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Free and Forced Vibrations of
Monolithic and Composite
Rectangular Plates With Interior
Constrained Points
The restriction of deformations to a subregion of a system undergoing either free or
forced vibration due to an irregularity or discontinuity in it is called mode localization.
Here, we study mode localization in free and forced vibration of monolithic and unidirec-
tional fiber-reinforced rectangular linearly elastic plates with edges either simply sup-
ported (SS) or clamped by using a third-order shear and normal deformable plate theory
(TSNDT) with points on either one or two normals to the plate midsurface constrained
from translating in all three directions. The plates studied are symmetric about their mid-
surfaces. The in-house developed software based on the finite element method (FEM) is
first verified by comparing predictions from it with either the literature results or those
computed by using the linear theory of elasticity and the commercial FE software ABAQUS.
New results include: (i) the localization of both in-plane and out-of-plane modes of vibra-
tion, (ii) increase in the mode localization intensity with an increase in the length/width
ratio of a rectangular plate, (iii) change in the mode localization characteristics with the
fiber orientation angle in unidirectional fiber reinforced laminae, (iv) mode localization
due to points on two normals constrained, and (iv) the exchange of energy during forced
harmonic vibrations between two regions separated by the line of nearly stationary points
that results in a beats-like phenomenon in a subregion of the plate. Constraining transla-
tional motion of internal points can be used to design a structure with vibrations limited
to its small subregion and harvesting energy of vibrations of the subregion.
[DOI: 10.1115/1.4041216]

Introduction

Discontinuities and irregularities in a physical system may
cause anomalies in its free and forced vibrations. Anderson [1]
observed that irregularities in electrons distribution in different
lattice structures vary their vibration characteristics and the
material conductivity; this phenomenon is called Anderson’s
localization [2]. Hodges [2] extended the vibration localization
phenomenon to continuous periodic structures. Subsequently,
numerous works have illustrated the mode localization phenom-
enon in continuous structures that include periodic structures with
cyclic symmetry [3–5], multispanned beams [6], and irregular
structures [7–9].

Early works on mode localization in continuous bodies were
mostly restricted to one-dimensional (1D) problems possibly
because of difficulties in computing eigen-modes [8]. Hodges and
Woodhouse [7], based on Herbert and Jones’s work [9], used a
statistical perturbation method to study localization phenomenon
in a string by inducing an irregularity with a slidable mass. They
found good agreement between their analytical and experimental
results. Depending on the magnitude of internal coupling of the
structure, they divided the localization phenomenon into weak
and strong. Using a mathematical model closely related to
Kirkman and Pendry’s [10] solid state physics model, Pierre [8]
delineated factors for the weak and the strong localization
phenomena.

Pierre and Plaut [11] used the perturbation approach to study
the mode localization phenomenon in multispan hinged beams.

Due to mathematical similarities between the free vibration and
the elastic buckling problems, one can also observe the mode
localization phenomenon in elastic buckling of thin structures. For
example, Nayfeh and Hawwa [12] used principles of mode
localization to control buckling of structures, and Paik et al. [13]
characterized buckling localization in composite laminae with
constrained interior points. Ibrahim [14] as well as Hodges and
Woodhouse [15] have reviewed the literature on the localization
phenomenon published till 1987.

Nowacki [16] analytically studied, using a Levy solution, vibra-
tion of simply supported (SS) rectangular plates with multiple
internal constrained points. Gorman [17] analytically investigated
free vibrations of plates clamped only at symmetric points on the
diagonals and used a plate theory. Gorman and Singal’s [18]
experimental findings agreed well with the analytical results of
Ref. [17].

Bapat et al. [19,20] and Bapat and Suryanarayan [21,22]
employed the flexibility function approach to study free vibration
of point supported plates. Bapat and Suryanarayan [23] extended
it to analyze mode localization in SS rectangular plates having
internal constrained points. Lee and Lee [24] adopted the impulse
function approach to analytically solve similar problems.

Rao et al. [25], Raju and Amba-Rao [26], and Utjes et al. [27],
among others, have numerically analyzed the mode localization
phenomenon in rectangular plates with point supports by using
the finite element method (FEM), whereas Kim and Dickinson
[28] and Bhat [29] used the Rayleigh–Ritz method. Filoche and
Mayboroda [30] used the Kirchhoff plate theory and the FEM to
show that constraining all points on a normal to the plate midsur-
face of a rectangular plate induced strong mode localization.
Sharma et al. [31] used a first-order shear deformation theory
(FSDT) and the FEM to show the mode localization phenomenon
in composite rectangular plates when both bending and transverse
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shear deformations are incorporated in the analysis. These studies
[30,31] considered only bending or out-of-plane modes of
vibration, and all plate edges clamped. It seems that the localiza-
tion of in-plane modes of vibration, effects of SS edges on mode
localization, and constraining points on two normals to the plate
mid surface have not been scrutinized. For SS plates, Batra and
Aimmanee [32] analytically found these and bending vibration
modes by using complete polynomials in the Levy type solutions.
Other authors have studied either in-plane (e.g., see Ref. [33]) or
bending (e.g., see Ref. [34]) modes of vibration only. Even though
one can study mode localization by separately using the bending
and the stretching plate theories and then combining the results,
the use of a third-order shear and normal deformable plate theory
(TSNDT) simultaneously gives both types of modes. It thus does
not require studying the problem with two different plate theories.
The TSNDT does not require a shear correction factor, frequen-
cies and mode shapes of the first 100 modes of vibration agree
well with those computed using the linear elasticity theory (LET),
and the in-plane stresses computed from the TSNDT displace-
ments and the constitutive relation agree well with those found
using the LET. Furthermore, the transverse stresses computed by
using a one-step stress recovery scheme are close to those
obtained using the LET. For materials with Poisson’s ratio close
to 0.49, the transverse normal strains are likely to be of the same
order of magnitude as the axial strains and require plate theories
that consider transverse normal strains.

