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Analysis of Elastodynamic Deformations near a Crack/Notch Tip by the Meshless
Local Petrov-Galerkin (MLPG) Method

R. C. Batra! and H.-K. Ching!

Abstract: The Meshless Local Petrov-Galerkin
(MLPG) method is used to analyze transient deforma-
tions near either a crack or a notch tip in a linear elastic
plate. The local weak formulation of equations govern-
ing elastodynamic deformations is derived. It results in a
system of coupled ordinary differential equations which
are integrated with respect to time by a Newmark family
of methods. Essential boundary conditions are imposed
by the penalty method. The accuracy of the MLPG so-
lution is established by comparing computed results for
one-dimensional wave propagation in a rod with the an-
alytical solution of the problem. Results are then com-
puted for the following two problems: a rectangular plate
with a central crack with plate edges parallel to the crack
axis loaded in tension, and a double edge-notched plate
with the edge between the notches loaded by compres-
sive tractions. Stresses at points near the crack/notch tip
computed from the MLPG solution are found to agree
well with those obtained from either the analytical or the
finite element solution of the same problem. The index of
stress singularity is ascertained from a plot of log (stress)
vs. log ( r) where r is the distance from the crack tip.
It is found that, for the double-edge notched plate, the
mode-mixity of deformations near a notch-tip in an or-
thotropic plate can be adjusted by suitably varying the
in-plane moduli of the material of the plate. The varia-
tion of shear stress with r exhibits a boundary layer effect
near r= O.

tegrals appearing in the local weak formulation of the
problem. Atluri et al. (1999) have pointed out that the
Galerkin approximation can also be adopted that leads
to a symmetric stiffness matrix. Atluri and Zhu (2000)
solved elastostatic problems by the MLPG method, and
Lin and Atluri (2000) introduced the upwinding scheme
to analyze steady convection-diffusion problems. Ching
and Batra (200 1) enriched the polynomial basis functions
with those appropriate to describe singular deformation
fields near a crack tip and used the diffraction criterion
to find stress intensity factors, the J-integrals and sin-
gular stress fields near a crack tip. Gu and Liu (2001)
used the Newmark family of methods to study forced vi-
brations of a beam. The problem of bending of a thin
plate has been studied by Long and Atluri (2002). War-
lock et al. (2002) have analyzed elastostatic deforma-
tions of a material compressed in a rough rectangular
cavity analytically by the Laplace transformation tech-
nique and numerically by the MLPG method. Atluri and
Shen (2002a,b) have demonstrated the use of different
weight functions and have compared their performance
with that of the Galerkin finite element method. By
choosing a Heaviside step function as the test function,
they eliminated the domain integration in the local weak
form. Thus only boundary integrals over local subdo-
mains remained in the local weak form. For elastostatic
problems, this was shown to be more efficient than both
the finite element and the boundary element methods.

The paper is organized as follows. Section 2 gives the
MLPG formulation including the local weak form, the
moving least squares approximation, the discrete gov-
erning equations and the time integration scheme. Cal-
culations of the dynamic stress intensity factors from the
near-tip stress fields are also described. Numerical ex-
amples are presented in Section 3. The MLPG results
are compared with either analytical or finite element so-
lutions. Section 4 summarizes the conclusions.

Introduction

The meshless method has attracted considerable atten-
tion in the past two decades due to the flexibility of
placing nodes in the domain of study. Atluri and Zhu
(1998) have proposed a meshless method which requires
no background mesh to evaluate numerically various in-
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2 Formulation of the Problem Integrating the first term on the left side of (8) by parts,
and using natural boundary condition (7) we obtain

2.1 Governing equations

f pv iUid.Q. + f v i,jO"ijd.Q. + a f
J.o.s J.o.s Jrsu

VjUjdr -For a plane linear elastodynarnic problem on domain .Q.
bounded by the boundary r, governing equations in rect-
angular Cartesian coordinates are

Vitidr

= r vJidr+a r
JrS! Jrsu

ViUidr + { vibid.Q,
lo.,

(9)

