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Analysis of dynamic shear bands in porous
thermally softening viscoplastic materials

R.C. BATRA and X.S. JIN (BLACKSBURG)

WE STUDY THE INITIATION and growth of shear bands in a porous thermally softening viscoplastic
block of square cross-section and deformed in plane strain tension. The impact load is modclled
by prescribing a time-dependent axial velocity on the top and bottom surfaces which are taken to
be free of the tangential tractions. The material defect is modelled by assuming that the material in
a small region surrounding the centroid of the cross-section is weaker than the rest of the material.
The finite element mesh consisting of constant strain triangular elements is refined adaptively
so that the integral of the effective plastic strain-rate over an element is nearly the same for all
clements in the mesh. The effects of the presumed variation in the initial porosity and the impact
spced on the nominal strain at which a shear band initiates have been examined. For a typical
steel alloy, we have also ascertained the effect, on the initiation of the shear band, of the softening
caused by the increase in the porosity and/or the increase in the temperature.

1. Introduction

Microscopic OBSERVATIONS [1-10] of the failure process in several metallic alloys
(e.g., AISI 1018 cold-rolled steel, AIST 4340 vacuum arc remelted steel, HY-100
steel, titanium and titanium alloys) have revealed that fracture occurs by a process
of nucleation and coalescence of voids and microcracks. Under dynamic loads,
the fracture of the specimen is usually preceded by the formation of a shear
band [1-6], which is a narrow region, a few micrometers (um) wide, of intense
plastic deformation that forms during high strain-rate processes such as shock
loading, ballistic penetration, metal forming, machining, grinding, high speed
fabrication, and explosive fragmentation. ZENER and HoLLoMON [11] observed
32 wm wide shear bands during the punching of a hole in a low carbon steel plate,
and postulated that the heat generated due to plastic working made the maternal
softer, and the material became unstable when the thermal softening equalled
or exceeded the hardening of the material due to strain and strain-rate eflfects.
Since then, there have been numerous analytical, numerical, and experimental
studies aimed at analyzing the initiation and growth of shear bands; the reader
is referred to SHawkI and CLiFToN [12] and BATRA and Zuu [13] for a list of
references. Our objective here is to delineate the effect of additional softening
caused by the nucleation of voids on the formation of shear bands in a prismatic
body made of a thermally softening viscoplastic material and deformed in plane
strain tension.

A general theory of elastic materials with voids has been developed by NUN-
ziaTO and CowIN [14] and phenomenological constitutive relations for porous
ductile solids have been proposed by Kunn and Downey [15], GREEN [16],
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GURSON [17], and SHIMA and OvYANE [18]. Gurson’s model has been modified
by TVERGAARD [19, 20], TVERGAARD and NEEDLEMAN [21], and PaN ¢t al. [22] to
include work hardening, strain-rate hardening and a generalization of the flow
potential. The phenomenon of shear strain localization in porous materials has
been studied by PAN er al. [22], SAJE et al. [23], KoBAaYAasHI and Dobp [24], and
ZAVALIANGOS and ANAND [25]. Here we study a dynamic two-dimensional prob-
lem and account for the effect of inertia forces and the dependence of the ther-
mophysical properties of the material upon the porosity. Also we usc adaptively
refined finite element meshes to analyze the problem. The voids are assumed to
grow due to plastic dilatation, and a plastic strain controlled nucleation criterion
is used to account for the nucleation of voids throughout the deformation history.

2. Formulation of the problem

We assume that voids are randomly distributed throughout the body and de-
note their volume fraction by f. In terms of the referential description, the
thermomechanical deformations of the body are governed by the following equa-
tions:

balance of mass

(2.1) (p/(1 = 1)) =0,
balance of linear momentum

(2.2) p(1 - f.yv=DivT,
balance of moment of momentum

(2.3) TF' =FT’,

balance of internal energy

(2.4) pr (1~ f,)é= -DivQ +tr (TF").
where
(2.5) F = Gradx

is the deformation gradient, x is the present position of a matenal particle that
occupied place X in the reference configuration, .J = detF, p is the present mass
density of the matrix or void-free material, p, its mass density in the reference
configuration, f, equals the volume fraction of voids in the reference configura-
tion, v is the velocity of a material particle, T is the first Piola - Kirchhofl stress
tensor, e is the specific internal energy for the matrix, Q is the heat {flux per
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unit undeformed area, a superimposed dot indicates a material time derivative,
and Grad and Div signify, respectively, the gradient and the divergence opera-
tors applied to a field quantity defined as a function of X and time (. We have
neglected the balance of equilibrated forces considered by Nunziato and COWIN
[14], and have also assumed that the supplies of linear momentum and internal
energy equal zero.

