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We numerically analyze transient plane stress deformations of linearly elastic laminates and sandwich
structures by using a coupled space-time finite element method with the weak form of governing equations
derived by the least-squares method. The governing equations are written as seven first-order partial differential
equations as in the state space formulation, and each variable is approximated by using piece-wise continuous
basis functions. The sum of the integral over the problem (space-time) domain of squares of residuals of
the governing equations, and initial and boundary conditions is minimized with respect to the nodal values
of the seven variables to deduce coupled linear algebraic equations. The developed software is verified by
comparing computed results for sample problems with their either analytical or numerical solutions obtained
with a commercial software, ABAQUS. Using statistical method and the Tsai-Wu failure criterion, sensitivities
of the maximum deflection and the first failure load to beam’s aspect ratio (AR), the facesheet-core thickness
ratio (FCTR), and the facesheet-core in-plane and transverse stiffness ratios (FCISR, FCTSR) are elucidated. For
sandwich beams with equal FCISR and FCTSR, the results are sensitive to the AR and the FCTR. In general,

they strongly depend upon the FCTSR and its interaction with the AR and the FCTR.

1. Introduction

As composite materials have become more ubiquitous in structural
applications, the need to understand and accurately predict their behav-
ior in complex loading environments has increased. Due to their high
specific strength and stiffness ratios, sandwich panels are frequently
used in aerospace, civil and marine applications. In particular, sand-
wich structures made with stiff facesheets and a soft core material
dissipate significant amount of energy through plastic core compres-
sion, transverse shear deformations and bending, which make them
well suited for blast mitigation applications [1].

Numerous works have studied the dynamic and blast mitigating
behavior of composite structures. These may be categorized into ex-
perimental, analytical, or numerical studies of a composite’s response to
an impulsive/transient loading. Experimental works on blast mitigation
typically involve the detonation of a charge, either in air or underwater,
at various distances from the target subjected to different geometries,
materials, and boundary conditions. Wanchoo et al.’s review paper dis-
cusses the historical and the current state-of-the-art experimental works
on blast-mitigating composite structures [2]. Because such experiments
are often time consuming and expensive, it is highly desirable, and
often necessary, to develop analytical or computational methods for
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simulating the transient response of composite structures to dynamic
loads.

Closed form, or exact, solutions for the three-dimensional (3D)
linear elasticity theory equations (LETE) for transient deformations of
laminates and sandwich structures are scarce. Challenges in solving
problems for heterogeneous bodies like sandwich composite beams
and plates include accurately finding transverse stresses that cause
delamination between adjacent layers and satisfying interlaminar con-
tinuity conditions [3]. For simply supported laminated plates deformed
statically, the 3D LETE have been solved by expressing the three
displacements as double Fourier series in the in-plane coordinates and
deducing ordinary differential equations for them in the thickness
direction [4-6]. For more general boundary conditions at the edges, Vel
and Batra [7,8] employed the Eshelby-Stroh formalism and satisfied
boundary conditions at the edges in the sense of Fourier series that
rely on St. Venant’s principle [9,10]. Demasi [11] has provided exact
solutions for 2D and 3D static bending deformations of thick and
thin sandwich plates by first casting the governing equations in the
state-space formulation, and then using eigenvectors and generalized
eigenvectors as the basis functions.

Another common approach for finding exact solutions is the state
space method in which the three transverse stresses and the three
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displacements are taken as variables, and the LETE are written as first-
order partial differential equations (PDEs) in the thickness coordinate,
z. The boundary value problem is thus reduced to one that looks like
an initial value problem and is solved by finding a propagation matrix
that relates the variables for two different values of z (see [12,13]).
The state-space approach was used by Khdeir and Reddy to find exact
solutions for the transient response of simply-supported symmetric
cross-ply laminates [14]. For anisotropic structures subjected to blast
loading, Song et al. and Librescu et al. used the Laplace transform
method to predict transient deformations and stresses in thin-walled
beams and sandwich composite panels [15,16]. Transient problems for
heterogeneous media are analyzed in Refs. [17-20].

In many engineering situations, deformations and/or stresses within
a structure may be assumed to correspond to either plane strain or
plane stress thereby reducing the problem to 2D. The pressurization
of a very long homogeneous cylinder is an example of plane strain
deformations, while a state of plane stress occurs in the thin skin of
an aircraft where stresses through the skin’s thickness are assumed
to be negligible. Ding et al. derived analytical solutions for fixed—
fixed isotropic and anisotropic beams subjected to uniform surface
loading by using the Airy stress function [21,22]. A similar method
was also employed in [23] for functionally graded anisotropic beams,
where material properties, body forces and the stress function were
assumed to be functions of the thickness coordinate. Ren presented
a closed-form solution to the generalized plane strain problem for a
cantilevered anisotropic plate [24] by assuming a particular form for
the displacements which ensured satisfaction of continuity conditions
at material interfaces.

Nearly all practical engineering problems involve arbitrary geome-
tries, loading and boundary conditions, and cannot be analytically
analyzed. They are, therefore, numerically studied by generally em-
ploying the finite element method (FEM), e.g. see [25,26]. In this paper,
we employ the state-space formulation of the plane stress problem,
express the 7 unknown fields in terms of the FE basis functions defined
on the spatial and the time domains, find residuals of the governing
equations and the initial and the boundary conditions, integrate squares
of these residuas over the space-time domain, and derive algebraic
equations for the coefficients of the basis functions by minimizing the
sum of squares of the residuals. This approach has been called the least
squares FEM (LSFEM), and has been employed among others by Surana
et al. for studying 1D wave propagation in periodically laminated
composites [27], Pontaza and Reddy to find displacements and stress-
resultants in shear-deformable isotropic shells [28], and Moleiro et al.
to analyze static deformations and free vibrations of multi-layered
composite plates [29].