The TSNDT is particularly useful for problems involving
inhomogeneous materials with elastic moduli varying along the
plate thickness. Vel and Batra [35] showed that many simple plate
theories do not predict well stresses at critical locations. As dem-
onstrated by Shah and Batra [36], the TSNDT solution provides
reasonably accurate values of stresses everywhere in the plate.

Here, we study the mode localization phenomenon in free and
forced vibrations of monolithic and unidirectional fiber-reinforced
laminated rectangular linearly elastic plates with internal con-
strained points by using a TSNDT. Lo et al. [37], Carrera [38],
Vidoli and Batra [39], and Batra and Vidoli [40], among others,
have proposed higher-order shear and normal deformable plate
theories based on Mindlin’s classical work [41]. As also observed
in Refs. [30] and [31] who did not consider transverse normal
deformations, with an increase in the length/width ratio for a rec-
tangular plate, the mode localization becomes stronger. One of the
new results reported here is the mode localization for in-plane
modes of vibration. We show that the first 100 frequencies and
strain energies associated with their mass normalized mode shapes
computed by using the TSNDT agree well with those found from
the LET. Subsequently, we compute results with the TSNDT and
study mode localization in both isotropic and composite plates.
We also study forced vibrations of internally constrained plates to
delineate if vibrations are localized.

For forced harmonic vibrations of an internally constrained
plate at a frequency close to that of the mode for which vibrations
are localized in one of the two regions, the response strongly
depends upon which region exhibited mode localization. For
example, we observe beats like phenomenon in the shorter region
of the plate possibly due to the energy transfer between the two
regions. This is similar to the steady-state response observed in
Refs. [42] and [43] in structures composed of vibration absorbing
dampers. Spletzer et al. [44] have used this principle to design
ultrasensitive mass sensors using linked cantilever beams. Thus,
the mode localization phenomenon can be both beneficial and
harmful based on design requirements. It serves as a tool for
designing structures with desired vibration characteristics.

Problem Formulation

We use both the LET and a TSNDT to analyze free and forced
infinitesimal vibrations of linearly elastic rectangular plates with
and without constraining interior points on either one or two nor-
mals to the plate midsurface. A schematic sketch of the problem

studied is exhibited in Fig. 1 wherein rectangular Cartesian coor-
dinates, used to describe plate’s deformations, are also depicted.

The Linear Elasticity Theory. For the LET, equation govern-
ing deformation of a plate in the absence of body forces is

q€ui ¼ rij;j (1)

where ui(i¼ 1, 2, 3) is the displacement along the xi-axis, rij;j ¼
@rij=@xj;rij is the stress tensor, €ui ¼ @2ui=@t2, t is the time, and a
repeated index implies summation over the range of the index.
Equation (1) is supplemented with Hooke’s law

rij ¼ Cijklekl (2)

strain–displacement relations

eij ¼ ðui;j þ uj;iÞ=2 (3)

and initial/boundary conditions

uiðx1; x2; x3; 0Þ ¼ u0
i ðx1; x2; x3Þ; _uiðx1; x2; x3; 0Þ ¼ _u0

i ðx1; x2; x3Þ
rijnj ¼ tiðx1; x2; x3; tÞ on Ct;

uiðx1; x2; x3; tÞ ¼ ubc
i ðx1; x2; x3; tÞ on Cu

Ct [ Cu ¼ @X;Ct \ Cu ¼ / (4)

Here Ct and Cu are, respectively, parts of the boundary where sur-
face tractions and displacements are prescribed as tiðx1; x2; x3; tÞ
and ubc

i ðx1; x2; x3; tÞ; n is a unit outward normal to Ct; u
0
i ðx1; x2; x3Þ

is the initial displacement field, _u0
i ðx1; x2; x3Þ is the initial velocity

field, and X is the region occupied by the plate. We note that line-
arly independent components of uiðx1; x2; x3; tÞ and rijnj can be
prescribed at a point on the plate surfaces. Substitution from
Eqs. (2) and (3) into Eq. (1) results in three coupled linear partial
differential equations for finding ui. At an interior constrained
point ð�x1; �x2; �x3Þ, we set uið�x1; �x2; �x3; tÞ ¼ 0.

Third-Order Shear and Normal Deformable Plate Theory.
In the TSNDT, the displacement field is approximated as

uiðx1; x2; x3; tÞ ¼
X3

j¼0

ðx3Þjuijðx1; x2; 0; tÞ; i ¼ 1; 2; 3 (5)

where 12 functions, uij, are defined on the plate reference surface,
here taken to be the plate midsurface, x3¼ 0. One may interpret uij

as the jth order partial derivative of uiðx1; x2; x3; tÞ with respect to
x3 evaluated at x3¼ 0. Alternatively, for j ¼ 1; 2; 3, they can be
interpreted as directors proposed by the Cosserat brothers [45].