We presume that the strain-rate tensor D, defined by

(2.6) 2D = gradv + (gradv)” .

with grad denoting the gradient operator applied to a field quantity defined as a
function of x and ¢, has the additive decomposition into elastic D¢ and plastic D?
parts, and make the following constitutive assumptions:

- _EO=D i omve— EY D) by
(2.7) o+0{l-Qlo = A+ ) (D D?’)+(] ) _21/)(tr(D DP)—af)1,
3tr(ss’) ... Botr o P
(2.8) @%2 ) +2f ;31cosh(220m>—-1——ﬁff2-0.
]
(2.9) § =0 — g(tro')l,
) (1 o f)(Tm “m
(2.10) D? = tr (GNT) N.
a 3 1 f*ﬁlﬂg : Patr o
(2.11) N = -(;T—%l-— (0’ — §(trc)1> + . [smh( o )} 1.
f it f< /e,
(212) .f* — f (f: o fc) (f B fc) otherwise.;
ff — fr:
(213)  owm = og(1+b¢ r )" (1 + ?i) (1 = v,0),
Yy
f2 & 1 cPh — ¢ 2
. — 1 L ]_’} T T
(2.14) f (1 - f/HierD (12\/2_71_6)(]3( ( - ) )ﬁ
3
(2.15) q = —k ( ~ -z—f) grad 6
(2.16) ¢ = c§ +tr(o(D — D?)),
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where
(2.17) T = Jo (F-I)T ..
(2.18) Q = JFlq,
(2.19) 2Q = gradv — (gradv)’ .

Equation (2.7) 1s Hooke’s law written in the rate form with the left-hand side
equal to the Jaumann derivative of the Cauchy stress tensor o, €2 defined by
Eq.(2.19) is the skew-symmetric part of the velocity gradient, F, v, and «, re-
spectively, are Young’s modulus, Poisson’s ratio, and the coefhicient of thermal
expansion for the matrix material, and 1 is the unit tensor. We have included the
factor (1 — f) on the right-hand side of the constitutive relation (2.7) to account
for the porosity of the material; this was also considered by PAssMAN and BATRA
[26] and KoBAYyAsHI and DopD [24]. Bupiansky [27] has given the dependence of
the material parameters upon f for a macroscopically isotropic composite con-
sisting of a random dispersion of roughly spherical voids in a matrix material.
These relations are more involved than the simple reduction of 2 by the factor
(1 — f) we have used in Eq.(2.7). Equations (2.10) and (2.11) follow from the
plastic yield function (2.8) proposed by Gurson and subsequently modified by
Tvergaard, and the assumptions that D? 1s directed along the outward normal N
to the yield function @, and the plastic working tr (D?) equals (1 - f)o.,, £& with
0., and & denoting the effective stress and the equivalent plastic strain-rate in
the matrix material. The expressions (2.12) for f* were given by TVERGAARD and
NEEDLEMAN [21] so that the computed results matched well the test findings for
the cup-cone fracture in a round tensile bar. They suggest the values f. = 0.15
and fr ~ 0.25. As [ — f¢, /7 — [, and the maternial loses all stress-carrying
capacity. In Eq.(2.8), 5, and /3, are material parameters and s is the deviatoric
Cauchy stress tensor.

Equation (2.13) relating the effective stress o, In the matrix to the equivalent

plastic strain, equivalent plastic strain-rate, and the temperature is a generaliza-
tion, due to BATRA [28], to the three-dimensional state of deformation of that

proposed by LiToNskI [29] for the simple shearing problem. In that equation,
oog equals the yield stress of the matrix material in a quasistatic simple com-
pression test, the parameters 0 and m characterize strain-rate sensitivity of the
material, ¢, and n the strain-hardening, and v, the thermal softening of the ma-
trix material. The first term on the right-hand side of Eq.(2.14) describes the
growth of voids due to plastic dilatation, and the second term describes the plastic
strain-controlled nucieation of voids. CHU and NEEDLEMAN [30]} suggested this
form by assuming that void nucleation follows a normal distribution about some
mean critical plastic strain. In Eq.(2.14), s, is the standard deviation of the nor-
mal distribution, f, equals the volume fraction of voids that would be nucleated
if deformation continued infinitely, and ¢,, equals the strain at which the void