Advantages of the LSFEM include incorporation of the initial and
the boundary conditions into the problem formulation, and the use of
higher-order FE basis functions in the time domain. Its shortcoming is
the large size of the resulting simultaneous algebraic equations whose
solution can take considerable computational time, and require large
storage space. The technique is implicit and is generally uncondition-
ally stable. However, the solution accuracy may require the use of
small time steps. For piecewise linear FE basis functions in the time
domain the technique becomes the traditional time-marching scheme.
Mathematical concepts of the space-time FEs are discussed in [30,31].
One could use Hamilton’s principle to derive governing equations in
terms of nodal displacements and nodal accelerations, and then use
the FEM in the time domain to deduce algebraic equations for nodal
displacements at discrete values of time, e.g., see [32]. It requires using
either Lagrange multipliers or penalty parameters to satisfy continu-
ity conditions at interfaces between two abutting layers of different
materials.

We use the Tsai-Wu failure criterion [33] to ascertain the first
failure load (FFL) of sandwich composite beams, and the statistical
method, ANOVA, to determine how sensitive the FFL is to typical
design parameters like the beam’s aspect ratio (AR), the facesheet-core
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thickness ratio (FCTR) and the facesheet-core in-plane and transverse
stiffness ratios (FCISR, FCTSR). The importance of considering the
FCTSR in studying free vibrations of sandwich structures, and delin-
eating the load transfer between the facesheets and the core in static
deformations is elucidated in [33].

The novelties of this work include (i) demonstrating that polynomial
basis functions defined on the entire spatial domain (i.e., one FE along
the beam length) can simulate stress wave propagation in sandwich
composite structures, and (ii) statistically determining beam design
parameters that most affect the FFL according to the Tsai-Wu failure
criterion.

The remainder of the paper is structured as follows. Section 2
describes the transient plane stress problem studied and derives the
state-space form of the governing equations. Discrete equations for the
associated space-time FEM including initial and boundary conditions
derived by minimizing the squares of the residuals for the FE basis
functions are given in Section 3. Numerical examples and results for
a few problems including the parameter sensitivity study are provided
in Section 4. Conclusions of the work are summarized in Section 5.

2. Problem formulation

Consider a sandwich beam of total thickness h, length L and unit
width with boundary % occupying the region % in the reference
configuration in the x;x;-plane as depicted in Fig. 1. The beam is
constructed with a core material bounded by two stiff facesheets each
of thickness h; and the core of thickness A, . All layers are assumed to
be made of a linearly elastic, homogeneous, and transversely isotropic
material, with the axis of transverse isotropy along the x,-axis, and are
perfectly bonded to each other. The x,-axis is in the beam’s mid-plane
and the beam extends from —g to +g in the x3-direction. The temporal
evolution of the beam occurs in the time interval [0, T], with T being
the final time of interest. Therefore, the complete space-time domain
occupied by the kth layer (k = 1,2,3) is 2 X [0, T], where QF is the
region of space in the reference configuration occupied by the kth layer
at time ¢ = 0.

2.1. Governing equations

In a multilayered beam with perfectly bonded layers, surface trac-
tions and displacements must be continuous across an interface be-
tween two adjoining layers. These are usually called the interface
continuity conditions, and for a 3-layer sandwich beam undergoing
plane stress deformations in the x| x5-plane they are

ko _k+l ko _ _k+l _
%13, = %13, » 33, = O33, > k=12, o
U= A= k=102

| P P 3 M3, 0

where u; denote the displacements in the x;-direction, crfj the compo-
nents of the stress tensor ¢ with respect to the x,-, x,- and x3-axes and
subscripts 1 and b denote the top and the bottom surfaces of the kth
layer, respectively.

To simultaneously solve for stresses and displacements in the beam
we use a state-space formulation. Furthermore, to approximate the
unknown variables using C* basis functions, the governing PDE’s are
written to include at most first-order derivatives. Accordingly, we
define the axial and the transverse velocities, respectively, as

k k

R )
Lo 3 ar

The balance of linear momentum for the kth layer is

do¥  dok vt

— Bkt =0,

dx, dxs3 at 3)

do*,  dok aut

(e}
13 33 k k 3
By Bk k3o,
ax, Tam T T
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Fig. 1. Rectangular Cartesian coordinate system and geometry for a cantilevered sandwich beam with boundary conditions.

In Egs. (3), the ffk (i = 1,3) denote the body force components, along
the x;-axis, per unit volume, and p* the material mass density.

Since ¢, need not be continuous at the layer interfaces, we elim-
inate it from Eq. (3), and rewrite it in terms of only layer-wise con-
tinuous variables. A similar approach was used by Bahar in [12] and
Moleiro et al. [29] for analyzing static deformations and free vibrations
of multilayered plates. The constitutive relation in the Voigt notation
of the kth layer material is

ok _caﬂ A @f=12..6

6= {gll’ 623, 033, 023, 013, ”lz}’ €= {Elh €22 €33, 2623, 2€3, 2612}

(4

where Eiﬁ = E;a are elastic constants transformed from the material
principal coordinate axes to the problem coordinates, and ¢* = 0 for
a = 2,4,6 for plane stress deformations.

In Eq. (4), €|;.€5.... are components of the infinitesimal strain

tensor that are related to displacements by

—1 ui+uj i,j=1273 (5)
e = — _J ij= )
=3 )x, ox, |’ o 52

We use oy, = 053 = 61, = 0 in Eq. (4) to express €y, €5 and €33 in terms
of ¢;, and o33, and substitute the result into the expression for ¢, to
obtain
—Ck ok _ Ok
= (333 C46 1
k
2¢k = 13 (6)
l3 Ck

Ak Lk Ak
Cll€ll +Cl3 33"

- —k
Expressions for C*_ in terms of C
aff aff

—k
the C_, in terms of engineering constants for a transversely isotropic
material in Appendix B. Substituting for ofl from Eq. (6); into Eq. (3),
gives

are given in Appendix A, and for

dek ak k 6uk
Ak Ak 933 1 _
T, t o, I =0 )

We note that if a layer is made of an isotropic material, the terms C"l"l
and C{‘B are modified but the form for Eq. (7) remains the same.

The constitutive relation (4) is rewritten as follows by differentiat-
ing both sides with respect to time, t, and assuming that the material
elasticities do not vary with time.