Fig. 1 Schematic representation of a rectangular plate with the
rectangular Cartesian coordinate axes. Points on the normal
through the point P may be constrained from translating in all
three directions.
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Units of uij are length/(length)j. Substituting for displacements
from Eq. (5) into Eq. (1), we get

qð€ui0 þ x3€ui1 þ x2
3 €ui2 þ x3

3 €ui3Þ ¼ rij;j (6)

Multiplying both sides of Eq. (6) by ðx3Þk (k¼ 0, 1, 2, 3) and
integrating resulting equations with respect to x3 over the plate
thickness, we get

X3

j¼0

A
ðkÞ
jþ1 €uij ¼

X2

a¼1

M
ðkÞ
ia;a þ ððx3Þkri3Þjh=2

�h=2

� kM
ðk�1Þ
i3 ; i ¼ 1; 2; 3; k ¼ 0; 1; 2; a ¼ 1; 2 (7)

where

A
ðkÞ
j ¼

ðh=2

�h=2

qðx3Þkþjdx3; j ¼ 1; 2; 3; 4

M
ðkÞ
ij ¼

ðh=2

�h=2

ðx3Þkrijdx3; k ¼ 0; 1; 2; 3

(8)

The element A
ðkÞ
j associated with €uij appears in the jth row and the

kth column of the inertia matrix A, and M
ðkÞ
ij is the kth order

moment of rij about the plate midsurface. M
ð0Þ
ij and M

ð1Þ
ij , respec-

tively, are the usual force per unit length and the moment per unit

length; M
ð2Þ
ij and M

ð3Þ
ij are higher-order moments. Substitution

from Eqs. (7), (2), and (3) into Eq. (8) gives expressions for M
ðkÞ
ij

in terms of uij. These expressions when substituted in Eq. (7) yield
12 coupled linear partial differential equations for 12 unknown
functions, uij.

Boundary conditions for the LET and the TSNDT at a clamped
and a SS edge are listed below:

SS edge x1 ¼ 0 :

u2; u3 ¼ 0; r11 ¼ 0 for the LET;

u2i; u3i ¼ 0; M
ðiÞ
11 ¼ 0; i ¼ 0 to 3 for the TSNDT

Clamped edge x1 ¼ 0 :

u1; u2; u3 ¼ 0 for the LET;

u1i; u2i; u3i ¼ 0; i ¼ 0 to 3 for the TSNDT (9)

Boundary conditions (9) for a SS edge are the same as those
employed by Srinivas et al. [46] in their analytical solution of a
linearly elastic problem and are used when seeking a Levy type
solution. Analytical solutions for static and wave propagation
problems for arbitrary boundary conditions are given in Refs.
[35,47], and [48].

Numerical Solution of the Problem. For the above-stated two
initial-boundary-value problems, we first derive weak formula-
tions by employing the Galerkin method, e.g., see Ref. [49]. We
numerically solve the resulting equations by the FEM with the
in-house developed software for the TSNDT equations and the
commercial software, ABAQUS, for the LET equations. We note
that in each case, the resulting equations are expressed in matrix
form as

M€d þKd ¼ F (10)

where M and K, respectively, represent the mass and the stiffness
matrices, and d is the vector of nodal unknowns, three for a node
in the LET and 12 for a node in the TSNDT. Nodes are distributed
throughout the three-dimensional (3D) plate domain for the LET
and only on the two-dimensional plate reference surface for the

TSNDT. We employ eight-node brick elements with 2� 2� 2
integration points in an element for the LET and four-node quadri-
lateral elements for the TSNDT with 2� 2 integration points in an
element. The mass and the stiffness matrices, and the load vector
for the TSNDT are evaluated by employing seven uniformly
spaced integration points in the thickness direction. The total
number of degrees-of-freedom (DOFs) for the TSNDT is consid-
erably less than that for the LET.

Free Vibrations. For the free vibration problem, F¼ 0, and
dðtÞ ¼ Deikt, no initial conditions are needed, and boundary con-
ditions (4) are such that no work is done by external forces. Equa-
tion (10) reduces to the following eigenvalue problem:

½M� k2K�D ¼ 0 (11)

The cyclic frequencies fi (in Hz) of the plate are given by

fi ¼ ki=2p (12)

The number of frequencies equals the number of unconstrained
DOFs or the dimensionality of the vector, d, minus the number of
constraints including those on the plate edges.

Forced Vibrations. For the transient analysis, we use the condi-
tionally stable, central-difference time integration scheme, and a
lumped mass matrix in ABAQUS for the LET equations and the con-
sistent mass matrix for the TSNDT equations. Because of the gen-
eralized displacements in the TSNDT, terms in the mass matrix
have different dimensions. Thus, one cannot employ the row sum
technique of lumping the mass matrix. By nondimensionalizing
variables, one could potentially use a lumped mass matrix. The
time integration scheme is stable when the time-step size, Dt, sat-
isfies the condition

Dt � Dtcritical ¼ 2=kmax (13)

where kmaxðrad=sÞ is the largest natural frequency of the system.
The eigenvector for each frequency is normalized with respect to
the mass matrix in both the LET and the TSNDT.

The computation of stresses for the LET is straightforward. For
determining in-plane stresses in the TSNDT, we find strains with
the TSNDT displacements and then stresses from the constitutive
relation. We use a one-step stress recovery scheme to compute
the transverse (out-of-plane) stresses. That is, we integrate with
respect to x3 the LET equations of motion starting from the bot-
tom surface. For a¼ 1 and 2

ra3jx3¼z ¼ ra3jx3¼�h=2 þ
ðz

x3¼�h=2

p€ua �
@rab

@xb

� �
dx3 (14)

where z¼ x3. For evaluating the integrand in Eq. (14) at a given
point, we first find the in-plane stresses at centroids of nine ele-
ments surrounding the point, fit a complete quadratic polynomial
to each component of the stress by the least squares method, dif-
ferentiate the polynomial, and then substitute in it coordinates
of the point. Having found stresses r13 and r23, the equation of
motion in the x3-direction is integrated with respect to x3 to find
r33 that requires knowing r3a;a for different values of x3.