——
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nucleation rate reaches a maximum. The experimental studies of LERoY [31] and
FisHER [32] on spheroidized carbon steel indicate that, at least in these materials,
a void perfusion strain can be identified at which the rate of nucleation is maxi-
mal. The void perfusion strain can be taken as e,. Here we have not considered
the stress-controlled nucleation of voids. Equation (2.15) 1s the Fourier law of
heat conduction with q denoting the heat flux per unit deformed area, and % — the
thermal conductivity of the matrix. That the thermal conductivity of the porous
materials equals (1—-3/2 f) times that of the matrix material is due to BUDIANSKY
[27]. In the constitutive relation (2.16) for the rate of change of internal energy,
¢ 1s the specific heat for the matrix. Nearly all of the thermophysical material pa-
rameters depend upon the temperature. However, such dependences have been
neglected for the sake of simplicity.

For a prismatic body of square cross-section, shown in Fig.1, deformed 1n
plane strain tension, we presume that the deformations are symmetric about the
two centroidal axes — and study deformations of the matenial in the first quad-
rant. Due to the presumed symmetry of deformations, the normal component

lxz, X2

2H
'

[
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F'IG. 1. A schematic sketch of the problem studied.

of velocity and tangential tractions are taken to vanish on the left-hand vertical
and bottom horizontal surfaces, the right-hand vertical surface 1s taken to be
traction-free, and on the top horizontal surface, zero tangential tractions and a
normal component of velocity, given below, are prescribed,

o(X1, H, 1) = wvot/t,, 0<t<t,,

(2.20)

v, L 2 1, .

Thus the assigned axial speed on the top surface increases linearly from zero to
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the steady value vg in time 7, giving an eventual nominal strain-rate of v/ //. All
the bounding surfaces of the block are taken to be thermally insulated.

Initially the block is assumed to be at rest, stress-free and at a uniform
temperature 6y. However, the initial porosity is taken to be non-uniform and
given by

fo+ (1 — T2)9€"5T2 .,

f(X1, X2,0)

(2.21)
re = (XE+ X3)/H?.

The second term on the right-hand side of Eq.(2.21); models a material defect
or iInhomogeneity, the value of ¢ is a measure of the strength of the defect.

The atorestated coupled and nonlinear partial differential equations (2.1)
through (2.19) under the prescribed initial and boundary conditions are too dif-
ficult to be analyzed analytically. Therefore, we seek their numerical solution.

3. Computational considerations

In order to solve the problem numerically, we first rewrite Eq.(2.13) as
" 1
(3.1) ¢P = max |0,

1
TH i b E?;} Tl
ay 1+ :n (1 — v 0)
<y

L -

S

Thus the equivalent plastic strain-rate is positive only when

»._,-y

7 g}
(32') T > O (] + :m) (1 — V.s:g)-.

otherwise 1t equals zero implying thereby that all components of plastic strain-rate
tensor at the material point under consideration and at that instant vanish iden-
tically. The value of o,, is computed from the yield function (2.8) once o or s
has been found.

By substituting from the constitutive relations into the balance laws, we obtain
evolution equatlons for p, v and 6 which, when combined with Eqgs. (2.7), (2.14)
and (3.2), give a system of equations for the determination of n, v, 8, o, f
and ¢f at a material point and at any instant of time. We obtain a semidiscrete
formulation of the problem by using the Galerkin method which results in a set of
coupled and nonlinear ordinary differential equations. We employed the lumped
mass matrix obtained by using the row sum technique, and evaluated various

integrals over an element by using the 3-point quadrature rule. At each node

'
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point in the mesh we have 9 unknowns, namely, p, v, 6, o, f and ¢? . Thus the
number of ordinary differential equations equals 9 times the number of nodes.
These are integrated with respect to time ¢ by using the subroutine LSODE
included in the package ODEPACK. In LSODE, vanables ATOL and RTOL
that control the absolute and relative errors in the solution vector were each
set equal to 10~°. The initial discretization of the domain consisted of uniform
3-noded triangular elements, but subsequent meshes were refined adaptively with
the area of the element generated being inversely proportional to the value of ¢,
at its centroid. Thus the mesh generated had hine elements within the severely
deforming region and coarse elements elsewhere. The finite element mesh was
refined whenever the porosity at the block centroid increased by a preassigned
amount, and the computations were stopped when the porosity at any point in
the domain reached the critical value f;. Depending upon the mitial distribution
of f, at most six mesh refinements had to be performed. The values of solution
variables p, v, 8, o, f and ¢, at the newly created nodes were computed by first
ascertaining to which element in the old mesh they belonged, and then by using
the interpolation method to find values at the newly generated nodes.