= k
ot af gt

de; ] Jau; 193 ®)
S A B )
a2\ ox, " ox b

i

Note that for infinitesimal deformations being studied here one does
not need to use total time derivatives in Eq. (8). Following a similar
procedure as with the stress-strain relationships, we write the out-
of-plane and layer-wise discontinuous velocity gradients in terms of
the x,x3;-plane components. Using Egs. (8), we arrive at the following
stress-rate velocity-gradient constitutive equations,

dot, . ovk auk
3 54_ — CL_- =0,
at dx; dx,
k k K )
do7, o OU) o 005
— - C— - C—=0.
ot 2 ox 27 0x5
Eq. (8), for i = 1,j = | is written as
BE‘{‘I 6U’J°
— ——=0. (10)
ot dx,

The complete system of governing coupled partial differential equations
then consists of Egs. (2), (3),, (7), (9) and (10) for the seven unknowns,

T
s:[g,_; o33 € U Uy up uz| . (11)

We define below the kinetic and the strain energies that are used to
compare solutions from the present approach with those computed
using ABAQUS.

F({)= = / f v v +v v )dx;dxl, 12)
0 g

S = ] /
0

Comment: In Egs. (12) and (13), please delete summation form k =
1 to N before the integral sign.

ml:r

ll Jl + 26|3€H +‘733€33)dx3dx1 (13)

Nl:s-

2.2. Initial and boundary conditions

We assume that the body is at rest and is stress free at time ¢ = 0.
The time interval [0, 7] is divided into » time intervals not necessarily
of the same size. The residuals for initial conditions for the time interval
[t;_;.1;] are written as:

RE =5 (x). x50 + =1.2,....7
=5, 1- X3, ,'_1)—30 (xj,x},,tf_[), (a=12,....7),

Tjn
where “+” (-) indicates the value at the end (start) of the time step
[t;5.t;_;] (It;_;,1;]). We note that these residuals are identically zero
for the exact solution, but are typically non-zero when expressions for
approximate solutions are substituted in them.

We presume that surface tractions are applied on the beam’s top
and bottom surfaces. The edges at x; = 0, L are either clamped, free
or simply-supported. Residuals for the boundary conditions at the edge
x; =0 are listed below.
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Fig. 2. Legendre-Gauss-Lobatto shape functions for a 5-node master element along the
E-axis.

< ' X

Fig. 3. Locations of 5 x 5 x 5 nodes on the three bounding faces of a master element.

Clamped:
R:CI = uk(0,x5,1), R’,;:2 =uf(0,x3.1), (k=1,2.3),
Free:
Ry =0},(0.x3.0. Ri =o/0.x5.0, (k=123),
Simply-supported:
R’;Eﬁ = o} (0. x3.1). R’;E(, =ub(0.x3.0), (k=1,2,3).
REsiduals for the boundary conditions on the top surface are:
Rzﬁ =05 (xp. X570 = G (xp.0), RiEx = 05, (xp. X570 = G (x).0).

Surface tractions prescribed on the bottom surface are denoted by
ar and a5 and residuals for them can be written as those for the top
surface.

2.3. Tsai-Wu failure criterion

Predicting where and when a composite structure will fail is im-
portant. Here, we use the Tsai-Wu failure criterion (see [33]) for the

Thin-Walled Structures 173 (2022) 108960

I 1 L L L 1 1 L
[} 100 200 300 400 500 600 700 €00 900 1000

Time (ps)

Fig. 4. Time history of the applied surface traction for Sections 4.1.2, 4.2 and 4.3
given by Eq. (24).

facesheets and the core. For a state of plane stress, failure occurs when
the failure index F > 1, where

F = Fioy, + Fy05 + Fy 10} + Fy305, + Fss0], + 2F 301,053, a4
and
1 1 1 1 1
h=x"x B~z "z "= xax
T C T C T4C
1 1 1 1 (1s)
F33 = : Fl3 =

— Fos=—
ZrZ R

2VXrXcZr Ze .

In Egs. (14) and (15), we have dropped the superscript “k” for the kth
layer. Xt and Z; (X and Z.) are the tensile (compressive) strengths
along the material principal directions, S is the in-plane shear strength
and stresses in Eq. (14) must be relative to the material principal
coordinate axes.

We do not perform a progressive failure analysis where the material
elasticities are reduced upon failing. Rather, we only find the time (or
the load) when a material point in the beam first fails. The expression in
Eq. (14) is used for both materials at an interface to check if a material
point has failed at that interface. Delamination is not studied in this
paper.

The primary reason for using the Tsai-Wu failure criteria is that
values of five strength parameters are available in the literature for the
composites studied herein. Other failure criteria, e.g., Hashin’s [34],
and Puck and Schiirmann’s [35] can easily be employed. The computed
FFL will depend upon the failure criterion but other results presented
herein are independent of it.

3. Weak formulation using the least-squares method

In this section, we derive the discrete form of Egs. (2), (3),, (7),
(9) and (10) and the associated initial and boundary conditions by
minimizing the sum of the squares of their residuals, which is referred
to as the least-squares method. Unknown field variables in the kth layer
are approximated as

Py Py p

1 3 N

Syl xs =3 ¥ ¥ Ar B (x)A0, m=12,...7,  (16)
i=1 I=1 n=1

where @;, ¥, and A, are C" basis functions in the x,, x; and -

directions, respectively, and Py, P, and P, are integers. We construct

the following functional in which the integration is over the space-time

domain with time in the interval [¢;,_,¢,],

(013,033, €11, U1, U3, iy, u3) = T + Ty + Ty, a”n
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Fig. 5. Pressure pulse problem geometry (dimensions used are the same as in [27]).