Example Problems

Verification of the Third-Order Shear and Normal
Deformable Plate Theory Software for Free Vibrations of
Rectangular Plates

Comparison of the First 100 Frequencies. We first verify the
in-house developed software by comparing the lowest five funda-
mental frequencies of a linearly elastic, homogeneous, and
isotropic 100 mm� 100 mm� 10 mm plate having Young’s
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modulus, E¼ 200 GPa, Poisson’s ratio, �¼ 0.3, and mass density,
q¼ 7.2 g/cc with their analytical values [34], and from higher
order plate theories [32,50]. We successively refined the FE mesh
of uniform elements for the TSNDT solution and found that the
difference in the first ten frequencies using 40� 40 (20,172
DOFs) and 30� 30 elements (11,532 DOFs) was less than 1%. In
Table 1, we have listed the presently computed first five con-
verged frequencies using 40� 40 uniform four-node elements and
those found by other investigators. It is clear that the TSNDT pre-
dicted first five natural frequencies differ at most by 0.85% from
their analytical values. We note modes 4 and 5 represent in-plane
modes of vibration with u3 ¼ 0 that were absent from the analyti-
cal solution of Srinivas and Rao [34] since they considered only
bending deformations.

When studying mode localization, we use first 100 frequencies.
Accordingly, we now compare these computed from the TSNDT
with those using the LET and the commercial FE software,
ABAQUS. For the 80 mm� 20 mm� 2 mm (aspect ratio¼ length/
thickness¼ 40) SS and clamped plates ðE ¼ 25 GPa; v ¼ 0:25;
q ¼ 5 g=ccÞ, we have exhibited in Fig. 2 the first 100 frequencies
found from the two theories. When computing results using ABA-

QUS, we used 320� 80� 8 uniform eight-node C3D8 elements
resulting in 234,009 DOFs. The use of C3DR elements in ABAQUS

did not give accurate frequencies of modes greater than 50. It is
clear that the results from the two approaches differ by less than
4% for both the SS and the clamped plates. A similar exercise for
the 80 mm� 20 mm� 4 mm (aspect ratio¼ 20) plate showed,
respectively, the maximum difference of 2.3% and 3.8% for the
SS and the clamped edges. Both the LET and the TSNDT gave
several in-plane modes of vibrations.

Comparison of Strain Energies Associated With the First 100
Modes of Vibration. For mass normalized displacements for a
mode shape D

T
MD¼ 1, D

T
KD/2 equals the strain energy of a

linearly elastic body. Rayleigh’s theorem (or premultiplying
Eq. (11) by DT) gives

k2 ¼ DTKD=DTMD (15)

Thus, the strain energy of deformations associated with a mode
shape equals one-half of the square of the frequency (in radians/s)
of the mode shape. Because of the dimensional units used here,
the strain energy in J equals 0.5� (frequency in rad/ls)2; we call
this as the TSNDT (modal) energy.

One can also compute the strain energy, U, of a mode as

U ¼ 1

2

ð
V

rijeijdv (16)

where stresses and strains are calculated from the mass normal-
ized eigen-vectors; we call this as the TSNDT (direct) energy. We
have exhibited in Fig. 3 strain energies associated with the first
100 modes from the two theories for the 80 mm� 20 mm� 2 mm
plate for the SS and the clamped plates. These results evidence
that the TSNDT and the LET give almost identical strain energies
up to the first 50 modes and the TSNDT predicts slightly higher
strain energies for the subsequent 50 modes.

Mode Localization in Clamped and Simply Supported
Plates With Interior Constrained Points

Plates Made of Monolithic and Isotropic Materials. Following
Ref. [30], we normalize rectangular plate’s areal dimensions toffiffiffi

e
p � 1=

ffiffiffi
e
p

to have unit surface area, and call e the eccentricity
(it equals the length/width). We study its free vibrations with all
points on the line, x1 ¼

ffiffiffi
e
p
=5; x2 ¼ 1=2

ffiffiffi
e
p

(i.e., normal to the
plate midsurface through the point P ð ffiffiffiep =5; 1=2

ffiffiffi
e
p
; 0Þ, con-

strained or equivalently, restrained from translating in all three

Table 1 First five nondimensional frequencies, xn5xh
ffiffiffiffiffiffiffiffiffi
q=E

p
, of the 100 mm 3 100 mm 3 10 mm SS plate

Mode TSNDT (present) Srinivas and Rao [34] Qian et al. [50] Batra and Aimmanee [32]

1 0.0581 0.0578 0.0578 0.0578
2 0.1393 0.1381 0.1391 0.1391
3 0.1393 0.1381 0.1391 0.1391
4 0.1949a — 0.1948a 0.1949a

5 0.1949a — 0.1948a 0.1949a

aIn-plane mode of vibration and x equals k used earlier.

Fig. 2 First 100 frequencies, in rad/ls, from the TSNDT and the 3D LET (left), and the relative difference
between them (right) for the 80 3 20 3 2 mm SS and clamped plates
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directions. In the TSNDT, it is accomplished by setting
u1i; u2i; u3i ¼ 0; i ¼ 0 to 3 (see Eq. (9)). As shown in Fig. 1, the
plate midsurface to the left (right) of the point P is denoted by R1

(R2). For plates with e¼ 1, 4, 16, and 25, we computed results
using 40� 40, 80� 20, 160� 10, and 200� 8 uniform four-node
elements using the TSNDT.

