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a b s t r a c t

We find thermal stresses developed in Ceramic Matrix Composite (CMC) cylindrical shells reinforced
with aggregated Carbon Nanotubes (CNTs) with heat flux prescribed on the inner surface and temper-
ature on the outer surface. Null surface tractions are prescribed on these two surfaces and the cylinder
edges are clamped. The material properties are homogenized by using a two-parameter Eshelby-Mori-
Tanaka (EMT) approach. Material properties of the ceramic are assumed to depend upon the tempera-
ture, and the smooth variation of the CNT volume fraction through the shell thickness is assumed to be
described either by a sigmoidal function or profile-O or profile-X often used in the literature. The one-
way coupled thermo-mechanical problem is analyzed by first numerically solving the nonlinear heat
equation with the Generalized Differential Quadrature Method (GDQM), and then the linear mechanical
problem by using Reddy's Third-order Shear Deformation Theory (TSDT) and the GDQM. For the same
thermal boundary conditions and the volume fraction of CNTs, the maximum hoop, the in-plane shear
and the transverse normal stresses developed in the cylinder are highest for the profile-X of CNTs. The
aggregation factor noticeably influences the maximum transverse normal and the maximum hoop
stresses developed in the cylinder.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The outstanding mechanical properties of Carbon Nano-Tubes
(CNTs) make them unique candidates for reinforcing polymer,
ceramic andmetal matrix composites [1]. Whereas there has been a
flurry of activity in studying mechanical properties of CNT-
reinforced polymer composites not much work has been done in
studying CNTs-reinforced ceramic composites. The combination of
extraordinary characteristics of CNTs with intrinsic advantages of
ceramic materials such as thermal stability, high corrosion resis-
tance, lowmass density and electrical insulation can generate CNT-
Ceramic Matrix Composites (CNT-CMCs) with desired functional
and structural properties [2,3]. The potential of developing high-
performance CNT-CMCs that can withstand high temperature,
te Club, Arak Branch, Islamic
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severe chemical environment, and wear is very appealing with
applications in such diverse areas as gas turbines, aerospace com-
ponents and automobiles. Recent investigations on CNT-CMCs for
potential structural applications are described in Refs. [4e15].

Zhan et al. [11,12] fabricated fully dense nanocomposites
comprised of CNTs and nanocrystalline alumina matrix by using
spark-plasma sintering, and demonstrated that their electrical
conductivity improved over that of pristine alumina. Furthermore,
CNT-alumina matrix nanocomposites with enhanced hardness and
fracture toughness were successfully fabricated by Mo et al. [13] by
a sol-gel process followed by spark plasma sintering. Zhu et al. [14]
prepared bulk alumina ceramic composites by adding 2 wt.% CNTs
under an alternating current electric field. By using catalytic py-
rolysis of acetylene gas with iron nitrate impregnated alumina, An
et al. [15] prepared CNT-alumina composites by hot-pressing them
and investigated their mechanical and tribological properties.

During the solution of thermo-mechanical problems for CNT-
ceramic composites, one usually deduces their effective moduli
by employing homogenization techniques such as the Extended
Rule of Mixtures (ERM) [16e18] or the Eshelby-Mori-Tanaka (EMT)
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[19e21] method. Shen [16] modified the conventional rule of
mixtures by introducing CNT efficiency parameters that were
determined by matching the elastic moduli of polymer-based
nanocomposites from molecular dynamics simulation results and
the rule of mixtures. The ERM's limitations include disregarding
intrinsic features, such as aggregation and waviness, of CNTs
dispersed in the matrix. The EMT is based on the equivalent elastic
inclusion concept of Eshelby [22] and the technique for estimating
the average stress in thematrix phase proposed byMori and Tanaka
[23]. The EMT has been applied to CNT-Reinforced Composites
(CNTRCs) by Odegard et al. [19] and has been improved upon by
using test data [24e27] to account for the degree of the CNT ag-
gregation, orientations, curviness and length. The Scanning Elec-
tronMicroscopy (SEM) images [28,29] show that CNTs aggregate in
a nanocomposite and form local regions of CNTs-concentration
higher than their average volume fraction in the nanocomposite.
Considering the CNT aggregation effects in the EMT model, Sob-
haniaragh et al. [21,30] investigated natural frequencies and
bending deformations of the CNTRC shells; e.g., see Sobhaniaragh's
PhD thesis [31]. Furthermore, this methodology has been followed
by Fantuzzi et al. [32], Kamarian et al. [33], Tornabene et al. [34],
and Heshmati [35] for studying effects of agglomeration and dis-
tributions of CNTs on free vibration characteristics of CNT-
nanocomposites.