Iy = ///RkR dxydx, di, (18)
m*lk 1

R
Tin=3 ZHCZ‘T//Rf"mR" dxydx,di. (19)
m=1 k=

Note that the continuity of surface tractions and displacements at an
interface between two adjoining layers are identically satisfied in this
work. For a cantilever beam clamped at x; = 0 with surface tractions
prescribed only on the top surface,

3
1 k gk k Rk
=3 Z/ / ((R Rhcl + Rbc-,Rbf-»
k=1
k k k k
(RMRM +R}, Rbu) )a’x3dr
xy=L
ke k k k
+ —Z//((R _R,_+Rp R} ) ) )a‘xldt
x3=3
1 3
k k k k
+3 Z//((RM7 R, + RMRMS) ) )dx,dr.
k=1 x;=—14

Substituting from Eq. (16) into Eq. (17) and evaluating the integrals

x1=0

(20

gives J as a function of the 7x P, x P, X P; variables Ak . Per layer.
Necessary conditions for J to be stationary are
aJ
(21)
aAI’("Hn

We note that in the traditional FEM, one generally uses the finite-
difference method to march forward the nodal values of displacements
in time. Explicit algorithms using lumped mass matrices do not require
solving a set of simultaneous algebraic equations for nodal displace-
ments for every discrete value of time. Even though the time step
dictated by the stability condition is quite small, large size problems
involving millions of unknowns can be analyzed. In the method used
herein, Eq. (21) results in a set of algebraic equations whose solution
provides values of unknowns at all nodes in the space and time do-
mains. The method is implicit, and for several nodes on an element in
the time domain, it requires solving for a huge number of unknowns
making it unsuitable for analyzing large size problems.

3.1. Discrete formulation

We discretize each space-time layer domain into N, and N, not
necessarily uniform finite elements (FEs) along the x,- and the - axes,
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respectively. Thus, P, , P, and P, equal the number of nodes along the
x,-, x3- and - axes, respectively. We find a continuously differentiable
one-to-one mapping onto a master cube [—1,1]x[—1, 1]x[-1, 1] for each
element in the x,x;r-space.

For an element having p nodes along the x,-axis, we find their im-
ages on the master element [—1,1]. In terms of the natural coordinate,
&, on [—1, 1], the p shape functions are taken as

(- DE+DLE)
V)= ————F— -
pp+ DLENE - &)

where ¥, denotes the shape function for node i, a prime indicates
differentiation with respect to £ and L,(£) is a Legendre polynomial
of order p. For a master element with five nodes, the ¥,’s are complete
polynomials of degree four, and are shown in Fig. 2. Nodal coordinates
are roots of %;(¢) = 0 and are generally called the Legendre-Gauss—
Lobatto (LGL) points when also used as integration points. We have
shown in Fig. 3 the distribution of 5 x 5 X 5 nodes on the three bounding
faces of the master domain [—1,1] x [-1,1] x [=1,1]. These shape
functions are used to generate the P_ , P_ and P, FE basis functions and
used in Eq. (16). Thus, A" equals the values of the m(= 7) solution
variables at the ith, /th and ‘mth node along the x,-, x3- and t-axes in the
kth layer, respectively. For 5 nodes on an element along the r-axis, this
technique simultaneously provides values of the 7P, P, unknowns in
each layer at four times, since the solution at the ﬁrst node in the time
domain equals the initial values incorporated into the definition of J
in Eq. (19). This process is repeated N, times to compute the solution
at the final time T.

Evaluating the integrals using nodes as integration points (Gauss—
Lobatto rule of integration) in Egs. (21) provide the 7 x P X P XP,
algebraic equations per layer. Assembling these equatlons ylelds the
following global system of equations:

(22)

[Keisois  Konsess  Kouen  Koner  Koivs Kot Ko156 |

Ko33033  KOo33€11  K933P1 K330 Ko3d K933U3

Kenen Kenvr Kenvs Ken Kenus

KU KUivs KUi# KV

SYM. Kusvs Kb KUs4s

K™ K44

K"t
o3 Feou3
O3 Fo33
€ Fen

x4y, t=en b (23)

V3 Fvs
u; F“
u; F*“

3.2. Time-marching procedure

For large values of T, the number of unknowns can become enor-
mous. One way to overcome this is to solve the problem on the domain
D, =10, LIx -2, 21 x[1,_y, 1,1, 1y = 0 where [1,_;,1,] is the length of the
element along the r-axis. Once the solution on D, has been computed,
the solution at 7, serves as the initial condition for the problem on D,.
This process is then repeated until the final time of interest. Because
the integration algorithm is implicit, stability is not an issue. Accuracy
of the solution, however, depends upon the time step size.

4, Numerical results and discussion

Effects of the beam aspect ratio (AR = L/h), facesheet-core thick-
ness ratio (FCTR = h°/h’) and the in-plane and transverse facesheet-
core stiffness ratio (FCISR, FCTSR) on the maximum centroidal deflec-
tion of the bottom facesheet, the Tsai-Wu failure index, and the FFL
are elucidated. We first analyze two example problems and compare
the present results to those computed with the commercial FE software
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Fig. 6. Time histories of the applied pressure pulse at x; = 1.009 mm.
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Fig. 7. Comparison of 1-D wave propagation present results (indicated by LSFEM) with the analytical solution.

ABAQUS, and illustrate convergence with respect to the mesh param-
eters. Sensitivity studies are performed in Section 4.2 to statistically
quantify the effect that the ratios have on the beam’s maximum deflec-
tion and the FFL. In Sections 4.2 and 4.1.2, beam layers are assumed
to be made from the same base material, with the following material
properties:

E, =1724GPa, E,, =E, /25, Ey, =E,.
Gy =Gz =05Ey, Gy =02Ey,,
Vi = Vi3 = Va3 = 0.25,
k
p=1500—=, X, =1515GPa. X =1.697GPa,
m

Zr =438MPa, Z.=43.8MPa, S =86.9MPa.

In this case, “base material” refers to the case when each layer is made
of a homogeneous material for FCSR # 1, the E;, property of the core
is modified and the others are changed according to the relationships
given above. It is assumed that the strength parameters X, X, Z and
Z - remain unaltered for the core material for different stiffness ratios.
Sandwich beams with facesheet and core materials having different
FCISR’s and FCTSR’s are studied in Section 4.3. A normal surface
traction on the top surface of the beam of the form in Eq. (24) is
assumed for the problems studied in Sections 4.1.2, 4.2 and 4.3 (see
Fig. 4), where gy(x,) is either constant or sinusoidal in space where
noted. In these subsections, the length of the beam is held fixed at L = 1
m and the numerical solution is computed for T = 1 ms. For the bottom
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Fig. 9. Comparison of the present results (indicated by LSFEM) with those from ABAQUS for Example 1.

surface, g,(x;) =0.