Clamped edges. We have displayed in Fig. 4 frequencies of the
first 100 vibration modes of a clamped plate of e¼ 16 with and
without the internal constrained points. As in Refs. [30] and [31]
where the Kirchhoff theory and the FSDT were used, respectively,
in the TSNDT imposing an internal constraint does not affect the
first 100 frequencies of a plate. However, constraining internal
points strongly affects shapes of modes 2, 4, 5, 10, and 20,
depicted in Fig. 5 by using (X, Y, Z)¼ (x1, x2, x3). We note that for
a plate with the internal constrained points, vibrations of either
region R1 or of region R2 are miniscule. Although mode 5 is
essentially unaffected by constraining the internal points, mode
shapes of the vibrating region are quite different.

Following Refs. [30] and [31], we quantify mode localization
by parameter, b1, defined by

b1¼

Xn

i¼1

u½ �Ti kel½ �i u½ �i

XNel

i¼1

u½ �Ti kel½ �i u½ �i

(17)

where n is the number of elements in the plate region R1, Nel the
total number of elements in the plate, ½kel� the element stiffness
matrix, and u the vector of nodal displacements in the mass nor-
malized eigen-vector for the ith mode. Thus, b1 equals the ratio of
the total strain energy of the region R1 to that of the entire plate.
The value of b1 near 0 implies that most of the plate deformation
in region R1 is annulled.

For the first 100 modes of vibration of plates with e¼ 1, 4, 16,
and 25, values of b1 for each mode and the total number of modes
for a given value of b1 are presented in Fig. 6. These results sug-
gest that the value of b1 strongly depends upon the eccentricity, e,
and for e¼ 1, b1 < 0.27 for 97 out of the first 100 modes of vibra-
tion implying that there is no noticeable mode localization since
energies in regions R1 and R2 are proportional to their volumes.
However, for e¼ 25, for the first 52 modes of vibration, points in
either region R1 or region R2 are nearly undeformed since for
them, b1 is either near 0 or 1. For e¼ 1, 4, 16, and 25, the number
of modes for which b1 is either essentially 0 or 1, respectively,
equals 0, 18, 41, and 52. Thus, as concluded in Refs. [30] and
[31], the total number of modes with nearly null deformations
increases with an increase in e.

Simply supported edges. In order to decipher whether or not an
in-plane mode of vibration localizes in either region R1 or R2, we
study free vibrations of the rectangular plate of e¼ 16 with and
without constraining interior points. Fringe plots of the total dis-
placement magnitude for nine modes, not necessarily consecutive,
are presented in Fig. 7 with top views of the plate for modes 1, 3,
and 4, and isometric views for other modes. Values of b1 and the
corresponding histogram are exhibited in Fig. 8.

There is essentially no localization of deformation for the plate
without any internal point constrained since b1 ffi 0.2 for most
modes. However, for the plate with internally constrained points,
37 and 5 modes, respectively, have values of b1 close to either 0
or 1 signifying their localization in one of the two regions. The
remaining 58 modes having values different from 0, 0.2, and 1 are
partially localized. We note that the mode localization in one
region of an in-plane mode of vibration does not completely kill
vibration of points in the other region as occurs for the out-of-
plane (or bending) vibration modes. For example, in the deformed
shape of mode 4 displayed in Fig. 7, in spite of the localization of
the mode in region R1, points in region R2 significantly deform.
The significant difference between vibrations of clamped and SS
plates is the existence of a larger number of in-plane modes in the
SS plate as compared to that in the clamped plate. Most of these
modes are partially localized thus resulting in nonzero strain ener-
gies in both regions of the plate, e.g., see mode 4 in Fig. 7.

Fig. 3 Total strain energy, in J, from the TSNDT and the 3D LET (left), and the relative error between them (right)
for the 80 3 20 3 2 mm SS and clamped plates

Fig. 4 Frequencies of the first 100 modes of vibration of the
e 5 16 clamped plate with and without internal points
constrained

Journal of Vibration and Acoustics FEBRUARY 2019, Vol. 141 / 011018-5



Fig. 5 Mode shapes for free vibration of the clamped plate of e 5 16 with (right) and without (left) internal con-
strained points. The red and the blue colors, respectively, represent magnitudes of the maximum positive and the
maximum negative transverse displacement. (For references to color in the figure, see the online version.)

Fig. 6 Mode localization parameter, b1, for the first 100 modes of vibration of a clamped plate with constrained
internal points (left) and distribution of modes over different values of the ratio b1 for the first 100 vibration modes
(right)

011018-6 / Vol. 141, FEBRUARY 2019 Transactions of the ASME



Unidirectional Fiber-Reinforced Laminated Plate. We model a
unidirectional fiber-reinforced lamina as transversely isotropic
with the fiber direction as the axis of transverse isotropy and
assign the following values to material parameters:

EL ¼ 140 GPa; ET ¼ EL=25; GLT ¼ EL=50; GTT ¼ EL=125;

vTT ¼ 0:25; q¼ 5 g=cc

(18)

Here, subscripts L and T, respectively, describe directions parallel
and perpendicular (or transverse) to the fiber direction. Material
properties with respect to the global coordinate axes are deduced

from these by using the tensor transformation rules for stresses
and strains.

