
the composite intelligent structures have different response
characteristics at different temperatures® and the temperature
variation in piezoelectric materials can noticeably affect the
overall performance of the control system.’ Hence, thermal
effects are important in the precision distributed sensing and
control of intelligent structures. According to Rao and Sunar’
applications of thermopiezoelectricity theory to practical en-
gineering problems in general, and to vibration control of
flexible structures in particular, are very few in the
literature.® ' Also, the development of the thermopiezoelec-
tric sensors/actuators is important for advanced intelligent
structures.

In this article, equations derived in Ref. 2 are general-
ized to include thermal effects. The nonlinear constitutive
relations for a thermopiezoelectric material linear in small
strains and temperature variations, but quadratic in the rela-
tively strong electric field, are obtained by retaining proper
terms in the expansion of an energy density function. The
complete set of the nonlinear thermopiezoelectric equations
quadratic in electric fields are then specialized to the case of
a thin thermopiezoelectric plate with fully electroded major

surfaces.

IIl. EQUATIONS FOR NONLINEAR
THERMOPIEZOELECTRICITY

Let the coordinates of a material particle with respect to
a rectangular Cartesian coordinate system be X, in the ret-
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erence configuration and y; in the current configuration. The
motion of the material point is described by y,=y.(X, ,?),
where ¢ is the time. Throughout this article, a repeated index
implies summation over the range of the index, and a comma
followed by M (or i) implies partial differentiation with re-
spect to X, (or y;). A dot above a quantity denotes its ma-
terial time derivative.

The equations governing the finite deformations of a
nonlinear thermopiezoelectric body are’

p'=pJ, Kpji= jMPOﬁM: Z1.1=0,
~Qr1=pTn, -Q,T,=>0,

Kpj=Hpj+My;, M ;=JX, €(EE;=3EE;6;),

_(ZL:EOEL_‘—*?L! ngjXL,fEi?
; . . (1)
X - X X
H,. = 0, : P = — Y ! —
L} P yj_.M (?ELM ‘-PL p f?WL 7 aT’

x=X(Eg ;W iT), QK=QK(T,M Erp Wi T),

Eg; = %()’f,L)’f,M“ Orm)s

Ei=— Gf’,:‘a WL':yi,LEi: — ¢’,L ’

where p° and p are the mass densities in the reference and
present configurations, K, ; is the total Piola—Kirchhoftf stress
tensor, &, is a translation operator which serves to translate
a vector from the present to the reference configuration and
vice versa and is required for notational consistency and clar-
ity because of the use of upper- and lower-case indices, re-
spectively, to refer to the reference and present positions of a
material point, u,, is the mechanical displacement vector, &;
the reference electric displacement, Q; the reference heat
flux vector, T the absolute temperature, 7 the entropy per
unit mass, €, the electric permittivity of free space in mks
units, £, the electric field, &;; the Kronecker delta, E; the
material strain tensor, and ¢ the electric potential. Equations
in the first line of (1) represent the conservation of mass, the
balance of linear momentum, and the electnic charge equa-

J=det(y; ),
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tion. Equations in the second line, 1.e., the heat equation and
the entropy inequality are consequences of the first and sec-
ond laws of thermodynamics. Equations in the fifth and sixth
lines of (1) are the constitutive relations which are deter-
mined by the specification of two functions y and Q and the
form of Q is restricted by the entropy inequality.

The boundary conditions at the matenal surface in the
reference configuration with unit exterior normal N, involve

the specification of either uy, or N;K;;, por N,/ ,and T

or N,(Q, .