P(xl,t):q“(xl)sin(%)exp (—%) (24)

4.1. Results for two example problems

4.1.1. Pressure pulse in a heterogeneous bar

In the first example problem, a 2-layer heterogeneous bar, shown
in Fig. 5, is subjected to a uniform pressure on the top surface. This
problem was also studied in Ref. [27]. We consider two different load
time histories, shown in Fig. 6, which correspond to a rectangular and
a sinusoidal pulse, respectively. Material properties for the two layers
are provided in Table 1, with Poisson’s ratio set to zero to compare
results with those for wave propagation in a bar. Null velocities and
displacements are enforced at x; = 0 and null tractions (o,,,0,5) at
x, =0,L.

We check if our formulation correctly predicts the wave speeds
of the propagating pressure pulse in each layer and the transmission
and reflection of the wave at layer interfaces and boundaries. We also
seek to explore how p-refinement of the basis functions in x3- and -
directions affects the solution’s accuracy. However, we consider one
element in the x,-direction with quadratic polynomials (i.e., P, = 3)
since deformations are expected to be essentially uniform on a plane x5
= constant. Results from the convergence study are shown in Table 2,
where we compute the normal stress at the material interface at times
t =54r and 1 = 154t, and Ar = 0.03 ps is width of the rectangular pulse.
For convergence, the solution for an initial mesh is computed, and

Table 1

Values of material parameters.
Material 1 Material 2
E (GPa) p(E) E (GPa) i)
10.788 1.2 203.92 7.896

then the polynomial degrees are increased in one direction at a time
(for x5 and t) until the relative percent change in o33 falls below 1%
from its value obtained with the immediately preceding mesh. Once this
criterion is met for both polynomial degrees, the number of time steps is
increased until the 1% threshold is met once again. The converged mesh
from Table 2, including all three directions and seven nodal variables,
contains 13,209 degrees of freedom per time step, and the analysis is

run for 254z, or 0.75 ps.

The longitudinal (1-D) wave speed given by

= \/E (25)
P

for layers 1 and 2 equals 2,998 m/s and 5,082 m/s, respectively, for
the material properties given in Table 1. The incident wave reaches
the material interface at 1 = 0.082 ps, at which time a portion of the

wave is transmitted into material 2 while some of it is reflected back
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Fig. 10. Comparison of the present results (indicated by LSFEM) with those from ABAQUS for Example 2.

into material 1, governed by the following relations [36]:

2pse
Br = L e
pre2 +piCy (26)
¢y — piC
B = Mo = PG _ 0.835,
Prcr+ Py

where pr and fpp are the transmitted and the reflected coefficients,
respectively. Applying Eq. (26) and using the material properties listed
in Table 1, the theoretical transmitted and reflected stress wave am-
plitudes are 3.645 and 1.659 GPa, respectively. The wave should then
arrive at the clamped edge (x; = 0) at time ¢ = 0.232 ps, where the
wave’s amplitude should increase by a factor of two to 7.29 GPa. After
this time, more interactions with transmitted and reflected waves occur.
For the load time history of Fig. 6(a) with g, = 1.986 GPa, Fig. 7(a)-
(c) show the stress distribution through the length of the bar at 7 = 0.03,
0.082 and 0.15 ps. The time history of the normal stress at the clamped
edge (x3 = 0) is depicted in Fig. 7(d). Note that the compressive wave
travels to the left from x; = 1.009 to x; = 0. The front edge of the wave
should arrive at the interface x; = 0.762 mm in 0.247/2.998 = 0.82ps
that is close to the computed time of arrival of the wave front. We
note that the wave front has been distorted somewhat and we see the
Gibbs phenomenon that is often present when the ordinary differential
equations in time are integrated using the finite-difference method.
Upon reaching the interface x; = 0.762 mm, Eq. (26) provides frac-
tions of the wave transmitted into layer 2 and reflected back into layer
1. The theoretical transmitted and reflected stress wave amplitudes are
3.645 and 1.659 GPa, respectively. Since the acoustic impedance of

Table 2
Convergence of the presently computed results for the pressure pulse of Fig. 6(a) with
P, =3, N, = 20 (N, = 40 for the final row) and increasing degree of polynomials in

X
the x; and time directions. Values of a]‘3 and 5123, respectively, equal the axial stress

at the interface x; =0.762 mm at 7 = 0.15 and 0.45 ps.

P, P, ol % Diff. o2, % Diff.
10 4 —0.1386 - —0.5338 -

14 4 -0.1323 4.545 —0.5420 1.536
18 4 —0.1323 0.020 —0.5419 0.013
18 6 0.0628 147.510 —0.0608 88.77
18 8 —0.0374 159.525 0.2878 572.9
18 10 0.0166 144.264 0.3309 15.01
18 12 0.0083 49.954 0.3336 0.798
18 14 0.0051 37.805 0.3361 0.760
18 16 0.0052 0.4915 0.3375 0.422
18 16 0.0051 0.9538 0.3359 0.486

material 2 is about 8.5 times that of material 1, a compressive wave
is reflected back as a compressive wave. The transmitted wave should
then arrive at the clamped edge (x; = 0) at time r = 0.232 ps, where
the wave’s amplitude should increase by a factor of two to 7.29 GPa.
The computed results exhibited in Fig. 7(c),(d) are very close to their
analytical counterparts.

For the load time history of Fig. 6(b), Fig. 8(a)-(h) evince the
stress distribution through the length of the bar at different times.
The computed results compare favorably with those digitized from
plots of Ref. [27], which were computed using a four element uniform
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discretization for space-time strip and 9th degree polynomials in each
direction, with a couple of notable exceptions. The pressure wave trav-
eling from right to left should arrive at the material interface just before
the 6 Ar time interval. From Fig. 8(c), the predicted wave in [27] just
arrives at the interface at r = 6 Az, which indicates that their calculated
wave speed is off slightly. Our work, however, predicts that the wave
has just begun being transmitted and reflected at this time, as it should.
This also explains the discrepancy in the waveform in Fig. 8(d), in
addition to the time history of the pulse being approximated by a
sinusoidal input. Predictions from the two works also differ at the
clamped edge, where [27] predicts the wave maintaining its amplitude
when it arrives at the boundary, which disagrees with the analytical
value of 7.29 GPa.

