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Effect of prior quasi-static loading on the initiation
and growth of dynamic adiabatic shear bands (*)

R.C. BATRA (BLACKSBURG) and C. ADULLA (TROY)

WE STUDY the initiation and growth of adiabatic shear bands in a thin-walled steel tube deformed
first quasi-statically either in simple compression or simple tension or by a pressure applied to the
inner surface of the tube, and then by equal and opposite tangential speeds applied to the end
surfaces of the tube. The objective is to see how prior quasi-static deformations of the tube affect
the nominal shear strain at which a shear band initiates in the tube. The first set of numerical
experiments simulates the tests recently conducted by Murphy who found that the nominal strain
at the initiation of the shear bands decreased with an increase in the axial static compressive stress
induced in the tube.

1. Introduction

ADIABATIC SHEAR BANDS are narrow regions, usually a few microns wide, of intense
plastic deformation that form during high strain-rate plastic deformation of most
metals. TRESCA [1] seems to be the first to observe these during the hot forging of
platinum and he termed these “hot lines”. Subsequently MASSEY [2] also noticed
these during the hot forging process. However, the research activity in this area
appears to be influenced strongly by the work of ZENER and HoLLOMON [3] who
observed 32 um wide shear bands during the punching of a hole in a steel plate.
They also pointed out that the intense plastic deformations of the steel heated it
up significantly, and that it became unstable when the thermal softening equalled
the hardening caused by strain and strain-rate effects. The reader is referred to
ROGERS [4], CLIFTON [5], OLSON et al. [6], and to recent issues of the Applied
Mechanics Reviews [7] and the Mechanics of Materials Journal [8] for a review
of the work 1n this area.

The experimental work under controlled conditions has been performed on
tubular specimens using a Kolsky bar by DUFFY et al. [9, 10] and GrovanoLa [11}.
These tests have involved the twisting of a thin tube, observing deformations of
a grid pasted on the outer surface of the tube and using infrared lamps to mea-
sure the temperature rise of a small region either included in or enclosing the
shear band. Such observations have enhanced significantly our understanding of
the mechanism of the shear band formation. Recently MURPHY [12] conducted
a series of tests in which a steel tube was loaded quasi-statically in simple com-
pression and then twisted dynamically. He found that an increase in the prior
compressive load increased the nominal strain at which a shear band initiated.

(*) Paper presented at 30th Polish Solid Mechanics Conference, Zakopane, September 5-9, 1994.
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Here we study the dynamic twisting of a steel tube preloaded quasi-statically
either in simple compression or simple tension, or by an internal pressure. The
maximum preload applied is such as not to cause plastic deformations of the tube.
It is found that the nominal shear strain at which a shear band initiates increases
with an increase in the value of the internal pressure, and with an increase in
the tensile load applied, but decreases with an increase in the magnitude of the
compressive stress. The last result contradicts test observations of MURPHY [12].
We had to increase the thickness of the tube in order to avoid its buckling.
However, we observed that for the tube preloaded in either simple tension or
compression, the material particles underwent significant displacements in the
radial direction when the tube was twisted; these displacements were virtually zero
when there was no preload applied. This change in the radial dimensions probably
aftects noticeably the nominal shear strain at which a shear band initiates.

2. Formulation of the problem

We use rectangular Cartesian coordinates and the referential description of
motion to describe the dynamic deformations of an elastic-thermoviscoplastic
body. The balance laws governing the deformations of a body are given, for exam-
ple, in TRUESDELL and NoLL [13] and are omitted here. However, in the balance
of internal energy, we assume that the deformations are locally adiabatic and that
all of the plastic working rather than 90-95% of it, as asserted by FARREN and
TAYLOR [14] and SuLuoADpIKUSUMO and DiLLON [15], 1s converted into heating.
We note that for a thermoviscoplastic body deformed in simple shear, BATRA and
KiM [16] have shown that realistic values of thermal conductivity do not affect
the value of the nominal strain at which a shear band initiates. A similar result
was obtained by BATRA and PeNG [17] for depleted uranium and tungsten blocks
deformed 1n plane strain compression. However, the post-localization response
1S influenced by heat conduction.

We make the following constitutive assumptions for the material of the tube.