The purpose of this work 1s to derive a set of equations
for the case of small strain infinitesimal temperature varia-
tions, and strong electric fields. The only nonlinear terms to
be kept are those quadratic 1n the electric field, as in Ref. 2.
For this purpose, the scalar function y may be expanded with
respect to the reference state of zero strain, zero electric field,
and uniform reference temperature 7T:

pOX(EKL W T)= %CABCDEABECD — %XAB W, Wpg

—3p°C(T—Ty)
—AagE sg(T—Ty) —psaWa(T—-T,)
~ 35648 WAWBE cp— 3¥agWaWp(T

EI;XABC WiWgWe, (2)

—eapcWaE e

—To)—

where the material constants c45¢-p, €45cs Xags Pagcp » and
Xapc are called the elastic, piezoelectric, second-order elec-
tric permeability, electrostrictive, and third-order electric per-
meability, respectively. a, 5z and p, are the thermoelastic and
pyroelectric constants, respectively. C 1s the specific heat,
and vy, are noniinear pyroelectric constants. In Eq. (2) we
have assumed that the body 1s stress free in the reference
conhiguration and have accordingly excluded the term linear
in £ ,p on the night-hand side. The material constants satisfy
symmetry relations, €.8.. Cagcp=CcpaB=CBACD=CABDC -

Equation (2) results in the following constitutive rela-
f1ons:

dp” x
H —YiM J9E, “‘;M(CLMCDECD earmWa—aryb

— 3bagimWaWsp),

- apﬂ)(_ |
S = W, € pclpct XesWa—pPr0+ ix18cWeWe

+b18cpWeEept YisWaH, (3)

ap(]X
p'n= o7 = AapEapgtpaWatp'CH

+ ;—7.4BWA WB ’

where we have set the temperature variation T—T,=6. We
note that in Eq. (3), there are two terms involving the prod-
uct of Wy and E -, , and the product of Wy and 6. Since a
theory quadratic in electric field variables is desired, we drop
these two terms and obtain

Hl,jzyj.

mCimepEcp—earmWa— a6

— sbagimWaWg),
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F1=ecEpc+ x1sWe+ PO+ ixuscWaWe, (%
P 1= anpEspt paWatp COT 37 WaWs. ‘

We note that although Eq. (3) has some unneeded terms¥
for the present purpose, it has the advantage of being derived &
from an energy density function y. The removal of the un-*
needed terms results in the simpler form Eq. (4), which 3
serves the present purpose well but does not admit a scalar : _4
generating function. The existence of an energy density or .;
generating function is important in variational and related °
numerical methods. "

The simplest form of the function Q4 which satisfies the

entropy inequality is'

Qk(T psEpps W T)=—kgn(Epp ;Wi T)T n,  (5)

where gy 1s positive definite, however kg, may still depend
on Eyg;, W;, and T. Since we are keeping only those non-
hinear terms that are quadratic in the electric field, henceforth
we assume that xgy does not depend on Eg; , W, , and T.
Hence

QK(T,M B Wp i T)=

where the constant matrix gy 1s positive definite.

Equations (4) and (6) are the constitutive relations we
need to consider, which are quadratic in the electric field
variables and satisfy the entropy inequality.

_KKN(O;O;TO)B,NT (6)

Ill. SMALL STRAINS AND TEMPERATURE
VARIATIONS, AND QUADRATIC ELECTRIC FIELDS

We now reduce the general thermopiezoelectric equa-
tions given in the previous section to the special case of
infinitesimal strains and temperature variations, and qua-
dratic electric fields. In making the reduction, powers of u,,,
6, and their gradients higher than the first are dropped 1n all
expressions, and even the linear terms themselves are
dropped in comparison with any finite quantity, such as the
Kronegker delta and 1, in the usual manner. In this way we
obtain”

J—1,

YikK™ OiK » XL,:’“‘* 51,5 ’

Einy—Sim=3u ytupy ), (7)

where the symbol — implies replaced by. Thus the constitu-
tive relations in Eq. (4) simplify to

HL)': jM(ULMCDSCD_ earmWa—apyb

- %bABLMWA WB)!

Sr=erpcSpet XegWptp 0+ %XLBCWBWC ’
(8)
P =, pgSaptpaWa+p'CO+ 3y, W, Wy,

Ox=—KgnO N

With Eq. (7) and the relevant equations in Eq. (1) we
have

M= jMEU(WLWM_

) %WKWKgLM)a

/{L=WL. (9)
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FIG. 1. A fully electroded thin thermopiezoelectric plate.