Meguid and Sun [36] have experimentally shown that me-
chanical properties of CNTRCs deteriorate if the volume fraction of
CNTs scattered within the matrix phase exceeds a limiting value.
Thus, a designer should consider this limiting value of the CNT
volume fraction for fulfilling multi-functional requirements. A
possibility is to smoothly vary the volume fractions of CNTs and
thus fabricate Functionally Graded Materials (FGMs) to economi-
cally achieve the desired multifunctionality. In recent years, several
researchers have implemented the idea of smooth gradation of
spatial CNT volume fraction in modeling nanocomposite structures
to achieve desired structural response. For example, a large number
of papers [21,32e35,37e46] have been devoted to studying vibra-
tional characteristics of FG CNTRCs. The bending, buckling and
postbuckling deformations of such structures have been studied in
Fig. 1. Geometry of a CMC cylindrical sh
Refs. [30,46e52], and the thermal response of FG CNTRCs has been
studied in Ref. [53]. Using the piezo-electricity theory and the ERM,
Alibeigloo [53] studied thermo-elastic deformations of simply
supported CNTRC cylindrical panel integrated with piezoelectric
layers. With the temperature prescribed on the inner and the outer
surfaces of the panel, the author concluded that the maximum
radial stress as well as the axial and the circumferential displace-
ments could be reduced by having a higher concentration of CNTs
near the outer surface.

Motivated by the lack of research activity on thermal analysis of
ceramic matrix nanocomposites reinforced by aggregated CNTs, we
study here thermo-elastic response of CNT-CMC cylindrical shells
subjected only to heat flux and temperature loads. A two-
parameter EMT homogenization technique is employed that ac-
counts for aggregation of CNTs in the ceramic matrix phase, and
material properties of the ceramic matrix are assumed to be
temperature-dependent. Consequently, the effective mechanical
properties of CNTRCs are a function of both temperature and po-
sition, leading to nonlinear differential equations that cannot be
analytically solved. The analysis of the mechanical problem is
simplified by using Reddy's Third-order Shear Deformation Theory
(TSDT) [54] with five unknowns. The nonlinear heat equation and
the TSDT equations are numerically solved by employing the two-
dimensional Generalized Differential Quadrature Method (GDQM)
proposed by Shu [55] that has been shown to provide reasonably
accurate solutions [56]. The smooth through-the-thickness spatial
variation of CNTs volume fraction is characterized by a sigmoidal
power-law distribution and two other distributions used in the
literature [37,53].

2. Problem description

Consider a CNT-CMC cylindrical shell of finite length L, mean
radius a3m, and thickness h. As depicted in Fig. 1, we use global
cylindrical coordinate axes ða1;a2;a3Þ with the origin at the mid-
surface of the left edge to label a material point of the cylinder in
the unstressed reference configuration. The a1-, the a2- and the
a3-axes are, respectively, along the cylinder length, the
ell reinforced by aggregated CNTs.
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circumferential direction, and the cylinder thickness.
2.1. Two-parameter Eshelby-Mori-Tanaka (EMT) model

We briefly review a two-parameter EMT model for finding
effective mechanical properties of CNT-CMCs. This homogenization
scheme is based on Eshelby's theory [22] of elastic inclusions.
Eshelby's results for a single inclusion in a semi-infinite elastic,
isotropic and homogeneous medium are extended by the Mori-
Tanaka method [23] to capture effects of numerous in-
homogeneities embedded in a finite domain. Due to low bending
stiffness and weak van der Waals forces [29], CNTs dispersed in
CNT-CMCs aggregate in some regions resulting in a higher accu-
mulation of CNTs there as compared to their average volume frac-
tion in the entire CNT-CMCs. The regions with accumulated CNTs
are assumed to be spherical and envisioned as inclusions that have
material properties different from those of the material surround-
ing them. Hence, CNTs dispersed in the matrix are sorted according
to their positions, i.e., embedded either inside or outside the in-
clusions, as depicted in Fig. 1. According to the two-parameter EMT
model, the total volume Vr of the reinforcing phase is divided into
two different parts [24]:

Vr ¼ Vinc
r þ Vm

r (1)

with Vinc
r and Vm

r denoting, respectively, the volume of CNTs
embedded in the inclusions (aggregated CNTs) and that dispersed
in the matrix. The aggregation of CNTs in the ceramic matrix de-
grades its mechanical properties as compared to that of the virgin
matrix. This aspect of the CNT-CMCs is described by introducing the
aggregation parameters, z and x, defined as

z ¼ Vinc

V
; x ¼ Vinc

r
Vr

(2)

where Vinc is the effective volume of the inclusions, and the
parameter z equals the volume fraction of inclusions relative to the
volume V of the representative volume element. For z ¼ 1, there is
no aggregation of CNTs in the matrix phase, and for 0 < z < 1 the
degree of aggregation of CNTs decreases with an increase in z. The
parameter x equals the ratio of the CNTs volume embedded in the
inclusions to the total volume of the CNTs. Thus for all CNTs accu-
mulated in the inclusions, x ¼ 1. For the CNTs to aggregate

x> z (3)

In order to predict the effective elastic moduli of the inclusions
and the matrix phase, it is assumed that the volume fraction of
CNTs varies only in the thickness direction. Furthermore, the CNTs
are assumed to be transversely isotropic and randomly oriented in
the spherical inclusions. Whereas some authors have assumed the
axis of transverse isotropy to be along the CNTcentroidal axis, Batra
and Sears [57] have postulated it to be a radial line. The effective
bulkmodulus Kinða3Þ and the effective shearmodulus Ginða3Þ of the
spherical inclusions are given by [24,31,40]

Kinða3Þ ¼ Km þ frða3Þxðdr � 3KmarÞ
3ðz� frða3Þxþ frða3ÞxarÞ

(4)

Ginða3Þ ¼ Gm þ frða3Þxðhr � 2GmbrÞ
2ðz� frða3Þxþ frða3ÞxarÞ

(5)

Similarly, the effective bulk modulus Koutða3Þ and the effective
shear modulus Goutða3Þ of the material outside the inclusions are
given by
Koutða3Þ ¼ Km þ frða3Þð1� xÞðdr � 3KmarÞ
3ð1� z� frða3Þð1� xÞ þ frða3Þð1� xÞarÞ (6)

Goutða3Þ ¼ Gm þ frða3Þð1� xÞðhr � 2GmbrÞ
2ð1� z� frða3Þð1� xÞ þ frða3Þð1� xÞbrÞ

(7)

In Eqs. (4)e(7) Km and Gm, respectively, denote the bulk and the
shear moduli of the matrix;frða3Þ and fmða3Þ with
frða3Þ þ fmða3Þ ¼ 1, respectively, denote volume fractions of the
reinforcing and the matrix phases. Parameters ar ,br ,dr , and hr are
defined by

ar ¼ 3ðKm þ GmÞ þ kr þ lr
3ðGm þ krÞ (8)

br ¼
1
5

�
4Gm þ 2kr þ lr
3ðGm þ krÞ þ 4Gm

Gm þ pr

þ 2½Gmð3Km þ GmÞ þ Gmð3Km þ 7GmÞ�
Gmð3Km þ GmÞ þmrð3Km þ 7GmÞ

�
(9)

dr ¼ 1
3

�
nr þ 2lr þ ð2kr þ lrÞð3Km þ 2Gm � lrÞ

Gm þ kr

�
(10)

hr ¼
1
5

�
2
3
ðnr � lrÞ þ 8Gmpr

Gm þ pr
þ ð2kr � lrÞð2Gm þ lrÞ

3ðGm þ krÞ

þ 8mrGmð3Km þ 4GmÞ
3Kmðmr þ GmÞ þ Gmð7mr þ GmÞ

�
(11)

in which kr;mr ;nr and lr are Hill's elastic moduli for the CNTs
[58,59].

The effective bulk modulus Kða3Þ and the effective shear
modulus Gða3Þ of the CNT-CMCs are given by

Kða3Þ ¼ Koutða3Þ
2
41þ

z

�
Kinða3Þ
Koutða3Þ � 1

�

1þ d0ða3Þð1� zÞ
�

Kinða3Þ
Koutða3Þ � 1

�
3
5 (12)

Gða3Þ ¼ Goutða3Þ
2
41þ

z

�
Ginða3Þ
Goutða3Þ � 1

�

1þ bða3Þð1� zÞ
�

Ginða3Þ
Goutða3Þ � 1

�
3
5 (13)

where

d0ða3Þ ¼
1þ voutða3Þ

3ð1� voutða3ÞÞ
(14)

bða3Þ ¼
2ð4� 5voutða3ÞÞ
3ð1� voutða3ÞÞ

(15)

The Poisson's ratio, voutða3Þ, of the matrix phase is given by

voutða3Þ ¼
3Koutða3Þ � 2Goutða3Þ
2½3Koutða3Þ þ Goutða3Þ�

(16)