4. Numerical results and discussion

When computing numerical results, we assigned following values to various
e geometric and material parameters:

oo = 333MPa, F =210GPa., v =027. v, =6.67x107%/°C.
p, = 7800kg/m>, k =49.2W/m°C, ¢ = 473J/kg°C.
(4.1) b = 10000s, m =0.025, n =0.02, f,=0.04, sy =0.1,

e, =05 ¢,=0017, =15 3 =10, f =0.15,

fr = 035, [, = %— H =5mm, ¢t =0.005H/v,.
The aforestated values assigned to different material parameters are for a typical
steel. The value of v, equals the reciprocal of the melting temperature, taken
here to be 1500°C, of steel. For vy = 25m/s, the nominal strain-rate equals
5000s~! and the rise time for the axial speed at the top surface to reach its
steady value equals one ps.

Figure 2 depicts the effect of initial porosity distribution upon the load-dis-
placement curve for a defect-free homogeneous specimen. The ordinate 1s the
total axial force required to pull the specimen, and the abscissa is the average
strain. In this case the deformations of the body stayed homogeneous, thus no
mesh refinement was carried out. The plotted results are for a fixed mesh of 1600
uniform constant strain triangular elements. These results evince that higher val-
ues of the initial porosity facilitate plastic deformations of the body, thereby
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making the system more dissipative, and oscillations in the applied load die out
quicker. Subsequent to the initial peak in the load, the average load keeps on
decreasing with increasing axial strain because of the softening induced due to
the rise in the values of the porosity and the temperature of the body.
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FIG. 2. Axial load vs. time for homogeneous deformations of the body at a nominal strain-rate
of 5000s~! and for three distributions of the initial porosity. I — initial porosity = 0.00, 2 — initial
porosity = 0.05, 3 — initial porosity = 0.10.

4.1. Effect of nominal strain-rate and initial porosity distribution

In Fig. 3 we have plotted the history of the axial load required to pull the bar
at a speed of either Sm/s or 25m/s and for three values of the initial porosity.
In each case the initial porosity f is nonuniform with the highest value of f
occurring at the block centroid, and it quickly decreases to the uniform value
at a small distance from the block centroid. We attribute the oscillations of
higher amplitude and longer duration at vy = 25m/s to the predominance of
inertia effects. At the lower value 5m/s of vy, after the initial rise in the load
because of the increase in the axial speed, the load decreases gradually for each
one of the three values of the initial porosity distribution. We note that for a
nonporous thermoviscoplastic material BATRA [33] pointed out that inertia forces
start playing a noticeable role at a nominal strain-rate of 5000s—!. Just when
the axial load began to drop suddenly, the value of f at a node point adjacent
to the block centroid reached f; and the computations were stopped. Because
of this we do not see in plots of Fig.3 the precipitous drop in the load usually
associated with the initiation of the localization of the deformation. As will be
shown below, the deformation does localize in a narrow band.

N
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I'1G. 3. Axial load vs. time for three distributions of the initial porosity and
at nominal strain-rates of 500s~! and 5000s~!.

1-  f=0.025(1 - r?) exp(—5r?), vg = 25 m/s,
2 - f=0.025(1 - r*) exp(—5r?), vy = Sm/s,
3-  f=0.05+0.025(1 - %) exp(=5r?%), wo = 25m/s,
4~ f=0.05+0025(1 - r*) exp(=5r%), vy = Smps,
5—  f=0.1+0.025(1 - r*Y exp(-5r%), vy = 25m/s,
6 - f=0.1+0.0251-r%)exp(=57%), vy = Smps.