The substitution of Egs. (8) and (9) into the relevant
equations in Eq. (1) yields

K= jMTLM:

Tim=cimapdap—eamWa—apy0— %'SABLMWA Wg,

basiy=basir—2€0(S1a0mp— 0480LM), (10)

Y1=erpcSpct €1aWatpr 0+ sxap WaWs,

€14=€00raTt X14 -

Substitution of Eq. (10), into the stress equations of mo-
tion in Eq. (1) gives |

TLM,L=pOaM- | o - (11)

Within our approximation, we can also write

_QL,LZpU(T0+ ) n=~p°Ty7. (12)

In summary, we have obtained

Timr=P Uy, Z1 =0, —Qp1=Top"7,

_ 17
TLM o CLMABSAB o eALMWA —ap M 0 szBLMWA WB ’

A 1
Yy=e1pcSpct €LaWatprO+ixaptWaWsp,

13
P’ n=aupSag+paWa+tp'CO+ 3y, sW,Wpg, (13)

Q1= —Kipmbp,
WL= T é,L ’

which is the desired theory for small strains and temperature
variations, and strong electric fields. We note that Eq. (13)
reduces to the nonlinear theory of piezoelectricity quadratic
in electric fields given in Ref. 2, and the linear theory of
thermopiezoelectricity given in Ref. 11. The substitution of
Eqg. (13),_¢ into Eq. (13), yields five equations for the five
unknowns u,,, ¢, and 6.

1
Sim=5up ytupyg),

IV. EXTENSIONAL EQUATIONS FOR THIN PLATES
WITH ELECTRODED SURFACES

We now consider a thin plate with fully electroded major
surfaces such as that shown in Fig. 1, which also depicts the
coordinate system used to study deformations of the plate.
The major surfaces of the plate are assumed to be traction
free and thermally insulated. Since we consider infinitesimal
strains, we dispense with the no longer necessary convention
that capital indices refer to the reference coordinates and
lower-case indices refer to the present coordinates of mate-
rial points, and use lower-case indices exclusively to refer
quantities to the reference coordinates of material points. In
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—r m—— = . —

addition, for convenience and because it 1S conventional to
do so, we introduce the usual compressed notation for tensor
indices for stress and strain in the constitutive relations, in
which p, g, r, and s take values 1, 2, 3, 4, 5, 6 as ¢j or k!
take values 11, 22, 33, 23 or 32, 31 or 13, 12 or 21. In the
compressed notation, constitutive relations (13),_s become

Ip=cpgSq—erpEr—apt— kipEiE

Df=€1q5q+ enb it pi0+ %ijiEkEj ,
(14)
p’n= Fop +piEx+p CO+ 1y ELE,

Q1= — k5.0,

where we have taken the liberty of writing D, for &; and E,
for W, since the distinction between them 1s lost when the
assumption of infinitesimal strains 1s employed.

[t is common to assume that the electroded top and bot-
tom surfaces are thermally insulated. Therefore, the heat flux
(5 on the electroded surfaces vanishes and since the plate 1s
very thin, we may assume that (J;=0 throughout the plate.
From the third equation of Eq. (14), we obtain

Q3= — K310 1— K330, K330 3=0, (15)

with which the first two equations of Eq. (14), can be written
as

Qa= o Kﬁba,b ’

“€1=K11“‘K13K13/’<33, (16)

p _ . P — .
Ki»= K2~ K13K23/K33, K52 Kaaz— K33K23/K33,

where a, b, ¢, and d take values 1 and 2 only. The heat
equation assumes the form

“Qa,a=T0p07'7- (17)