4.1.2. Transient deformations in four sandwich beams

We now consider four sandwich beams with different design pa-
rameters, boundary conditions and loading, and compare solutions to
those obtained using ABAQUS. The surface traction magnitude g, in
Eq. (24) is set equal to 1 MPa and values of other parameters are given
in Table 3, where a sinusoidal load indicates a non-uniform spatial
distribution on the top surface in Eq. (24) of the form ¢, = sin Radiiy
Clamped and free boundary conditions are indicated with “CC” and
“FF”, respectively.

We explore convergence of the numerical solution for Examples 2
and 4 by considering only a single element in the x,-direction, which
is a similar strategy to that employed in [37] where a Ritz method was
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Table 3

Parameters and data for the four example problems.
Example AR FCTR FCSR B.C. Load
1 50 5 500 CC-FF Uniform
2 50 5 500 cc-cC Sinusoidal
3 10 2 100 CC-FF Uniform
4 10 2 100 CC-CC Sinusoidal

used to obtain accurate results for static stresses and natural frequen-
cies. The same convergence criterion as in the previous section is used

and we compute the transverse deflection u; at x; = % X3 = —g, 1= %
and in-plane normal stress at x;, = 0.05L, x; = 2, ¢ = I shown in

Tables 4 and 5. The converged solutions are for 19,600 and 9,520
degrees of freedom for Examples 2 and 4, respectively. We compare
these solutions to those obtained with ABAQUS using CPS4R bilinear
quadrilateral plane stress elements with reduced integration and an
explicit time integration scheme, where a similar convergence criteria
is used as with the LSFEM solutions. Results in Tables 4 and 5 imply
that the deflection converges rather quickly even with a low degree
of polynomials in the x; direction for a thick beam, but a much higher
degree of polynomials is needed for a thin beam. As mentioned in [37],
it is due to several modes participating in the beam deformation when
it is thin and fewer when it is thick. We did not study the error, if any,
introduced by using the reduced integration in ABAQUS.

Figs. 9-12 show the comparison of selected results between the
LSFEM formulation and ABAQUS. Time histories of the kinetic and
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Table 4
LSFEM convergence results for Example 2.
P P, P, N, N, uy (mm) % Diff. o,, (MPa) % Diff.
10 3 3 1 20 —-0.5037 - 50199 -
16 3 3 1 20 -0.5019 0.3681 3.512 32.4419
22 3 3 1 20 -0.5016 0.0483 3.986 13.5002
28 3 3 1 20 -0.5016 0.0083 3.901 2.1409
34 3 3 1 20 —-0.5016 0.0060 3.948 1.2156
34 4 3 1 20 —0.5058 0.8355 4.112 4.1494
34 5 3 1 20 —-0.5032 0.5061 4.087 0.6174
34 5 4 1 20 —0.5034 0.0402 4.092 0.1151
34 5 4 1 40 -0.5032 0.0449 4.091 0.200
Table 5
LSFEM convergence results for Example 4.
P, P, P, N, N, uy (mm) % Diff. 5., (MPa) % Diff.
10 3 3 1 20 —-0.1309 - 6.240 -
16 3 3 1 20 -0.1308 0.0764 6.226 0.2286
16 4 3 1 20 -0.1316 0.6116 6.069 2.5139
16 5 3 1 20 -0.1315 0.0760 6.127 0.9488
16 5 4 1 20 -0.1315 0.0139 6.135 0.1288
16 5 4 1 40 -0.1315 0.0269 6.095 0.6451

strain energies are in good agreement for all four examples, with a
maximum difference of 5% between the two solutions occurring at
around time ¢t = 950 ps for the kinetic energy. The transverse deflections
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with those from ABAQUS for Example 4.

of the bottom facesheet mid span are also in excellent agreement. For
the two thin sandwich beams (Examples 1 and 2), the transverse normal
stress time history of the beam’s centroid match very well overall, with
the LSFEM solution predicting a 13% higher peak stress around time
{ = 842ps. In the two thicker beams, the two centroidal transverse
stress histories are in excellent agreement. The spatial variation of the
in-plane normal stress o, at the top of the beam at ¢ = % also match
well, though the LSFEM solution has slight oscillations near the free
edge. These can be alleviated by increasing the polynomial order in
the x,-direction at the expense of more degrees of freedom, though
this was not pursued here. The in-plane normal stress o, at a clamped
edge computed from the two software differs at most by 7.23%, 4.03%,
5.47% and 6.41% for the four examples. Note that ¢, is not a nodal
variable. The displacement-based FEM provides accurate values of the
nodal displacements but stresses derived from them deviate somewhat
from their analytical values.

Most commercial software, including ABAQUS, use a displacement-
based formulation and an explicit time integration scheme for analyzing
linear elasto-dynamic problems. With the refinement of the FE mesh
and a decrease in the time-step size they provide accurate values of
the displacements. However, finding stresses and satisfying continuity
conditions at interfaces between two adjoining layers of extreme stiff-
ness ratios is very challenging; e.g., see [37] where it is shown that the
6th frequency fails to converge to the analytical value with the mesh
refinement. The present work based on the state-space formulation uses
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Table 6
Sensitivity results.
Deflection Tsai-Wu Index FFL

Source [-statistic  p-value  f-statistic  p-value  f-statistic  p-value
AR 809 0 85 0 72 0
FCTR 0.01 0.9193 3 0.0815 36 0
FCISR 0.17 0.6824 1 0.2489 0.5 0.4684
AR*FCTR 0.14 0.7055 594 0 18 0
AR*FCISR 0.71 0.4004 8 0.0054 0 0.9722
FCTR*FCISR  0.18 0.6701 70 0 0.2 0.6873

both stresses and displacements as nodal unknowns and provides their
accurate values. However, the computed value of the stress component
not included as a nodal variable differs from its analytical value by
about 10%. As mentioned before we have not explored if further
refinement of the FE mesh will reduce this difference.