(2.1) oy = —pbi; + sij, p=K(o/oo— 1),

— — 1
(22) 83 - Zﬂ(D,‘j - D?j), D;‘j - D;j — §Dkkt§{j,
(23) 2D,‘j = v;; + v, 0:’? = 5‘,'3' + O','kaj — O'jka,',
(24) ZW,'j = Vi ; — U5, o€ = gcé + p% : Dﬁf = 0,
25) D= As;;, on=(A+BE))[1+Dn|22) ) -0,
17 J p &0

(2.6) A=0 1fetther Jh<o, or J, =0, and S;ijj <0,
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otherwise, A is a solution of

1/2
Om JZ — (ést'jsij) .

(2.7) 7, >

9 1/2

Here o;; is the Cauchy stress tensor, p the hydrostatic pressure, é;; the Kronecker
delta, K the bulk modulus, 1 the shear modulus, a superimposed triangle indicates
the Jaumann derivative, D;; is the deviatoric part of the strain-rate tensor D;;,
W.. is the spin tensor, ¢; the heat flux per unit area, ¢ the specific heat and 6
equals the temperature rise. Equation (2.5); implies that the plastic strain-rate
is directed along the normal to the instantaneous yield surface J, = o, and
the “radius” of the yield surface depends upon the strain-hardening, strain-rate
hardening and thermal softening of the material point. The plastic strain-rate
D?. equals zero when the deformations are elastic; otherwise, its value depends
upon the state of deformation at the material point. The relation (2.5), giving the
dependence of o, upon the plastic strain, plastic strain-rate and the temperature
has been proposed by JounsoN and Cook [18]; symbols A, B, D, n and v denote
material parameters and ¢ = 1/sec.

We take the body to be initially stress-free, and at rest at uniform tempera-
ture 6. It is first loaded quasi-statically and then twisted dynamically. Here the
quasi-static load is simulated by applying it slowly till it reaches the desired value
and subsequently holding it steady. Boundary conditions for the three loadings

considered (with axial compression and tension counted as two separate loadings)
are:

a. Simple compression/tension of the tube (see Fig.1 for the choice of axes)

:I:Ut/trsa 0 S t < t'rszf

to, t> trg,

(2'9) 633($11$270?t) _033($17$21€1t) = {
(2.10) oii(z1, 22,23, )n; = 0
on the inner and outer surfaces of the tube,

Ei35T W < I —1, > /trda |t — ts‘ < t,d,
<1354 ;W (t — ts) 2 Trd,

?)1(561,332,0., t) = {
(2.11)
vi(z1,22,0,t) = —vi(21,22,0,1).
b. Tube pressured from inside
On the inner surface of the tube

;31 ; = "pnit/t?‘sa 0 <t< t?‘S?
(2.12) Y

— DNy, t > 1,5,
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FIG. 1. Tube geometry.

and on the outer surface of the tube

oi;n; = 0, t > 0,
’U3($1,.’II2,0,t) = ’03(171,2172,6,,?1) = 01 0<t< Ls,

(2.13)
Ei3; 2w <1 —15 > [trqg, |t —ts] < trq,

£i3;T;W, (t —ts5) > t,4,

v‘i(wl‘! :52101 t) = {

’Ui(IEl, L2, fa t) - _Ui(wla L2, O& t)

That 1s, the tube is first loaded axially either in compression or tension from
zero to an axial stress of o in time ¢,,, the axial load is held constant for time
(t, — t,,) so that the elastic waves can attenuate somewhat, and then the tube
1s twisted by applying equal and opposite tangential velocities at the ends of the
tube. The angular speed increases linearly from 0 to the steady value w in time
t-q4; the quantity < ¢ — ¢, > equals 0 for t < t,, and equals (¢ — t,) otherwise.
Equations (2.11) imply that the ends 3 = 0 and z3 = £ of the tube are subjected
to equal and opposite tangential speeds. The nominal strain-rate at a point equals
2wr/ L, where r is the radial coordinate of a point and L is the initial length of
the tubular specimen. Because of the small thickness of the tube, the nominal
shear strain-rate varies only a little through the thickness of the tube. Henceforth,
2wr,, /L 1s referred to as the average shear strain-rate; r,,, equals the mean radius

of an end-surface of the tube. The axial stress ¢ and the internal pressure p are
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limited to a small fraction of the yield stress of the material. Thus the preload
causes only elastic deformations of the tube. In Egs.(2.11) and (2.13), €;;x 1S

the permutation symbol and equals 1 or —1 accordingly as :, 7, k¥ form an even
or an odd permutation of 1, 2, and 3; and equals 0 when any two indices are

equal. Even though the pressure applied to the inner surface of the tube equals a
fraction of the yield stress of the material, the state of stress at a point is biaxial

and some material points may yield.