Similarly, since the tractions 75, on the electroded ma-
jor surfaces vanish and the plate is very thin, we assume that
the state of stress corresponds to that of plane stress and take
T,,,=0 throughout the plate, and T,,=T,,(X,,f). Since
T.,, =0, u; must be negligible, which 1s always the case for
the extensional deformations of thin plates. Thus for exten-
stonal deformations of the thin plate,

Tﬂb,azpoab y (18)

With T, =0, it is advantageous to obtain strain-stress
.2 : p o —1_
relations.” To this end we operate on Eq. (14); with ¢, " =s,,

to obtain

T
Sq=5qpTp+ digEi+ g0+ 3BjugE jEy, (19)
where
. o
dig=€pSpgs  Ag=pSpgs  Bikg=bjipSpg (20)

and we note that d,, and ag are well-known sets of matenal
constants'* which are useful for plane stress type calcula-
tions, and B;;, 1s as in Ref. 2. The substitution of Eq. (20)
into Eq. (14), 3 yields

Di=d;I,+ enErtp; 0+ %X;-HE;'E& ,
(21)
p°n=apTp+prEi+p°CT 0+ 37 E Ex,

where
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T _ T _ T
€En=€xtedy, pr=piteyga,,
-
X;’kl“‘ Xjk1+ e!qﬁjkq ’ (22)

O0~T_ .0 I T __
pCl=p Craga,, V=7t agBjy

and we note that QT : p{, and CT are well-known material
constants,? X;Tn 1s as in Ref. 2, and ')C,'Tk 1S NEw.

Since T,,,=0, the constitutive relations Egs. (19) and
(21) may be reduced to

So=SgTo+digEs+ al 6+ 3181 E Ei;
D,=d;,T,+ € E+p; 60+ ixjuE jE s, (23)
p’n=a,T,+p;E +p°C 0+ %7,,7 Lk

where u, v assume values 1, 2, 6, but not 3, 4, 5.

Next, since the electric fields vanish tn the conducting
electrodes and the plate 1s thin, we may take E ;=0 through-
out the plate.” Then only E 5 will appear in Eq. (23) and Bikg

X}k:: ){k will assume [43,, X33» Ya3 Which can be further
compressed as

T T T T
1333.:;—"*433(;: X331 X3 Y337 Y3 (24)

with which Eqgs. (23) become
2
Sq=5q1,lTU+d3qE3+age+ %BSQEB;:
DlzdlvTv+£;r3E3+p.’T9+ %X;:‘ g* (25)
p’n=a. T, +piE;+p°C 6+ 1y3E3

The first, second, and sixth of the unabbreviated Eq.
(25), are

S = 5T, +dyExt a, 6+ 3B3,E3, (26)
which can be solved to give

I, =cy,S,—e5,Es—a 6~ %BguE; (27)
where ¢ is the inverse of the 3X3 matrix s,,, and

ef,=dych,, al=chal, b5=cl B, (28)

The substitution of Eq. (27) into Eq. (25), 5 yields
D;=ef,S,+ ehE s+ pl o+ 1x5 E3,

p0 7= aPS, + plEL+ pOCP o+ 142E?2, (29)
where

ehy=ej—d,eh,, pl=p/—d,al,

X5= x5~ d!UBgu , (30)
Yi=7vi—a,bh, .

Finally, in the present notation the electric charge equa-
tion takes the form

D,,=0. (31)

p'CP=pCT-ala’

L 1 b

Since for the thin plate shown in Fig. 1, D, vary slowly
with respect to X, we first write Eq. (31) in the form

D,,+D,,=0, (32)

and then note that D, , 1s of smaller order than D, ;. Hence,
to the lowest order we have-
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D3‘3=0,

which yields

D3=D3(Xa 5r) (34) ‘
Furthermore, since for a state of plane-stress to the low. -
est order S, is independent of X5, and 6 in Eq. (29), j -
independent of X5 to the lowest order, !’ Egs. (33) and (29)1

imply that

E3.3 =0, (35)
which yields
E3 - V/Zb, (36)

where V is the applied voltage across the plate and 24 the
plate thickness.
In summary, we have

Bl Qa,a= Tﬂpﬂ 7.73
T,=ch,S,—e5Es—al6—3b E3,

L 0..
Tab,a"' p Uy,

p’n=alS,+piEs+p CP O+ 1¥5ES,

Qﬂ': - abe,b ’
Sabzé—(ua,b'{-ub,a)! E3=_V/2b!