4.2. Sensitivity analysis for a clamped beam

To study how sensitive the maximum deflection, the Tsai-Wu failure
index and the FFL (g,) are to the different ratios discussed previously,
we use the Latin Hypercube Sampling method (LHS) to generate 300
designs for clamped-clamped beams with ranges of [2,100], [1,20]
and [1,2500] for the AR, FCTR and FCISR, respectively. Results from
the generated designs are used to perform an analysis of variance
(ANOVA) in MATLAB for each of the three quantities and determine
which factors play a significant role. We calculate the f-statistic and
the p-value, which measure the ratio of the variation in sample means
to the variation within the samples and the probability of observing
an f-statistic greater than or equal to the value obtained, respectively.
Factors for which the p-values which are closer to one play little to
no role in the observed behavior, while those for the which the p-
values are close to zero indicate much higher significance; the opposite
relationship is true for the f-statistic. The three inputs (AR, FCTR,
FCSR) and their interactions (AR*FCTR, AR*FCISR, FCTR*FCISR) are
used as predictors in the analysis.

The magnitude of the load g¢,(x,) in Eq. (24) is assumed to be
uniform and set to one megapascal (MPa) for studying sensitivities of
the maximum deflection and the Tsai-Wu index, while the magnitude
is varied for the FFL case until the maximum Tsai-Wu index reaches
around 0.98 (or very close to failure). To determine the maximum Tsai—
Wu index, its value is calculated at each spatial node for every temporal
node in the mesh and the overall maximum value is taken. We also note
that the location of the maximum Tsai-Wu failure index for each case
studied occurred at a clamped boundary in the top facesheet. A mesh
of P, =40, P =5 P =5 N, =1 N, =40 is used for each beam
design in the analysis due to the higher degree polynomials needed for
beams with higher FCSRs, as shown by Example 2 in Section 4.1.2.

ANOVA results for the three quantities are summarized in Table 6.
The maximum deflection is overwhelmingly sensitive to the AR, with an
[-statistic of 809 and p-value of zero, and very insensitive to all of the
other ratios. While the maximum Tsai-Wu index is also very sensitive
to the AR (f 4z = 85), it is far more sensitive to the interaction between
the AR and FCTR, indicated by f4g/rcrr = 594 and a p-value of 0.
There is also a sensitivity to the FCTR-FCISR interaction, though to a
lesser extent than that to the AR. Finally, the FFL is mostly sensitive to
the AR, FCTR and their interaction with virtually no sensitivity to the
FCISR.

4.3. Failure analysis with different facesheet and core materials

We now consider sandwich beams with facesheet and core materials
that have different stiffness ratios in the 1- and 3-directions. Properties
for the facesheets and the core materials are provided in Table 7 in
GPa and strength values are given in Table 8 in MPa. Each facesheet
in Tables 7-8 is paired with the two core materials, and the maximum
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Table 7

Facesheet and core material properties, moduli are in GPa, the mass density is in kg/m>.
Facesheet: Ey Ep By G Gy Gy ovip vz Vs p
Graphite/Epoxy1 132.5 10.8 108 57 57 34 0.24 0.24 0.30 1540
Glass/Epoxy 2 493 147 147 68 6.8 49 030 031 049 2000
Aramid/Epoxy3 17.2 17.2 103 55 3.3 33 0.20 012 012 1117
Core:
Balsa 0.5 0.5 21.9 0.08 0.60 0.57 0.50 0.01 0.01 495
Foam H45 0.05 0.05 0.05 0.01 0.01 0.01 0.40 0.40 0.40 48

Table 8

Facesheet and core strengths (MPa).
Facesheet: X Xc zZ, Z: s
Graphite/Epoxy 1 1515 1697 48.3 48.3 86.9
Glass/Epoxy 2 1675 1220 48.3 210.9 108.0
Aramid/Epoxy 3 425 88 255 53 40
Core:
Balsa 2.7 28 54.4 73.8 6.4
Foam H45 11 0.5 1.1 0.5 0.46

facesheet deflection, the Tsai-Wu failure index and FFL are computed
for the nine facesheet/core combinations and AR = 10, 50 and 100.
Results are listed in Table 9(a)-(c). The same mesh as in Section 4.2 is
used here.

Similar to the previous section, the AR has a significant impact on
the maximum deflection, the Tsai-Wu index and the FFL when the
stiffness ratios in the two materials differ. In the graphite/balsa case,
increasing the AR dramatically increases (decreases) the maximum
deflection and the Tsai-Wu index (FFL), while increasing the FCTR
has a similar yet much smaller effect. For example, increasing the AR
from 10 to 100 (FCTR = 2) decreases the FFL by 77%, and by 19%
when increasing the FCTR from 2 to 20 (AR = 10). It can also be
seen from Table 9 that changing the FCTR has much less effect on
the failure index and FFL as the AR increases. When the foam core
is used, which has a much higher FCTSR than the balsa core, the
maximum deflection and the Tsai-Wu index (FFL) increases (decreases)
dramatically. In this case, increasing the FCTR has much less effect
when the AR is lower, which is opposite that of the balsa core. Nearly
identical observations hold for the glass and aramid epoxy facesheets.
In general, the glass facesheets have the highest FFLs while the aramid
facesheets have the lowest. In addition, there are several instances of
the beam surpassing a failure index of one when the foam core is
used, for all facesheets considered. These observations demonstrate the
pronounced effect that the FCTSR has on the dynamic behavior and
failure of composite sandwich beams.

We note that authors of Refs. [38] and [39] have used a third order
shear and normal deformable plate/shell theory, the Tsai-Wu failure
criteria and the progressive failure analysis to ascertain the first failure
and the ultimate failure loads of sandwich structures.

5. Conclusions

Plane stress infinitesimal elastodynamic deformations and the first
failure loads of sandwich composite beams have been studied by first
writing the governing equations in the state-space form. Each variable
is expressed in terms of the Gauss-Lobatto-Legendre polynomials as ba-
sis functions. The sum of the squares of the residuals of these equations
and of the initial and boundary conditions integrated over the space
and time domains is minimized to derive the system of simultaneous
linear algebraic equations. The computed results for several problems
have been compared with available either analytical or published
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Table 9

Results for different facesheet/core material beams. The maximum back facesheet
deflection (u3) is in mm, and FFL (go_ ) in MPa. The stiffness ratios Ef /E;, and E{ [ES
are also listed. We note that for the maximum deflections and Tsai- Wu failure mchces
(column 1 and 2), the uniform applied load ¢, = 1 MPa. For the FFL (column 3),
q, is increased until the maximum Tsai-Wu failure index in the beam is close to 1.0
(i.e. F,, ~ 0.98). Note that g, approximately equals 1/4/F,, . further verifying the
accuracy of the work since the expression for F is quadratic in stress components with
respect to the material principal axes.