O'ij,j+bi=pui,in.o.,(i,j=1,2), (1)
O'ij = ~kkOij + 2,uEij, in.o., (2)

Eij=(ui,j+uj,i)/2,in.o.. (3)

Here P is the mass density, Ui the displacement, t the
time, Ui = azui/dt2 the acceleration, O'ij the stress ten-

sor, Eij the infinitesimal strain tensor, b i density of the
body force vector, A and,u are Lame' constants for the
material of the body, Ui,j = dUi/dXj, x gives the present

position of a material particle, and a repeated index im-
plies summation over the range of the index. Equations
(1)-(3) are supplemented with the following initial and
boundary conditions:

(4) where the unknown coefficients a(x,t) are functions of
the space coordinates xT = [XI,X2] and time t, and p(x) is

(5) a complete monomial in x having m terms. The complete
(6) quadratic monomials basis functions in two-dimensions
(7) are

u(x,to) = UQ(x), x E .0.,

ti(X,tO) = tio(X), x E .0.,

Ui = Ui, on r u,
ti == O'ijnj = ii, on rto

Here Uj,tj,no and Do denote the prescribed displace- pT(x)=[1,Xl,X2,(Xl)2,XlX2,(x2)2j;m=6. (11)
ments, tractions, initial displacements and initial veloc-
ities, respectively, n j is the unit outward normal to r, and For each component of u, the coefficients a(x,t) in (10)
r u and r t are complementary parts of r where essential are obtained by minimizing J defined by

and natural boundary conditions are prescribed. n
J = LW(X-Xi)[pT (Xi)a(X,t) - Ui(t)]2

---' Implementation of the MLPG method i=l

Taking the inner product of (I) with v and of (6) with av, Here Ui is the fictitious value of a component of u h at
and integrating the resulting equations over .0. s and r su x = Xi, and n is the number of nodes in the domain of
respectively, we obtain influence of x for which the weight functions w( x - x J #

O. Several different weight functions are given in Atluri1 (O'ij,j - pili + bi)Vid.o. -1 a(Ui - Ui)Vidr = 0, (8) and Shen (2002a,b); here, the following Gaussian weight
Qs r su function is used.

2.2

where r su = r s n r u, r s is the boundary of the lo-

cal domain .o.s c .0. and a is a penalty parameter used
to satisfy the essential boundary conditions. For eqn.
(8) to be dimensionally correct, a must have units of
Force/(Length)3. The penalty parameter a may vary
from point to point but is usually taken to be a constant
with magnitude much larger than 1../ L where L is a typi-
cal dimension of the body. Henceforth we take a to be a
constant.

[ )2k]2k r' J!=!i.l exp - ~exp [ - ( Cj ) ] - (Cj , 0:$ Ix - xii :$ Ti

l-eXp[=(~)2k] -

W(X-Xi) =

0 Ix-xii> r/.

(13)

Here ri is the radius of the domain of influence for the
weight function w(x - Xi), and empirically determined

where r st = r s n rt, and Vi is taken to vanish on a.o.s -

rsu-rst.
In the MLPG method, the displacement field is approx-
imated by the moving least squares method (MLS). De-
tails about the MLS approximation are given in the pa-
per by Lancaster and Salkauskas (1981). For the sake
of completeness, the MLS approximation is briefly de-
scribed here. We consider the trial function uh(x,t) over
the domain.o. defined by

m
ui(x,t) = Lpj(x)ajk(x,t), k = 1,2, (10)

j=l
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parameters Ci and k control its shape. We set k = 1, Ci = "load" vector f are given by
distance to the third nearest neighboring node from the
node Xi with nodes equidistant from Xi counted once, and Mij = fa P<Pjv(x,xJd.Q, i,j = 1,2,." ,n, (19)
ri = 3.5ci' s