3. Results and discussion

In order to compute numerical results, we assigned following values to various
material and geometric parameters.

o = 7860kg/m>, G =76GPa, 6, = 1520°C,

c=473)/kg°C, 8,=25°C, A =792.2MPa,
B=5095MPa, D =0014, n=026 m=103,

maximum tube thickness = (.76 mm, inner radius of the tube = 4.75mm, L =
2.5mm,

(3.1) trs = 20 s, t, = S0ps, t.da = 20ps.

The values of material parameters taken from RAJENDRAN'S report [18] are for
4340 steel. The thickness of the tube was assumed to vary sinusoidally:

w(z3) _ E( 2rzy )
(3.2) o 1+ 5 | €08 —7 1],

where ¢ can be viewed as the defect parameter, w(z3) is the wall thickness at a
point z3 along the gage section, w4 is the maximum wall thickness, and L 1s the
initial length of the tube; the thickness variation given by Eq. (3.2) is depicted in
Fig. 1 for ¢ = 0.08. The thickness of the tubular specimens employed by MURPHY
[12] was also given by Eq.(3.2). However, the value of w4 1n our simulations
is twice that used by Murphy, since computations with the tube employed by
Murphy indicated buckling of the tube prior to the mnitiation of a shear band.
Also, the tubes tested by Murphy were made of HY-100 steel but parameters
given in (3.1) are for a 4340 steel. It is because values of material parameters
for HY-100 steel for the Johnson-Cook model are not available. Also, there are
not enough test data available for HY-100 steel to determine the values of A,
B, D etc. for it. We should note that because of the nonlinearities involved, the
determination of material parameters from the test data is not unique.

The problems formulated in the previous section were solved numerically by
using the large scale explicit finite element code DYNA3D [19]. The code uses
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il

8-noded brick elements with one-point quadrature rule to evaluate various inte-
erals. It employs hour-glass control to eliminate the spurious modes and artificial
viscosity to smear out the shocks. The time step size is computed suitably so as
to satisfy the Courant condition, thereby ensuring the stability of the computed
solution.

Even though the specimen geometry and the loading conditions are such
as to cause axisymmetric deformations of the tube, the problem 1s solved as
three-dimensional because of the way the boundary conditions are applied in the
code. Also antisymmetry of the velocity field about the midplane suggests that
deformations of only half of the tube should be studied. Since the code DYNA3D
employs Cartesian coordinates, the imposition of the constraint that points on the
midplane move only radially required a major modification of the code. It was
done and accordingly deformations of the entire tube were analyzed.

In order to assess the eflect of the finite element mesh on the solution of the
problem, two different meshes were tried, one containing nearly four times the
number of elements as the other; these are depicted in the insert of Fig. 2. It

50-0 ' L) v 1 T 1

€
z
=
E" Curve No. B
3 (.8
I
3858
10.0 =S -
Coarse Mesh Fine Mesh
0.0 i | M 1 Y | A
0.0 0.2 0.4 0.6 0.8

Average Shear Strain

F1G. 2. Torque vs. average shear strain curves for three difterent values of the fraction 3
of plastic work convertcd into hcat. The insert shows the coarse and fine meshes used.

was found that the torque required to deform the tube versus the average shear
strain curve was unaffected by the mesh used. However, the rate of drop of the
torque 1s considerably more for the fine mesh as compared to that tor the coarse
mesh, since once a shear band initiates, the fine mesh 1s capable of delineating
the sharp gradients of the deformation fields better than the coarse mesh. Also,
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the axisymmetric deformations are essentially concentrated in one central row of
elements which, for the fine mesh, 1s of smaller size. The CPU time required to
analyze the problem with the fine mesh is nearly 4 times that required for the
coarse mesh. Thus, if the objective is to find the value of the nominal shear strain
when a shear band initiates, it i1s sufficient to use a coarse mesh.