Clamped edges. For clamped thin rectangular laminates (thick-
ness¼ length/400) with the axis of transverse isotropy or fiber
angle, h, in all layers of 0 deg, 30 deg, 45 deg, 60 deg, and 90 deg
counterclockwise to the global x1-axis, and eccentricity e¼ 20, we
find their first 100 frequencies and the corresponding mode shapes
with and without internal points on the line (l/5, b/2, z) con-
strained. We note that the elastic moduli with respect to the global
coordinate axes depend upon h. Hence, the global stiffness matrix
for the plate varies with the angle h. Mode shapes for the first and
the fifth mode of vibration for three laminae with h¼ 0 deg,

Fig. 7 Fringe plots of the magnitude of the total displacement for different mode shapes of the SS
plate of e 5 16 with (right) and without (left) internal constrained points
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45 deg, and 90 deg and internally constrained points are presented
in Fig. 9. These suggest that the deformation profile for mode 1
(mode 5) is virtually unaffected (significantly influenced) by the
fiber orientation angle. For h¼ 45 deg and 90 deg, the mode
shapes for mode 5 are virtually identical, similar to what was
found in Ref. [31] using the FSDT. For the five values of h, the
histograms for the distribution of the mode localization parameter
b1 are given in Fig. 10. In the h¼ 0 deg, 45 deg, and 90 deg lam-
ina, the number of modes with b1� 0.0 equals, respectively, 30,
44, and 66 (43, 49, and 65) from the FSDT (TSNDT) solution.

Thus, the number of modes localized in region R1 increases with
an increase in h.

Simply supported edges. For SS lamina with h¼ 0 deg, 30 deg,
45 deg, 60 deg, and 90 deg and eccentricity e¼ 4, only 7 (23)
modes are localized for h¼ 0 deg (90 deg) when internal points
are constrained. The plate exhibits an interesting behavior for the
localization of the in-plane modes of vibration with the change in
the fiber orientation angle. In order to see this, we have plotted in
Fig. 11 deformed shapes of the plate for the five fiber angles and

Fig. 8 Values of b1 for different modes (top) and the histogram of b1 for the first 100 modes of free vibration of a
SS plate of e 5 16 with (right) and without (left) constraining internal points

Fig. 9 Mode shapes of mode 1 (left) and mode 5 (right) of vibration of internally constrained clamped rectangular
laminae of e 5 20 for fiber angles of 0 deg, 45 deg, and 90 deg
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have included fringe plots of the transverse displacement, u3. We
have exhibited in Fig. 12 the top view of the deformed plate for
h¼ 45 deg, 60 deg, and 90 deg with fringe plots of the in-plane
displacement u2. We see in plots of Fig. 11 that for h¼ 0 deg and
30 deg, there is significant transverse displacement as compared to
that for h¼ 45 deg, 60 deg, and 90 deg. Whereas values of in-
plane displacement u2 are negligible for h¼ 0 deg, they are notice-
able for h¼ 45 deg and 90 deg. Thus, the ratio of energies, b1,
does not correctly represent the mode localization phenomenon
for all values of h. However, for h¼ 45 deg and 90 deg, as shown
in Fig. 12, the interior constrained points divide the plate into
regions R1 and R2 one of which has very little deformations as is
for isotropic plates.

We observe from results in Fig. 13 that the plate with the
90 deg fibers has 22 localized modes that include both the out-of-

plane and the in-plane modes of vibration, and the plate with the
0 deg fibers only 8 modes localized. For the 0 deg (90 deg) plate,
b1 ¼ 0:2 for 43 (28) modes. Mode shapes for a few modes local-
ized in region R1 are presented in Fig. 14. We observe that the
deformation of mode 14 is partially localized in region R1, it is
similar to that of mode 4 for the isotropic SS plate for which
results are shown in Fig. 7. Similarly, partial localization can be
seen for mode 17 for which although the deformation localized in
R1, the region R2 has significant deformations that contribute to
the strain energy, and accordingly, b1 is not close to 0.

Constrained Points on Two Normals for an Isotropic Simply
Supported Plate. We now explore the effect of clamping two
sets of internal points on mode localization of a SS
80 mm� 20 mm� 2 mm plate with either points (l/5, b/2, z) and
(4l/5, b/2, z) or points (l/10, b/2, z) and (4l/5, b/2, z) constrained.
The first (second) pair of points is symmetrically (asymmetrically)
located about the surface x1¼ l/2. Mode shapes for modes 1, 3,
and 5 for the first and the second pairs of points are presented in
Fig. 15. We conclude from results for the 5th mode of free vibra-
tion that for the symmetrically located pair, the deformation is
entirely localized in the shorter sections at both ends. However,
for the asymmetrically located pair of points, the deformation is
entirely localized in the 1/5th of the plate between x1¼ 0.8l and l,
and for none of the first 100 modes of vibration, it localized in the
(l/10)th of the left end of the plate.

Transient Deformations of Simply Supported Isotropic
Plates. In order to ascertain how constraining interior points
affects plate’s forced vibrations, we study deformations of
the 80 mm� 20 mm� 2 mm SS plate (E¼ 25 GPa, v ¼ 0:25, and
q ¼ 5 g=cc) with and without internally constrained points (l/5,
b/2, x3) by using the 80� 20 FE mesh of uniform elements, and

Fig. 10 Histogram of the distribution of b1 over the first 100
modes of vibration of the internally constrained clamped lami-
nate with different fiber angles

Fig. 11 Fringe plots of the out-of-plane displacement, u3, for the fundamental mode of vibration of the internally con-
strained plate with fiber angles of (a) 0deg, (b) 30deg, (c) 45deg, (d) 60deg, and (e) 90deg counter-clockwise to the global
x1-axis. The fringe colors, in the online version of the paper, represent same levels of u3 (in mm) for each plot.
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the time-step¼ 50 ns that satisfies the stability condition given in
Eq. (13). Results for plates with e¼ 4 and 20 were found to be
similar. For the plate with e¼ 4, as seen from Fig. 6, mode 6 is
localized in region R2 and modes 1–5 are localized in region R1.