The support of w(x - xJ is also called the domain of in- Kij = 1 Ev(X, xJDB jd.Q + a i v(x, xJS<p jd.Q
fluence of node i, since node i affects the approximation as r su

withi~ this. domain ~ut not outsi~e of this .domain. The - isu v(x,xJNDBjSJr, (20)

domaIn of mfluence IS usually a cIrcle, but It does not ex-
tend outside of the boundary ofdomain.Q, The effect of fi = i v(x,xJUr +a i v(x,xJSiidr
a crack is represented by changes in the domains of in- r st r su

fluence of the nodes surrounding the crack. The diffrac- + 1 v( x, Xi) bd.Q. (21)
tion criterion proposed by Organ et al. (1996) has been as
used by Ching and Batra (2001) to account for changes The matrices E D B 0 S and N are given below.
in the domain of influence caused by discontinuous fields v, , J' ,

across a crack; it is also employed here, [ (1) (1) 2 (1) ]Ell £22 E12The stationarity of J in (12) with respect to a( x, t) leads Ev = '(2) (2) (2) , (22)
to Ell £22 2E12

[ <polO
]a(x,t)::::A-1(x)B(x)fi(t), (14) Bj= ~ <Pj,2 , (23)

<Pj,2 <Pj,1

with matrices A(x) and B(x) defined by N = [ n1 0 n2
] , (24)0 n2 nl

f n E [ 1 v 0
]f A(x);= L w(x - Xi)p(xJpT (Xi), (15) D = --=z v 1 0, (25)

i=l I-v 0 0 (l-v)j2
B(x) = (16) E =

{ E for plane stress deformations,
[W(X-Xl)p(Xl),W(X -X2)p(X2),... ,w(x - xn)p(xn)]. Ej(l-v2) for plane strain deformations,

(26)
By substituting from (14) into (10), we obtain the MLS - - { V for plane stress deformations,approximant as v - v j (1 - v) for plane strain deformations,

(27)

u~(x,t)= (17) S= [ SI 0 ] ,Si= { 1 ~fXEru, (28)
n m n 0 S2 0 1fxEtru.
LL Pj(x) [A -l(x)B(x)]jiUik(t) = L<Pi(X)Uik(t).
i= Ij= 1 i=1 E = ,u(3A+ 2,u)j(A+,u) is Young's modulus, and v =

Aj2(A+,u) is Poisson's ratio. Superscripts (1) and (2)

'" ( ) . all 11 d th MLS h ~ t. signify, respectively, the quantity derived from two lin-'l'i X IS USU Y ca e e s ape lunc Ion corre-. , (1) (2). . ,
d" t d ' Sub tI" tuti' (17) . t th 1 al ak early mdependent test functIons v and v , a poss1b1l-

spon mg 0 no e l. s ng m 0 e oc we ..

form (9) for each node gives the following discrete equa- Ity IS

tions:
[ V 0

]v = 0 v . (29)

Mft(t) + Kfi(t) = f(t). (18)
Here we take v(x, Xi) = w(x - xJ, Note that the "mass"

matrix is not symmetric; the choice v(x, Xi) = <Pi (x) will

The "mass" matrix M, the "stiffness" matrix K, and the result in symmetric M and K. The mass matrix can be
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diagonalized by the row-sum technique to obtain At is the uniform time interval between two time steps.
Parameters ~ and 'Y control the stability and the accuracy
of the time integration scheme. Values of ~ and 'Y for

(30) different methods are listed below:
Mii = t 1 pcJ>jv(x,xJd.o., (no sum on i)

j=l Qs

Mij = 0, i =# j.. 1 1
'Y=2'~=6'

1 1
'Y=2'~=4'

3
'Y=;;-,~=1,

Linear Acceleration Method; (37)
For a 2-dimensional problem, M and K are 2n x 2n matri-
ces, where n is the total number of nodes in the problem.

Initial values of Ui and 6i are derived from (4) and (5)
as follows. The function u( x, to) is replaced by Uh (x, to),
the inner product of both sides is taken with the function
PV(X,Xi), and the resulting equations are integrated over
the local domain .as. The result is

Constant Avg. Accel. Method

Backward Difference Method; {~Q\

Central-Difference Method
1

'Y = ;-, f} = 0,

The Newmark family of methods is unconditionally sta.
(31) ble if

(32) - ,.