(37)

] 2
D3=€‘§HS“+ E§3E3+p§6+ 5X‘§3E3,

which can be written as three equations for the three un-
knowns u,(X,,t) and &X,,t). These equations generalize
those given in Ref. 2, and can be used to model piezoelectric
actuators with known V(¢) in smart structures when heat
effects need to be considered. We have also included the
expression of D in Eq. (37) which is needed when the thin
plate is used as a sensor 1n which case V is unknown and D,
1s used to determine the surface charge density on the elec-
trodes, then V can be computed through the capacitance of
the thin plate. The indices in Eq. (37) take the following
values:

a bcd=1,2; u,uv=1,2,6. (38)

V. EQUATIONS FOR A THIN CERAMIC PLATE

For a ceramic plate poled in the X, direction, we have'*

313 0 0 0

s;1 S;13 O 0 O

s R s S e

O 0 0 0 544

(pFy=(0,0,p1), (41)
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e, 0 O
T
()=|0 €, 0], (42)

0 0 e,
with K, 7{,, and a{, having the same structure as ef;. Hence

(al)=(a],a],a3,0,0,0), (43)

and we note that since k;;=x,3;=0 we have &, =K, .
From Eq. (25), and the matrices given in the appendix of
Ref. 14 we conclude that the only component of 8;;, needed
is B13; =3, Which is compressed as $;; with its value de-
ermined in Ref. 2 from experimental data as 0.7949 pm?%/V*
for PZT G-1195.
With Egs. (39)—(43) we have

51=51171+512T2+d31E3+aT9+ %BMEQ,
52—512T1+511Tz+d3153+a'19+ :831E3= (44)
S6e=5661 6

which can be inverted to give

— 17, 2
Ty=cfS1+ch,S,+e5Ey+aff+3b3,E5,

Ty=cP,S,+c? S, +el Es+af 8+ 3b5 ES, (45)
Te=cCged6
where
cli=s11/8, 3= —512/4, A=5%1"5%2:
(46)
€§1=d31/(511+512)= aﬁ’=(cﬁ’l+cﬁ’2)a{,
b51= B3 /(s11t512).
Substitution of Eq. (45) into Eq. (30) gives
ph=pl-2dyaf, p°CP=p°CT-2a%a],
‘Y‘D '}’g 2arb31,
; (47)
553 2fl(31“‘5’31 X§3=X§3_2d31b§15
which yields
p n— fl’p(51+5'* + P53 E‘%'*'poc 9"’27'053,
(48)

Dy=e5,(5,+5,)+ €5;E 3+ pho+ 1x5:E3.

Hence, for a ceramic plate poled in the X5 direction, Eq.
(37) becomes

Tnb.az poﬁb s Qa a— TUPO 7.75
T,=cP S, +cP.8,+eb Es+ak 0+ 1b5 E5,

T-=ck.S,+cf Sn+€31£:+ap9+'b E%,

Tﬁ:cﬁﬁsﬁa

0., = A7 p 0,paL L 2 (49)
p'n=af(S;+S,)+piEs+p CPO+ 35ES,
O1=—k110,, Q2=—Kknty,

Sﬂbz%(ua,b+ub,a)a E3=_V/2b,

D3=e5,(S+S3)+e5:E 3+ pho+ 1x5:E3.
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Vi. EQUATIONS FOR A THIN PVDF FLAIE
For a thin plate of PVDF which is of class mm2, we

have'?
s\, S;12 §;3 0 0 O
S12 Sz s;3 000
()= 513 5(2)3 533 S‘L g g (50)
0 555 O
0 0 0 0 g
and
0 0 0 0 dys O
(di)=| 0 0 0 dyy 0O O}, (51)
dy, dip diz O 0 O
(pi)=1(0,0,p3), (52)
e, 0 O
(ely=1 0 e, 0 |, (53)