In the first loading scenario, depicted in Fig. 16, the impulsive
load on the entire top surface of the plate is nonzero for 0 � t �
40 ls and has either a triangular, or a rectangular or a half sine
wave form. Thus, different impulse or linear momentum is

Fig. 12 Top view of the mode shapes and fringe plots of the in-plane displacement, u2, for fiber angles of (a) 0 deg,
(b) 45 deg, and (c) 90 deg. The fringe colors represent same levels of u2 (in mm) for each plot.

Fig. 13 Distribution of the energy ratio b1 over the first 100 modes of vibration of the fiber-reinforced lamina with
fibers oriented at 0 deg and 90 deg to the global x1-axis (left), and the corresponding histogram (right)

Fig. 14 Localized mode shapes for the 90 deg composite plate: (a) mode 7, (b) top view of mode 14, and (c)
mode 17
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imparted to the plate for the three loads having possibly different
dominant frequencies. In the second scenario, we scrutinize the effect
of varying the frequency of the sustained applied sinusoidal load.

We note that an elegant way to analyze a transient problem is to
use the mode superposition method that clearly gives the contribu-
tion of a mode to the solution. We could not use it here since
expressing mode shapes of an internally constrained plate in terms
of either polynomials or trigonometric functions is an arduous task.

Impulsive Loads. We have depicted in Fig. 17 time histories of
the centroidal deflection and of the strain energy density of
regions R1 and R2 for the three impulsive loads. It is clear that the
loading function only affects the amplitude of the deflection and
of the strain energy density, and the two regions vibrate essen-
tially at different frequencies subsequent to the load removal at
t¼ 40 ls. The dominant frequencies of vibration of regions R1

and R2 found using the fast Fourier transform (FFT) of the time
histories of the centroidal deflection correspond, respectively, to
those of modes 3 and 1 of the entire plate rather than to those of

Fig. 15 Shapes of modes 1, 2, and 5 showing deformation localization in the SS plate with two (a) symmetrically
and (b) asymmetrically located pair of constrained points

Fig. 16 Three transient impulse loads considered

Fig. 17 For the three transient loads, time histories of the centroidal deflection and of the strain energy densities
of regions R1 and R2 of the plate with internal constrained points
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modes 6 and 1 for which free vibrations get localized in regions
R2 and R1, respectively. It suggests that for forced vibrations, the
two regions deform differently from that for free vibrations.

Sustained Sinusoidal Load on a Rectangular Plate of e¼ 4. For
the pressure load, PðtÞ ¼ P0 sinð2pxptÞ, of frequency xp equal to
5.9 and 14.5 kHz for modes 1 and 6 of free vibration of the plate,
referred henceforth to as mode 1 excitation and mode 6 excitation
frequency, respectively, we have presented in Fig. 18 time histor-
ies of the centroidal displacements and of the strain energy den-
sities of regions R1 and R2. We observe that for mode 1 excitation,
the region R1 stays nearly at rest as was for free vibration but the
amplitude of vibration of region R2 monotonically increases and

its vibrational frequency found by the FFT analysis of its vibra-
tional response equals approximately 5.9 kHz. For the mode 6
excitation, the amplitude of vibration of region R2 stays small but
that of region R1 exhibits beats phenomenon. The FFT analysis of
its vibrational response gives the dominant frequency of vibration
of region R1 equal to �14.5 kHz, i.e., the frequency of mode 6 of
free vibration of the entire plate or the excitation frequency of the
load, and the region R2 vibrates at the fundamental frequency,
5.9 kHz, of the plate. The time histories of the ratio of the total
energies (TE¼ kinetic energyþ strain energy) of sections R1 and
R2, and of the ratio of the TE of each region to the cumulative
work on the entire plate by external forces, (EW), are presented in
Fig. 19. It is observed from these plots that the energy is

Fig. 18 Time histories of the centroidal deflection and of the strain energy densities of the two regions of the plate
for the mode 1 and the mode 6 excitation frequencies

Fig. 19 Time histories of the ratio of the total energy of regions R1 and R2 (left) and the ratio of the total energies
of each region normalized by the external work done on the entire plate (right)
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transferred from region R1 to region R2 that vibrates at a much
lower amplitude. It is supported by the observation that, for the
first case, the strain energy of R1 is negligible as compared to that
of R2, and in the second case, most of the plate deformation is
localized in region R1. This is akin to the response exhibited by
the interaction between two pendula of different frequencies
explained in textbooks on vibrations (e.g., see Ref. [51]). These
results are consistent with Malatkar and Nayfeh’s [52] observa-
tions of the energy transfer between two widely spaced modes of
vibration of a cantilever beam. To delineate the role of the internal
constrained points on the phenomenon, the centroidal displace-
ment history of the unconstrained plate under mode 6 excitation is
presented in Fig. 20. This knowledge can help design structures
subjected to periodic loads for which a smaller substructure that
absorbs most of the energy can be sacrificed and the larger sub-
structure saved.