Mu(O)=~,
Mt1(O) = GO,

1 1 (1 )y?: 2andl3?: 4 2+Y
where

Fi> = [ pUo(x) .v(x,xJd.Q.,
las

G? = [ ptio(x). v(x, xJd.Q.,
las

(33)

(34)

For null initial conditions, i.e., Uo = 0 and Do = 0, Eqs.
(31) and (32) give 6(0) = 0, ft(O) = O.

For every Xi E a the local domain as is taken to be a cir-
cle, and equations (18), (31) and (32) are deduced. These
equations form a system of coupled ordinary second-
order differential equations for 6 and algebraic equations
for 6(0) and ft(O). We choose a large number of local
domains as so that their union contains a. Since local
domains for different nodes may overlap, the sum of all
elements of the global mass matrix will not, in general,
equal the total mass of the body.

, O>max

The time integration scheme2.3

where rornax is the maximum frequency of free vibration
of the system. Thus for the central difference method,
& ~ 2/ rornax. For a lumped mass matrix, the central dif-
ference method is explicit in the sense that the solution
at time tn+l can be found from that at time tn without
solving a system of algebraic equations.

Writing Eq. (18) at time tn+l = (n + 1)&, and substi-
tuting from (35) and (36) into (18) yield the following
system of al,gebraic equations:

We use the Newmark family of methods (Newmark
(1959» to integrate the coupled second-order ordinary
differential equations like (18). The recursive relations
relating displacements and velocities at times t nand tn+l

are

Kn+lUn+l = tn+l

where

(35) Kn+l = Kn+

(36) Fn+l = fn+l

0,,-'-1 =0"
(44)

(45)Un+
+alMn+l,

-Mn+l{alUn+a2dn+a36n

where Un, tin, and fin denote the displacements, veloci-
ties and accelerations, respectively, at time tn = n/lt and

; ~#o. (46)
al=~:

Thus the linear acceleration and the central difference
methods are conditionally stable and the other two meth-
ods are unconditionally stable. The methods are second-
order accurate and nondissipative for y = ! and first-

order accurate and dissipative for y # !. For the con-
.. 2.

diuonally stable methods,
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Once Un+l has been computed from (43), tin
can be obtained from

and 6.

Un-

Un

al{Un+l

dn+(l-

(47)

(48)

- Un} -

Y)&Un

a20n - a30n

+ rAton

For~=O~Un
and then un+

1 is first found from eqn. (35), u from (18),
from (36). Fi2ure A bar subjected to an impact force

2.4 Determination of the stress intensity factors

It has been shown by Ching and Batra (2001) that the
stress intensity factors in linear elastic fracture mechan-
ics can be determined from the plots on logarithmic
scales of stresses near the crack tip computed from the
MLPG solution versus distance from the crack tip. We
determine here stress intensity factors for the transient
problem from the near-tip stress fields. For dynamic
deformations of an elastic body containing a stationary
crack, the mode-land the mode-II stress intensity factors
can be determined from Kf = V2X7'O"22(r,0,t) and Kff =
J2n7'O"12(r,0,t) (Miannay, 2001) where r is the distance
straight ahead of the crack tip and should be taken within
the singular-deformations dominated zone. In our com-
putations, the distance r is taken within 2% of the crack
length. At each time step, we plot InI0'22(r,0,t)1 vs. lnr
and InI0'12(r,0,t)1 vs. lnr, fit straight lines through the
data by the least squares method, and compute Kf and
Kff from the intercepts of these lines with the ordinates.
Theoretically the slope of each line should equal -1/2,
signifying the 1 / ~ singularity of stress fields near the
crack tip.

where c = JE7P is the wave speed.