In DYNAJ3D artificial bulk viscosity 1s added to smear out the shocks. One of
its consequences can be that the initiation of a shear band is either delayed or
1s totally suppressed. In applying the artificial viscosity method, the pressure in
elements being compressed 1s augmented by an artificial viscous term, g, before
evaluating the stress divergence. In expanding elements ¢ = 0, otherwise

(3.3) g = 00| Dix(Q1€| Dik| + Q20),

where (), and (), are dimensionless constants which default to 1.5 and 0.06,
respectively, ¢ is the cube root of the volume of the element, and ¢é is the speed
of sound in the material and equals ((K + (4/3)G)/0)'/%. For a fixed mesh, we
computed results for ¢); = 1.0, 1.25 and 1.5, and for each value of (), ), was
assigned values 0.02, 0.04 and 0.06. The time-history of the torque required to
deform the tube was found to be virtually identical for the nine cases signifying
that the average shear strain at which a shear band initiates is unaffected by the
value of the artificial viscosity. Results presented below are for ¢); = 1.5 and

2 = 0.06.

3.1. Effect of the fraction of plastic work converted into heat

Because the deformations have been assumed to be locally adiabatic, i.e., the
eftect of heat conduction has been neglected, the temperatue rise at a material
point is directly proportional to the total plastic work done there. A lower fraction,
8, of the plastic work converted into heat will delay the rise in the temperature
of a matenal particle and hence, the shear band will initiate at a higher value of
the average strain. That this indeed 1s the case is clear from the torque versus
the average shear strain curves depicted in Fig.2 for the three cases, namely,
when 100%, 90%, or 80% of the plastic work is converted into heat. Because of
the nonlinearities in the problem, the incremental changes in the value of the
average shear strain are unequal for the same incremental changes in the value
of 5. Henceforth, we assume that all of the plastic work is converted into heat.

3.2. Effect of initial axial load

For the case when the tube 1s first axially loaded quasi-statically either in com-
pression or in tension and then twisted with the load curves defined by Eq. (2.11),
Figs. 3 and 4 illustrate the torque versus average shear strain curves for four dif-
ferent values of the axial load. Note that the maximum axial stress applied equals
45% of the value of the material parameters A appearing in Eq. (2.5). Because of
the prestress, the shear stress and hence the torque required to initiate yielding
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should be less than that necessary when there is no prestress applied. Results
plotted in Figs.2 and 3 confirm this. The average shear strain at which a shear
band initiates, as indicated by the drop in the torque required to deform the tube,
increases with an increase in the magnitude of the axial compressive prestress and
the reverse happens when the prestress is tensile. This trend contradicts the ex-
perimental observations of MURPHY [12] who reported that the average shear
strain at the instant of the initiation of a shear band decreased with an increase
in the magnitude of the axial compressive prestress. A close examination of the
deformed shape of the tube indicated significant radial displacements of points
on the central cross-section; for example, see Fig.S. The inserts in Figs. 3 and 4
depict distribution of the effective plastic strain on a radial line in the thinnest
section of the tube. It is clear that deformations of the tube along the radial line
are nonhomogeneous, with the largest effective plastic strain occurring at points
on the outermost surface of the tube. For axial prestress equal to 0.09A4, the shear
band initiates at average shear strains of 0.48 and 0.37 for the compressive and
tensile cases; however, the distribution of the effective plastic strain along the
radial direction is essentially the same in the two cases. The severe deformations
of the central cross-section result in an increase of the cross-sectional area for
tubes prestressed in compression, and in a decrease of the cross-sectional area
for tubes preloaded in tension. This change in the cross-sectional area delays the
initiation of the shear band for the tube prestressed in compression and enhances
the initiation of the shear band in the tube prestressed in tension. We note that
the axial length of the tube decreases (increases) for the tube prestressed in com-
pression (tension). It is not clear whether Murphy’s experimental set-up allowed
for this change in the axial length of the specimen. For the case of no preload,
the tube length, the inner radius, and the outer radius remained unchanged.
We simulated a case when one end of the tube was held fixed and at the other
end the axial component of velocity was first increased linearly from zero to the
desired value in 20ps, so as to induce an axial compressive stress in the tube
by the desired amount. Subsequently, the axial component of velocity was de-
creased to zero and a tangential component of velocity was prescribed. This type
of boundary data resulted in a gradual decrease of the axial compressive stress to
zero. Analysis of the quasi-static problem involving a cylinder subjected to com-
pressive and torsional loads given in CHAKRABARTY'S book [20] suggests that this
trend is consistent with the predictions of the Prandtl-Reuss theory of plasticity.
Figure 6 depicts the evolution of the effective plastic strain on an axial line
on the outer surface of the tube obtained by using a fine mesh. It is evident
that deformations are nonhomogeneous even at an average shear strain of 0.05,
and this nonhomogeneity in the deformations increases as the tube continues to
be twisted. Eventually the deformations localize in the central element. Once it
happens, the material outside this element does not undergo any more plastic
deformations, and some parts may even unload. The width of the region of local-
ization cannot be deciphered accurately since the mesh used is not fine enough.