Figures 4a, 4b and 4c show, respectively, the evolution of the effective plastic
strain, temperature, and porosity at the block centroid for the three different
distributions of the initial porosity and two values of the axial speed. Each one of
these three variables essentially evolves gradually first, and the rate of increase of
these quantities picks up substantially once the deformation has begun to localize.
For the same value of f(x,0), the increase in the nominal strain-rate from 500 s—1
to S000s~! delays the initiation of the localization of the deformation, primarily
due to the effect of inertia forces. For a given strain-rate of 500s~! or 5000s~!, an
increase 1n the value of f(x.0) causes the localization of the deformation to occur
earlier. This is because a more porous material undergoes plastic deformation at
a lower value of o, thus facilitating the growth and nucleation of voids and also
causing the material to heat up sooner, both of which enhance further its plastic
deformations. Hence it is a self-feeding mechanism.

In order to illustrate that the deformation does localize and to depict how the
finite element meshes adapt to the deformations, we show below results for the

case of

(4.2) f(x,0) = 0.025(1 — r%)” exp(=5+?). vo = 25 m/s.



g) 1 | ] T ! 1
/
125 _
2
- !
l
i .'
& 100 i
O — |
-~ _ !
) !
B !
::-:J _ !
E 075 j /! -
Q. /
© 4 3 ,
> ! /
-— i 7/
E 050 +j f‘" -
- / fff
W /
I 6 f5 0 =
- ! -
025 - ; '-_/_..-7.-"# =
— 1111I11|||||11|::1Iillllllilllrtli__
), 01 P, 03 04
non-dimensional time
b) ~ | | 1 l l T I
25 J .
E 2
!
@ I
":3“ 20 a | ]
ot B !
o - :
g_ - i
£ - !
8 5 ; __
—_ — /
L - /
% - 2 f,
-8 i )
:I:J 10 4 / ;f -
_ / /
E s
"ID — 6 5 ;."’ ‘__.-'f#
S - ] / R
< 0.5 = !: / p = =
P_ II111|IIIIIIIllIi_[_liIllLL_LLLLliILII
0 O1 02 03 04

non—dimensional time

F1G. 4. Evolution at the block centroid of (a) the effective plastic strain, (b) the temperature
for three distributions of the initial porosity and at nominal strain-rates of 500s~" and 5000s~".

I - f=0.025(1—r*) exp(=5r%), vy = 25 m/s,
2—  f=0.025(1 — %)’ exp(=5r?), vp = Sm/s,
3—  f=005+0.025(1 — r¥) exp(=5r?), vy = 25m/s,
4~  f=005+0.0251 - r?) exp(=5r%), vy =5mfs,
5— f=0.1+0.0251—-r*)exp(=5r%), vy =25m/s,
6- f=0.1+0.025(1 - r?)’ exp(—=5r%), wvo=Sm/s.

[22]
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I'1G. 4 [cont.]. Evolution at the block centroid of (c) the porosity for three distributions
of the initial porosity and at nominal strain-rates of 500s~! and 5000s™".
1 - f=0.025(1 - r?y exp(—5r?), vo = 25 my/s,
2- [ =0.0251 - r*)’ exp(=5r?), vy = Sm/s,
33— f=0.05+0.025(1 - r*) exp(~5r?), vy = 25m/s,
4—  f=0.05+0.025(1 — r*)’ exp(=5r?), vy = Sm/s,
5—- f=01+00251-r") exp(=5r%), vy = 25m/s,
6 - f=01+0.0251~r"Yexp(=5r?), vy = Sms.

Figures 5a, 5b, 5¢ and 5d show the finite element meshes generated at non-
dimensional times ¢t = 0.198, 0.285, 0.339 and 0.357. We note that the initial
mesh consisted of 1600 uniform triangular elements. The finite element mesh
was refined whenever the porosity f at the block centroid had increased by 0.025,
a criterion chosen somewhat arbitrarily. The mesh was refined by using the code
developed by BATRA and Ko [34] which generates meshes such that the area of
an element is inversely proportional to the value of a deformation-rate measure,
here taken to be ¢,,, at the element centroid. It is clear then that a narrow
region of the material is deforming severely at times ¢t = 0.339 and 0.357. As
stated earlier, computations were stopped when the porosity at any point in the
deforming region reached the critical value f;. This implies failure of the material
at a point which does not necessarily result in the instantaneous failure of the
block. Figures 6a, 6b, 6¢ and 6d evince the distribution of the velocity within the
deforming region at the aforestated four values of the non-dimensicnal time f.
Inmitially, because of the lateral motion of the block, the velocity component in
the horizontal direction has a significant value everywhere. However, once the
deformation has started to localize, the body is essentially divided into three
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I'1G. 7 [cont.]. Contours of (¢) the porosity at non-dimensional time t = 0.357.

regions. In the region above the shear band, the material particles are moving
nearly vertically, and those below the band - horizontally. Within the band, the
velocity changes direction sharply.