When solving the problem by the MLPG method,
we took L = 20in, E = 30 X 106 psi, P = 7.4 x
10-4Zbsec2/in4, A = lin2, a = 109Zb/in3 and 7(t) =

lOOH(t)psi where H(t) is the Heaviside step function.
The bar was divided into 41 equally spaced nodes. All
entries in the lumped mass matrix obtained from Eq. (30)
were found to be positive. The time step size, &, equaled
0.5j1S for the central difference method and l.us for the
other three methods. The maximum frequency, O)max,
was found to be 1.56 MH; thus & can at most equal
1.28.us for the explicit conditionally stable central dif-
ference method. However, for this method the value of
& strongly depended upon the value of the penalty pa-
rameter. The maximum value of & that could be used to
compute a stable solution rapidly decreased with an in-
crease in the value of the penalty parameter, a. Numeri-
cal experiments indicated that a close to 104 E / L for the
central difference method has a reasonable value of &.

3 Computation and Discussion of Results

3.1 One dimensional wave propagation

We have developed a computer code in Fortran based on
the aforestated equations. To demonstrate the validity
and accuracy of the code, the one-dimensional problem
of wave propagation in a rod is studied first. A schematic
sketch of the problem studied is shown in Fig. 1. The ax-
ial displacement u of a material point of the rod is given

by

- ~) 7tct(n
U(X,t) = cos

L

iL
E

t
-x
E

(49)CDS
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Figure 2 shows the comparison with the analytical solu-
tion of the time histories of the axial stress at the mid-
point (x = L/2) computed with different time integration
schemes. The analytical value of the wave speed for the
assumed material properties is 0.201 in/,us. It is clear that
for each one of the four integration methods, the wave
arrives at the midpoint prior to the theoretical value of
49.7J1s. This is to be expected because of the coupling
among motions of different nodes induced by the stiff-
ness matrix. Here a diagonal mass matrix is used; oth-
erwise the mass matrix will also couple the motion of
different nodes. The average acceleration and the lin-
ear acceleration methods predict identical values of the
axial stress. Values of 'Y > 1/2 introduce damping into
the computed solution; this is evident from the absence
of oscillations in the solutions obtained with the back-
ward difference method for which 'Y = 3/2. Each in-
tegration scheme correctly predicts doubling of the ax-
ial compressive stress when the wave reflected from the
clamped end (x = L) arrives at the midpoint. In order to

see if decreasing the time step size will improve the ac-
curacy of the computed results, we have plotted in Fig. 3
time histories of the axial stress at the midpoint obtained
by taking M = 0.4,us and 1.0,us and the backward differ-

ence method. These results indicate that, at least for the
backward difference method. M = Ius is adeauate. In

of the axial velocity obtained from the analytical solu-
tion with those computed with the backward difference
method. The computed histories of the axial velocity ex-
hibit oscillations of smaller amplitude than the computed
histories of the axial stress. At x = 0.25L, oscillations
die out and the computed axial velocity matches with the
analytical value. It was found that the essential boundary
condition prescribed at x = L was very well satisfied.

. Analytical Solution (x = O.25L)
- MLPG (x = O.25L)

..0.. AnalytlcaISolutlon(x=O.75L)
-- MLPG (x =O.75L)

0.5

0.0 .. Analytical Solution
- Time Step = 0.4118
-- Time Step = 1118\1

Time histories of the axial stress at x = L/2 computed
with the lumped and the consistent mass matrices and the
backward difference scheme were found to coincide with
each other. Also, the evolutions of the axial stress at x =
L/2 computed with two uniform arrangements of 41 and
101 nodes were identical suggesting that the nodal mesh
of 41 uniformly placed nodes is adequate for analyzing
this problem.

E .0.5-
I -1.0
m
~

-1.5

.