Sustained Sinusoidal Load on a Rectangular Plate of e¼ 20. For
the SS plate of e¼ 20, mode 4 (8) is the first transverse mode of

Fig. 20 Centroidal displacement history of an internally
unconstrained SS plate under mode 6 harmonic loading

Fig. 21 Mode shapes of transverse vibration for the SS plate of e 5 20 without (left) and with (right) the internal
constraint points

Fig. 22 Displacement histories of centroids of regions R1 and R2 under harmonic loads of the two excitation
frequencies
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vibration for which the deformation localized in the region R2 (R1).
The shapes and the corresponding frequencies of modes 4 and 8 of
the plate with and without the internal constraint are presented in
Fig. 21.

As mentioned earlier for results exhibited in Fig. 4, the addition
of the internal constraint does not noticeably affect the frequency
of vibration of a particular mode but significantly changes the
mode shape. Unlike the plate with e¼ 4 where frequencies of
modes 1 and 6 were wide apart, for the plate with e¼ 20, frequen-
cies of the 4th and the 8th modes are close to each other. It is thus
likely that the plate would exhibit a different phenomenon under a
harmonic excitation of frequency of the 8th mode as compared to
that of the e¼ 4 plate under mode 6 excitation. For the pressure
load PðtÞ ¼ P0sinð2pxptÞ with xp (in Hz) as frequencies of
modes 4 and 8, of vibration, the time histories of the centroidal
displacements of regions R1 and R2 and their corresponding FFT
are presented in Fig. 22. It is clear that unlike for the e¼ 4 plate,
depending on the excitation frequency, a region of the e¼ 20 plate
resonates, while the other region exhibits the beat phenomenon
due to close values of frequencies of the two modes. Under the
mode 4 excitation, the FFT reveals that region R2 resonates at the
mode 4 frequency of 32 kHz, while region R1 vibrates at approxi-
mately 33.5 kHz which is close to the mode 8 frequency. Simi-
larly, for mode 8 excitation, region R1 resonates at 33 kHz, while
region R2 exhibits beating phenomenon at 32 kHz. The rather flat
region in the FFT of region R1 is because the centroidal deflection
was output at 1024 values of time.

From time histories of the ratio of the TE of the two regions
and of the ratio of the TE of each region to the external work
done, EW, exhibited in Fig. 23, we observed that the TE of region

R1 steadily decreases from 0.25 (ratio of volumes of regions R1

and R2) to 0 implying that the total energy of the plate is concen-
trated in R2. Similarly, the ratio of the total energy to the EW
shows that the TE of the region R2 gradually increases and that of
R1 decreases. We hypothesize that this is due to the resonance of
the region R2.

In order to delineate effects of internal constraints, the displace-
ment histories of the centroid of the unconstrained plate and the
results of the corresponding FFT analyses under the two excita-
tions are presented in Fig. 24. The displacement history of the
plate under the mode 4 excitation shows a monotonic increase in
the amplitude due to the resonance of the plate. However, for the
mode 8 excitation, we see the beating phenomenon since the exci-
tation frequency is close to the fundamental frequency of the
plate. This behavior is different from the response of the e¼ 4
unconstrained plate under mode 6 excitation where neither the res-
onance nor the beats phenomenon was observed due to the large
difference between the excitation and the fundamental frequencies
of the plate. For the e¼ 20 plate, the FFTs of the displacement
histories show that the dominant frequency of the plate vibration
for the mode 4 (8) excitation is about 31 (34) kHz.

Note: For forced vibrations of delaminated plates and laminates
studied in Refs. [53] and [54], no localization of deformations was
reported. Mode localization has been experimentally and numeri-
cally studied in reference [55].

Conclusions

We have numerically studied free and forced vibrations of mon-
olithic and unidirectional fiber-reinforced composite rectangular
plates with edges either simply supported or clamped using a
TSNDT. Frequencies and strain energies of the first 100 modes of
vibration are shown to agree well with those computed using the
linear theory of elasticity and the commercial software, ABAQUS.
By constraining all points on one or two normals to the midsur-
face of a plate to have null displacements, the plate deformations
are found to localize in one of the two regions separated by the
internal constrained points. Significant results from the work
include the following:

� When an in-plane mode of vibration is localized, the strain
energy of deformations of the other region is not small.

� For rectangular plates with points on two normals con-
strained from translating in all three directions, the localiza-
tion occurs simultaneously in two short regions when the
constrained points are equidistant from the plate edges.

� A unidirectional fiber-reinforced rectangular plate with inter-
nal constrained points switches from a transverse (bending)
mode to an in-plane mode of vibration depending on the fiber
orientation angle, and both modes exhibit the mode localiza-
tion phenomenon.

Fig. 23 Time histories of ratio of the total energies of the
regions R1 and R2 (left) and the ratio of the total energy of each
section of the plate to the cumulative external work done on the
entire plate

Fig. 24 Centroidal displacement histories of the rectangular plate of e 5 20 without internal constraints under
modes 4 and 8 excitations and the corresponding FFTs of the displacement histories
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� For forced vibrations of plates, constraining points on a nor-
mal to the plate midsurface divides the plate into two sepa-
rate sections vibrating at different dominant frequencies.
These regions interact with each other through energy trans-
fer resulting in constructive/destructive interference that
results in a beating-like phenomenon under suitable loading
conditions and plate geometries.

� The mode localization phenomenon can help design cycli-
cally loaded structures so a desired subregion of the structure
is significantly deformed, thereby protecting the remainder of
the structure and in maximizing energy harvested from them.
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