0 0 e,

with x;;, v, and a}, having the same structure as e,. Hence

(aq):(al aaz 1a3 303050): (54)

and since k;3=kKy;=0, we have kg, = K, -
From Eq. (25), and the matrices given in the appendix of
Ref. 14 the only components of B;,, needed are (33 and

B3, which are compressed as B;; and S;;.
With Eqs. (50)-(54) we have

S1=s11T1+512T,+d3Es+ af 0+ 383, E3,
Sz=512T1+522T2+d32E3+ a;9+ %B32E2, (55)
SﬁzsﬁﬁTﬁa

which can be inverted to give

I= C;1}151 + C}fzSz“” €§1E3 + aﬁ’9+ %bglEg’

T2=C€251+C§252+Q§ZE3+“§9+%A32E§s (56)
Tﬁ = 66656 ’
where

CII_S22/A C%ZZSII/AE C}1)2=_512/A=

_ 2
A=511572—5712;

p _ p —.p p
€317 c“d31+c12d32, t‘5'32—{312‘5131"“322‘*'{32:.

p_ .p p T p_.p To.p T (57)
af=cl ai+cfay, abh=chia+cha;,

b31:C€1331+C€2332: b, =clB31+ 5B
Substitution of Eq. (56) into Eq. (30) gives

p§=p§“d31aﬁ’—d3ga‘§,

p°CP=p’°CT— afal - abe;,

(58)

_.T_ Tip _ __ I _ P _ p
Yi=yl—albl —albh,, €;=€3;3—ds €5 —dyel,,

X§3 — X§3 - d31b’§1 - d32b32 ’
which yield
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p’n=alS,+ abS,+ pPE;+p'CP o+ L42E2 the plate 1s assumed to be in one-dimensional cxt’*:
(59) motion with u,=0 and 9/dX,=0. The ends Xl—--—l
traction free and are thermally insulated. The driving vol i
V is assumed to be time harmonic with V=Ve'® wi .-*»
.. . and w are known, real constants and only the real part of ¥
Fopa=pup, —Qa.=Top 7, of physical interest. Then the relevant equations out of B

(49) and with the appropriate boundary conditions are -
Tl,lzp g, _Ql,izT{]p 7, —I<X <l

D;=e5,5,+e5,5,+ €5;E3+ p56+ 2X335h
Hence, for a plate of PVDF, Eq. (37) becomes

I'i=ci1S1+cf)S.+e5Extaff+ %5§1E:2=
Iy=ci,8,+c5,5,+ € E3+a§9+%B§EE.2* A
Ii=c..S,. Ti=cliu; +e§Ex+ab 6+ b5 E5, —I<X,<I,
p"n=afS\+abSy+ pLEs+ p'CPo+ 1yIES
Qr1=—ky10;, Q>=—k7,0,,
Sap=73(Ugptup,), Ez;=-V/2b,

(60 p'n=alu, \+piEs+p"CrO+14ES, —1<X,<I, 4
Q1= Kb, —I<Xi<l, (61) §
C‘?1H1,1+a§'9=—€§1E3—%5§1E§ at X,=—11, :

D=1, + 5,8+ eh,Et plo+ by Crnfamh A =Ll

Ey=—Ve'/2b.

Vil. AN EXAMPLE Since in Eq. (61) the quadratic term E7 is prescribed, the

As an example, we consider a ceramic plate poled in the  problem is linear. The steady sate solution to Eq. (61) canbe
X3 direction. The plate is finite in the X, direction with found with some algebra but no essential difficulties. The

—[<X, </, and infinite in the X, direction. Like an actuator, results are

!