1

'-4.0~

3.2 Rectangular plate with a central crack loaded in
tension

-2.6 I . . . . . . . .
0 8 60 76 100 18 160 176 ROO

TIme (J18)

Figure 3 : Comparison with the analytical solution of the
time history of the axial stress at the midpoint of the bar
computed with two different time steps and by using the
backward difference method

We now analyze deformations of a rectangular plate
with a centrally located crack, shown in Fig. 5, and
loaded by axial tensile tractions applied at the top and
the bottom surfaces. We sett= 0.4H(t)GPa,L = 52mm,
D = 20mm, a = 12mm, ,u = 29.4GPa, p = 2450Kgjm3,
a = 107MPajm and v = 0.286. A plane strain state of
deformation is assumed to prevail in the plate and theFig. 4 we have compared at two locations time histories
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0.10

- t.eI18 (MLPG) . t86I18 (ABAQUS)

t-13j18 (MLPG). 1=13j18 (ABAQUS)
-- t=2OI18 (MLPG). t=20118 (ABAQUS)

0.08

E
.§. 0.06
~c
'E
~ 0.04
.r

~ ...

Cmcktip
81t=0

I
11.4 11.6 11.8 12.0 1U

x,-coordlnate (mm)

Figure 7 : At three different instants of time, deformed
shape of the crack surface near the crack tip

0.02

0.00

diffraction criterion is used to account for discontinuous
fields across the crack surface. Due to symmetry of the
problem about the two centroidal axes, only a quadrant
of the plate is modeled and discretized using 2534 nodes
(see Fig. 6a) with a fine nodal mesh around the crack tip
(cf. Fig. 6b). We use the backward difference method
with & = 4 x 10-2ps and compute results till t = 20}ls.

Figure 7 displays, at three different instants of time, the
deformed crack surface obtained by both the MLPG and
the finite element (FE) methods. In computing the FE so-
lution with ABAQUS 6.11 the same nodal mesh as that
in the MLPG method is employed. The two sets of com-
puted results agree well with each other. Note that the
material point located at the crack tip moves horizontally
first to the right and then to the left while the upper and
the lower boundaries of the plate are being pulled axially
by the tensile tractions. The crack surfaces are comprised
of the same material points since no opening or closing of
the crack is considered. The time history of the stress in-
tensity factor K[(t) normalized by tJM is shown in Fig.
8. The MLPG solution is compared with the analytical
solution of Baker (1962) for an infinite plate, the singu-
lar finite element solution of Nishioka and Atluri (1980)
and the dual boundary element solution of Fedelinski et
al. (1994) for a finite plate identical to the one studied
here. The stress intensity factor K[ remains zero until
the dilatational wave reaches the crack tip at approxi-

mately t = 2.5,us. K] attains the maximum value of 2.375
at t = 11,us and decreases subsequently; for the corre-
sponding static problem, K] = 1.0361 (e.g. see Anderson

(1995)). It can be seen that there is a good agreement
between the MLPG result and other available solutions.
The time history of the order of singularity of the stress
field near the crack tip is found to equal -0.48 which is
close to the analytical value of -0.5. Figure 9 exhibits
contours of the maximum principal stress normalized by
t around the crack tip at t = 13,us for both the MLPG and

the FE solutions. The two sets of solutions agree well
with each other, and the maximum principal stress at the
crack tip equals 451.

3.3 Double edge-notched plate with the edge between
the notches loaded in compression

3.3.1 Plate material isotropic

Kalthoff and Winkler (1987) proposed an experiment to
study transient mode-II dominated deformations. It in-
volves a double edge-notched plate with the edge be-
tween the two notches impacted by a fast moving cylin-
drical projectile of diameter equal to the distance be-
tween the notches. Here, we use the MLPG method
to analyze this problem and approximate the action of
the impactor by applying uniformly distributed compres-
sive traction~ on the impacted surface. Figure 10 shows
a schematic sketch of the problem studied. We as-
sume that a plane strain state of deformation prevails
in the plate, and take Young's modulus E = 210GPa,
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Figure 6 : (a) The nodal mesh for one quarter of the centrally cracked plate (b) The nodal mesh near the crack tip
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Poisson's ratio v = 0.29, mass density p = 7833kgjm3,
At = 0.0625jlS, penalty parameter a = 108Mpajm, the
radius of the circular notch tip = 0.15mm, the applied
normal traction t = 200H(t)MPa, and tangential traction
on the impacted surface = O. Because of symmetry of

the problem about the horizontal centroidal plane, defor-
mations of only the upper half of the plate are analyzed.