Core material FCTR AR = 10 AR = 50 AR = 100
i3 Frax 4, U3 Froax 4, U3 Frax ..
(a) Graphite/epoxy 1 facesheets.
Balsa 2 0.22 5.9E7° 13.04 2.24 4.6E? 4.65 460 011 299
EI"I/E;1 =265 5 0.29 6.2E° 12.82 2.89 45E2 4.75 586 0.11 3.03
E;;/E;] =049 10 0.34 7.6E 11.75 3.55 4.5E2 4.78 6.63 0.11  3.00
20 0.39 1.0E7? 10.48 4.19 5.0E2 4.63 6.74 0.12 2.90
Foam H45 2 0.51 0.28 2.82 224 0.44 1.55 4.89 1.87 0.73
:‘SI"I/El”1 =2409 5 0.94 033 233 419 0.83 1.09 820 3.17 0.55
E;_,)/E;3 = 1964 10 1.48 0.36 218 6.51 1.36 0.85 13.12 488 0.45
20 2.08 0.38 2.04 10.64 2.08 0.68 21.35 7.35 0.36
(b) Glass/epoxy 2 facesheets.
Balsa 2 0.23 6.3E~° 14.70 1.91 28E~? 595 2.82 6.9E~ 3.83
E{|/5f1 =986 5 0.31 7.9E7° 14.73 2.59 3.2E72 5.71 3.79 8.0E% 3.59
E;_,)/E;3 =0.67 10 0.38 9.1E~° 14.66 3.15 4.0E2 5.18 469 0.11 3.11
20 0.46 8.4E~3 12.80 3.47 6.2E~? 4.19 5.77 022 2.14
Foam H45 2 0.50 0.27 265 1.90 0.48 1.52 3.76 1.54 0.80
EI’II/.EIF1 =8964 5 0.62 0.28 2.87 3.21 0.74 1.18 6.38 251 0.62
E;;/E;l =267.3 10 0.88 0.34 227 520 1.10 094 1037 3.75 0.51
20 1.82 0.39 2.04 866 1.65 0.77 17.20 548 0.41
(c) Aramid/epoxy 3 facesheets.
Balsa 2 0.37 8.6E72 925 266 0.26 3.26 460 0.49 1.83
E{I/Efl =345 5 0.45 0.10 7.93 3.08 0.33 2.60 5.66 0.63 1.46
E;;/E;] =047 10 0.54 0.12 6.98 3.20 0.40 2.19 6.66 0.77 1.22
20 0.66 0.11 7.28 319 0.48 1.84 718 099 1.00
Foam H45 2 0.77 0.36 225 3.28 0.78 1.14 6.64 255 0.62
E{I/Efl =313 5 1.03 0.34 229 550 1.14 092 10.94 3.86 0.49
E;;/E;] =188 10 1.78 0.37 2.06 8.62 1.64 0.77 17.09 5.28 0.43
20 2.58 0.45 1.86 13.50 2.28 0.54 26.53 6.95 0.29

solutions or those computed using the software ABAQUS. The Tsai-
Wu criterion was used to identify failure initiation in sandwich beams
and investigate the sensitivity of results to beam’s aspect ratio (AR),
facesheet-core thickness ratio (FCTR), facesheet-core in-plane stiffness

E
ratio (FCISR, EL' ) and facesheet-core transverse stiffness ratio (FCISR,
11

T!)

The main conclusions of this work are:

1. For the 1-D wave propagation in a bi-material bar subjected to
two different pressure pulses, the computed wave propagation
speeds and reflection/transmission of the incident wave at the
material interface are in good agreement with their theoret-
ical values. For a rectangular pulse, Gibbs phenomenon was
observed.

2. For various problems studied, the computed quantities matched
well with those obtained by using ABAQUS (CPS4R plane stress
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reduced integration elements), with a maximum of 13% differ-
ence in the transverse normal stresses in the core for thin beams,
and a maximum of 7% deviation in the in-plane normal stress o,
at clamped boundaries. In general, the two sets of results were
very close to each other for thick beams.

3. An analysis of variance (ANOVA) showed that for clamped-
clamped beams the aspect ratio (AR) dramatically affects the
maximum back facesheet deflection, the Tsai-Wu failure index
and the FFL. The Tsai-Wu failure index is very sensitive to the
AR and the FCTR as well as to the inter-action between them.
In the range of facesheet-core stiffness ratios (FCISR) considered
([1,2500]), the FCISR has little effect on these quantities.

4. Sandwich beams composed of three different facesheets
(graphite/epoxy, glass/epoxy and aramid/epoxy) and two cores
(balsa and foam H45) were considered. For the graphlte/balsa

Ei _0.49),

increasing the AR from 10 to 100 dramatically decreases the
FFL and increases the maximum deflection. Increasing the FCTR
from 2 to 20 has a similar but less pronounced effect The FFL

= 196.4).

Similar conclusions hold for the glass and aramuf facesheets,
with the glass (aramid) having higher (lower) FFLs.

case, in which the transverse stiffness ratio is small (
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Appendix A. Mixed plane stress elasticity constants

We provide here definitions of the mixed plane stress elasticity
constants introduced in Section 2.1. These constants are obtained by
setting out-of-plane stresses o5, = 0,3 = 6, = 0 and expressing all out-
of-plane and layer-wise discontinuous quantities in terms of ¢, o3,
and o33.
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Appendix B. Elasticity constants for a transversely isotropic mate-

rial

We provide here the components of the elasticity tensor, C, for
a transversely isotropic material in terms of engineering constants
defined with respect to the material principal axes. In these definitions,
the axis of transverse isotropy is along the x, direction and E,, = Es;.

= I —vy3vy
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