X8 {aﬁ’p‘; LV ok, sin(kyl)sin(k X))~k sin(k[)sin(k.X ) »
)= T — € : ol
: p’CP "3 2p wlkl(c"flkz—i- | o )sin( k1) cos(k,l) — mok, (cy k| + afm)cos(k, l)sm(kzl)
. ( bgl P,)/.U ) 7T4k4 Siﬂ(k4[)$iﬂ(kﬂl)__ 7T3k3 Sin(k3l)5in(k4X1) i
2 20%Pi\2b m3k3(ch kg + afmy)sin(ksl)cos(kyl) = maks(ch ky+ af w3)cos(ksisin(k /) ©
P DD L (62)
X, .1)= i e”""+(a1p3 el —K )
0 plcP 2b p’CP 31 2p
y T Toko sin(kal)ycos(k X ) — mmaky sin(kyl)cos(k,X ) o
W]k](CJ?IkE“*‘ CI"IIJTTE)SiH(kIZ)COS(kEZ)_WEkE(C‘?Ikl'f”a’{ﬂ])COS(kl[)Sin(sz) ©
T o [ AV
200CP \2p! € 2 25%¢P)2p
y T 4ky SIN(K4L)COS(k3X | ) — mymmaks sin(ksl)cos(k X ;) o
7T3k3(C€)lk4+ CY‘I;TF,;L)SIH(kSZ)COS(kq,[) 1T4k4(C k3+a'p773)COS(k f)SlH(k I ?
|
where k7 and k3 are the two roots of the following equation and
for k*:
(pw> =8 k) (k) k* + Top CPiw) +iwTy afk)*=0 m:p”«‘iwz—f?l 3 _ _pldwt =l ik )
(63) ) Cl"?k3 ! 4 Ii?kd, | |
and ;
, In Egs. (63)-(66), k, —k, and 7, —m, are all complex.
0 2_ 2 0, 2 2 17 K4 1 Ty
771:p W’ =ik | ,m:p w =)k (64)  Hence u; and 6 in Eq. (62) have both complex amplitudes

artk; | and complex wave numbers k. The real part of Eq. (62)
represents our physical process. It can be seen that V excites 4
a motion symmetric about the center X;=0. The solution 3
consists of two parts with frequencies e“‘” and e'**’, respec-
(-904“’“"(7{1}")(“111(2*'TUPUCPIQCOH’Q(UT(;(fl’fk)‘z:() tively. -
(65) The quadratic term E3 contributes to the part with e'**"

a’k,

Similarly, k3 and k; are the two roots of the following
equation for k°:
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[ ractor which does not exist in the results of the linear theory

[ f thermopiezoelectricity.
The part with the e'®’ factor is the result of the linear

theory of thermopiezoelectricity. Comparing with the results
of the linear theory of piezoelectricity,

el (V/2b)

u (Xq,t)= .
. c? p¥ct cos(vp¥/ch wl)
X sin pT le)e":“”,
1
67
Q(XI,I):O, ( )

we see that the thermal effect alters not only the amplitude
and wavenumber but also the phase of the motion, as is the
case when damping enters the system. Here the damping 1s
due to the irreversible heat conduction process. Because of
the complex wavenumber, the X, dependence of the ther-
mopiezoelectric solution will have both exponential and
sinusoidal behavior. This is different from Eq. (67).

Viil. CONCLUSIONS

We have derived a theory of thermopiezoelectricity for
the case of large electric fields but small strains and small
remperature variations. These equations are specialized to the
case of thin plates with completely electroded major sur-
faces. In this case the charge equation of electrostatics 1s
satisfied trivially to the lowest order. The thin plate equations
can be used to model piezoelectric actuators or sensors when

thermal effects need to be considered. The specific forms of

J. Appl. Phys., Vol. 76, No. 9, 1 November 1994

thin plate equations are given for piezoelectric materials PZT
and PVDF. An analytical example shows that when quadratic
electric field and thermal effect are considered, the qualita-
tive behavior of the solution differs noticeably from the so-

lution of linear piezoelectricity.
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