A nonuniform nodal mesh of 3632 nodes with 25 nodes
on the surface of the circular notch tip is employed. The
diffraction criterion is used to account for the discontin-
uous deformation fields across the notch. Coupled ordi-
nary differential equations obtained from the local sym-
metric weak formulation of the governing partial differ-

~~~~~~

.~""-""-.~""-""-

24.95 ,

49.80
. . . . .

c...-"" 48oM 4ag} 49.96 50.00 50.06

x,-coordlnate (mm)

Figure 11: Undeformed and deformed shapes of the c
cular notch surface



726 Copyright@ 2002 Tech Science Press CMES, vol.], no.6, pp. 717- 7]0,2002

ential equations are integrated by the backward differ-
ence method. The two approximate solutions obtained by
the MLPG and the FE methods are compared; the same
nodal mesh was used in the two analyses.

Figure 11 displays the undeformed and the deformed
shapes of the notch tip. Due to the compressive tractions
applied on the edge between the two notches, the notch 0.6

faces move upwards. It is clear that the two sets of results 0.0
agree well with each other. The time histories of normal 00,9,.9"Q,.9.,.Q,..Q...Q...Q Q ~.,...Q"...,.Q ~ Q stresses 0" 11 and 0"22 at the notch tip are plotted in Fig. 12. .(J.6 ~..,.

The dilatational wave arrives at the notch tip at about 7.us. .1.0 f
Soon after the arrival of the wave, stresses at the notch ~ i
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tip increase with 0"22 being significantly larger in mag- <8
nitude than 0"11. For time t = 14.us and 24.us, Figs. 13a

...and 13b evince, respectively, the variations of 0"22 and 0.00 0.02 0.04 0.00 ~ 0,10

0"12 at points directly ahead of the notch tip. We note that ,'notch length
the axial variation of 10" 121 exhibits a boundary layer phe- (b)
nomenon near the notch tip; the thickness of the bound- Figure 13 : (a) Variations of normalized 0"22 with the
ary layer equals 0.2% of the length of the notch. The trac- distance directly ahead of the notch tip (b) Variations of
tion free boundary condition at the notch tip requires that normalized 0"12 with the distance directly ahead of the
0"12 = 0 there. The angular distributions of the principal notch tip

tensile stress and the maximum shear stress at t = 14.us

and 24.us are exhibited in Figs. 14a and 14b. The angu-
lar locations, 9, of points where these stresses attain their
maximum values are essentially the same at t = 14f1s and

24.us. Whereas the maximum principal tensile stress oc-
curs at 9 = 70°, the maximum shear stress attains its peak
value at 9 = -600. These angular positions are close to
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those found by Batra and Gumrnalla (2000) in the tran-
sient FE analysis of the thermoviscoplastic problem. Ba-
tra and Ravisankar (2000) compared deformation fields
computed from the analysis of the 3-dimensional ther-
moviscoplastic problem with those from the plane strain
analysis of the problem. They found that the deformation
fields at the midsurface of the plate matched closely with
those computed from the plane strain analysis. However,
these differed considerably from those on the front and
the back surface of the plate where experimental obser-
vations are made. The angular distributions of the hoop
stress cree and the shear stress cr re are plotted in Figs. 15a
and 15b respectively. Maximum values of cr re occur at
the extremities of the circular surface of the notch tip, but
as noted above, the maximum shear stress is at e = -60°.

It is cle~ from the results plotted in Fig. 16a that indeed
K[ and K[[ are proportional to ~ during the time interval
considered herein. The time histories of the stress inten-
sity factors are depicted in Fig. 16b. Significantly larger
values of K[[ relative to those of K[ imply that the mode-II
deformations near the notch tip are dominant. During the
time interval 0 :::; t :::; 24ps, K[ is nearly constant but the
magnitude of K[[ increases montonically implying that
the mode-mixity parameter does not stay constant. Lee
and Freund (1990) modeled the notch as a sharp crack
and found that the mode-mixity parameter stays constant
till the waves reflected from the right free edge arrive at
the crack tip.

We note that the elastostatic analysis of the problem