494 _ R.C. BATRA AND C. ADULLA

0.30

0.25 T T T T e o m

|
0.20 | ,
. ' N
E . }
./ ' '
2 015 f  Initial Axial Comp. Sircss = 158.4 MPa / .
E - = ===+ Average Shear Sinin =0 !
E Average Shear Stnain = 0.45 :
- |
O o010 \
d \
5 \
\
0.05 “
}
\
|
|
0.00 BP0 0 g g g oo T ITTT—== / ]
,0‘05 I S— 1 i 1 A | 1 . ] — ]
0.46 0.48 0.50 0.52 0.54 0.56 0.58
Radiat Coordinate (cm)
0.30 y Y - ! - , v SO
b)
A T N S e .
, !
0.20 t ; ]
s I
g :
2 015} AT ]
= nitial Axial Tensile Stress = 158.44 MPa
= S it Avcrage Shear Strain = 0 ]
% Average Shear Strain = 0.45 {
O 010 ]
= |
5 |
< 1
0.05 : -
0.00 \ ------------------------------------ 1
.0_05 : l " ) L ! s L A 1 I
0.46 0.48 0.50 0.52 0.54 0.56

Radial Coordinate {(cm)

FIG. 5. Sections of the deformed tubes initially prestressed in (a) compression and (b) tension.

For this reason, the computations were stopped soon after the torque required to
deform the tube began to drop. We note that in the code effective plastic strains
are computed at the centroids of the elements.
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3.3. Effect of initial internal pressure

We assume that the end surfaces are held fixed in the axial direction and an
internal pressure is applied slowly to the tubular specimen. Even when the internal
pressure applied was 71.3 MPa, the stress state at a point was such as to cause no
yielding of the material. Subsequently, with the internal pressure held steady, the
end surfaces are twisted in equal and opposite directions by applying tangential
velocity on them so as to induce an average shear strain-rate of 5000s~!. In Fig. 7
we have plotted the torque required to deform the tube versus the average shear
strain. As expected, with an increase of the internal pressure the shear stress and
hence the torque when the tube begins to deform, plastically decrease. However,
the average shear strain at which a shear band initiates increases with an increase
in the value of the internal pressure because of an increase in the inner and
outer radii of the tube. Figure 8 illustrates the distribution, on a radial line, of
the effective plastic strain at different times. Whereas initially the effective plastic
strain is a little higher at points on the outermost surface than that at points
on the innermost surface, the reverse happens after the shear band has initiated.
Also, the variation of the effective plastic strain in the radial direction 1s not linear
as was the case for the tube prestressed in axial tension or compression. Figure
9 depicts a longitudinal section of the tube just before the torque is applied
and also when the average strain equals 0.45. It is clear that significant radial
displacements of material points occur during the time the tube 1s being twisted.
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F1G. 9. A longitudinal section of the deformed tube.

4. Conclusions

We have studied the effects of the prior axial load and internal pressure appled
quasi-statically on tubular specimens which are subsequently deformed dynami-
cally in torsion. The thickness of the tube varies sinusoidally. It 1s accomplished
by keeping the inner radius fixed but varying the outer radius, so as to obtain
minimum thickness at the central cross-section of the tube. The thermomechan-
ical response of the material of the tube is modeled by the Johnson-Cook law.
For a tube with no preload, the inner radius and the axial length of the tube re-
mained unchanged during its torsional deformations. However, for a preloaded
tube, these dimensions changed noticeably. The average shear strain, v, at the
instant of the initiation of the shear band, as signified by a sudden drop in the
torque required to deform the tube, is found to increase with an increase in the
magnitude of the axial compressive stress or the internal pressure, and decrease
with an increase in the value of the tensile stress. The main reason for the differ-
ence in the response of the tube prestressed in compression and tension 1s due
to the deformations of the central section of the tube.
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