Contours of the eftective plastic strain (epstn), temperature rise, and the
porosity within the deforming region at time ¢ = 0.357 are shown in Figs. 7a,
7b, and 7c. It is clear that the strain near the block centroid is quite high. How-
ever, the temperature rise there is only 2.4 x 89.8 = 216°C, and the porosity
has increased significantly only in a very narrow region surrounding the block
center.

4.2. Effect of strain-induced void nucleation

In order to present the effect of the softening caused by the plastic strain-
controlled nucleation of voids, we have plotted in Fig.8 the evolution of the
applied axial force at the top surface and that of temperature, effective plastic
strain and porosity at the block centroid for the two cases: (i) f = 0, and (ii)
f>» = 0.04. It 1s apparent that the consideration of strain-induced void nucleation
enhances the onset of the localization of the deformation, as shown by the sharp
rise in the rate of increase of the temperature, effective plastic strain and the
porosity at the block centroid.
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4.3. Thermal softening vs. softening due to porosity change

For the choice (4.1) of parameters we assessed the effect of softening caused
by the rise in temperature versus that induced due to the increase in porosity by
performing two sets of calculations, one with v, = 0 and the other with f(x,t) = 0.
The material defect for these computations was modelled by assuming that the
yield stress 6p in a quasistatic simple compression test of material particles in a
small region around the block centroid was given by

50(X) = 0o (1-0.1(1 = r3°c™5) 2= (x2+ XP/H< 1.
a9, r Z 1.

In Fig.9, we have plotted the evolution of the applied axial force, and that of
the eflective plastic strain and the temperature rise at the block centroid for
the two cases with vp = 25m/s. It is clear that for the parameters considered
herein, the softening due to the increase in porosity is considerably higher than
that caused by the rise in the temperature. Whereas a shear band initiates, as
Indicated by the rise in the rate of increase of the effective plastic strain and of the
temperature at the block centroid at non-dimensional time ¢ ~ 0.5 when softening
1s caused by the change in porosity, no shear band forms till a non-dimensional
time of 0.5 when the softening is induced by the temperature rise, since both
the effective plastic strain and the temperature at the block centroid increase

a) 1 ' } ! i

30
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! — no thermal softening, 2 -~ thermal softening only.
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essentially linearly with time. It is possible that a band will initiate at a later
time. Thus for the values of material parameters chosen for this study, softening
caused by the growth and nucleation of voids is stronger than that induced by
the temperature rise.

5. Conclusions

We have studied dynamic finite plane strain thermomechanical deformations
of a porous viscoplastic body deformed in tension. The material is modelled by
the Gurson-Tvergaard - Needleman yield function with the flow stress for the
matrix material given by a relation similar to that proposed by BaTrA [28]. When
the dependence of material parameters upon the porosity is considered, they are
assumed to be independent of temperature. The problem formulation includes
the eflect of inertia forces and heat conduction.

The coupled nonlinear partial differential equations governing the deforma-
tions of the body are reduced to a set of coupled nonlinear ordinary differential
equations by using the Galerkin method. These are integrated with respect to
time ¢ by using the IMSL subroutine LSODE. The finite element mesh has been
refined adaptively.

It 1s found that inertia forces play a dominant role at a nominal strain-rate

Yavg Of 5000s~1, but a negligible role when Yavg= 1000s~!. An increase in the
initial value of the porosity makes the system more dissipative in the sense that
oscillations 1n the applied axial force die out quickly. The shear band forms
at a lower value of the nominal strain when the initial porosity is increased.
Once a shear band has developed, the material above the shear band moves
upwards with the velocity imposed on the top surface, and that below the band
moves horizontally to the left, with the velocity changing sharply from essentially
horizontal to nearly vertical on the two sides of the severely deforming region.
The computations were stopped when the porosity at a point reached a critical
value. The matenal at the center necked. The softening caused by the increase
In the porosity i1s more than that induced by the rise in the temperature of the
body, at least, for the values assigned to material parameters herein.
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