with t = 200MPa.jiiim gave K[ = -448MPa.jiiim and
K[[ = -878MPa.jiiim. For the elastodynamic prob-

lem, the maximum value of K[(t) during the time inter-
val 0:::; t :::; 24ps equals -275MPa.jiiim but the magni-
tude of K[[ continues to increase to -1150MPa .jiiim at
t = 24ps. The unloading wave reflected from the free

right edge of the plate arrives at the notch tip at about
24ps. Thus the static analysis of the problem does not
provide a realistic description of the failure mode near a
notch tin in a dvnamicallv loaded nrenotched nlate.

(b)
Figure 14 : (a) Angular distribution of the normalized
maximum principal stress on the notch surface at two
different times (b) Angular distribution of the normal-
ized maximum shear stress on the notch surface at two
different times

3.3.2 Plate material orthotropic

We now assume that the prenotched plate is made of an
orthotropic material with material axes of symmetry co-
incident with the coordinate axes. TWo orthotropic ma-
terials, namely orthotropic (1) and orthotropic (2), are
considered with the following material properties: or-
thotropic (1), Ell = 210GPa, E22 = 0.5E11, V12 = 0.29,
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Figure 16: (a) The time history of the index of singu-
larity for mode I and mode II deformations (b) The time
history of the stress intensity factors K I and KII

(b)
Figure 15 : (a) Angular distribution of the normalized
hoop stress on the notch surface at two different times
(b) Angular distribution of the normalized shear stress
on the notch surface at two different times
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G12 = 0.4Ell; orthotropic (2), Ell = 210GPa, E22 =
0.2Ell, V12 = 0.29, G12 = 0.4Ell- As can be seen from

Fig. 17 a, subsequent to the aITival of the dilatational wave
at the notch tip, the magnitude of the stress intensity fac-
tor K[(t) for orthotropic materials is less than that for
the isotropic material. The decrease in the magnitude

~
...
E
E
~
\c-

0 4 8 16 20 24

0 4 8 12 16 20 24

TIme (lis)

(b)
Figure 17 : (a) The time history of the stress intensity
factor K] for three materials (b) The time history of the
stress intensity factor K]] for three materials

of K[(t) is due to the reduction of the Young's moduli
of the orthotropic materials in the x 2 -direction. However,

the time histories of the stress intensity factor K[[(t) for
isotropic and orthotropic materials in Fig. 17b are almost
coincident with each other since the shear modulus G 12
for these materials has the same value. Thus the mode
mixity of the deformation field near the notch tip in an

orthotropic plate can be adjusted by suitably modifying
the material moduli in the Xl- and xz-directions.

4 Conclusions

We have used the MLPG method to analyze transient in-
finitesimal plane strain/stress deformations of an elastic
body. The MLPG solution is found to compare very well
with the analytical solutions for two problems, namely,
wave propagation in a bar, and a rectangular plate with
a central crack with plate edges parallel to the crack
axis loaded in tension. For the explicit central-difference
method, the time step needed to compute the stable so-
lution was found to be much smaller than that given by
the stability condition (42); it strongly depended upon
the value of the penalty parameter used to satisfy the es-
sential boundary conditions. The computed time histo-
ries of the stress intensity factors were found to agree
with those available in the literature for the same prob-
lem. The MLPG method is then used to analyze transient
deformations of a double edge prenotched plate with the
smooth edge between the two notches loaded by uni-
formly distributed compressive tractions. The deforma-
tions and stress fields near the notch tip computed by the
MLPG method agree well with those obtained from the
finite element solution. It is found that the variation of the
shear stress O"IZ with the distance r ahead of the notch tip
exhibits a boundary layer effect. Outside of this bound-
ary layer region, stresses exhibit the 1/ Jr singularity.
The mode mixity of the deformation field near the notch
tip in an orthotropic plate can be adjusted by modifying
values of the in-plane material moduli.
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