We assume the CNT-CMC to be isotropic [24] and find its
effective Young's modulus Eða3Þ and Poisson's ratio vða3Þ from the
following relations
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Eða3Þ ¼
9Kða3ÞGða3Þ

3Kða3Þ þ Gða3Þ
(17)

vða3Þ ¼
3Kða3Þ � 2Gða3Þ
6Kða3Þ þ 2Gða3Þ

(18)

Furthermore, the thermal expansion coefficient, a, is calculated
by Ref. [47].

aða3Þ ¼
frða3ÞErar þ fmða3ÞEmam

frða3ÞEr þ fmða3ÞEm
(19)

where ar and am are the thermal expansion coefficients of the CNTs
and the matrix, respectively. The thermal conductivity, kða3Þ, of the
CNC-CMT is expressed as [60,61].

kða3Þ ¼
�
1þ qfrða3Þ

3
kr

kmð2ak=dþ qþ kr=kmÞ
�
km (20)

where ak is the Kapitza radius, km and kr are thermal conductivities
of the matrix and the reinforcing phases, respectively, d and l
(q ¼ l=d) are the diameter and the length of the CNTs, respectively.

We note that frða3Þ ¼ V*
CNTVCNT ða3Þ where VCNT ða3Þ equals the

CNT distribution through the shell's thickness, and V*
CNT is the

volume fraction of CNTs [62] given by

V*
CNT ¼

�
rCNT

wCNTrm
� rCNT

rm
þ 1
��1

(21)

where rCNT and rm equal, respectively, the mass densities of the
CNTs and thematrix, andwCNT equals themass fraction of the CNTs.

Here we have assumed that the CNT volume fraction is given by
the following sigmoidal power-law distribution

VCNT ða3Þ ¼
 

es~r � 1�
es=2 � 1

��
esð~r�0:5Þ þ 1

�
!g

(22)

in which ~r ¼ ða3 þ h=2Þ=h, the sigmoid exponent s and the
parameter g control the CNT-variation profile in the radial (or the
thickness) direction as depicted in Fig. 2. The inner surface of the
Fig. 2. Through-the-thickness distribution of the CNT volume fraction for various
values of the sigmoid exponent, s, when g ¼ 1.
shell with the heat flux prescribed has lower CNT volume fraction
that should alleviate thermal stresses and provide desired struc-
tural response. With an increase in the value of s, the continuously
graded shell approaches a laminated shell with two lamina having
CNT volume fractions of 0 and V*

CNT on the inner and the outer
surfaces, respectively. Here, we compute results for CNT profiles
often used by others [21,37,53] as well as for profile-X and profile-O.
It was reported in Ref. [21] that the CNT volume fractions sym-
metrically distributed about the shell midsurface are more effective
in reducing (increasing) the natural frequency than the uniform
(asymmetric) distributions.

2.2. Temperature-dependent material properties

It is anticipated that continuously graded CNT-CMCs studied in
this paper will be used in high temperature environments and
material properties of the ceramic phase are expected to be tem-
perature dependent. Accordingly, we consider the temperature
dependence of mechanical properties of the CNT-CMC, and assume
that Young's modulus E, the thermal conductivity k, and the ther-
mal expansion coefficient a (denoted by P in Eq. (23)) are given by

PðTÞ ¼ P0
�
P�1T

�1 þ 1þ P1T þ P2T
2 þ P3T

3
	

(23)

where P0, P�1, P1, P2 and P3 are constants whose values for Alumina
as the ceramic matrix are taken from Refs. [13,63].

2.3. Third-Order Shell Theory (TSDT)

Based on Reddy's [54] TSDT inwhich straight lines normal to the
shell mid-surface before deformation do not necessarily remain
straight during the deformation, the following displacement field is
assumed:

U1 ¼ u1ða1;a2Þ þ a3f1ða1;a2Þ � Ca3
3
�
f1 þ

vu3
va1

�

U2 ¼ u2ða1;a2Þ þ a3f2ða1;a2Þ þ Ca3
3
�

u2
a3m

� f2 �
1

a3m

vu3
va2

�

U3 ¼ u3ða1;a2Þ
(24)

where C ¼ 4=3h2, and U1, U2 and U3 are displacement components,
respectively, along the a1-, the a2- and the a3- axes. Substituting
from Eq. (25) into the strain-displacement relations [64] gives

ε11 ¼ ε
0
11 þ a3ε

0
11 þ a3

2
ε

00
11 þ a3

3
ε

000
11

ε22 ¼ ε
0
22 þ a3ε

0
22 þ a3

2
ε

00
22 þ a3

3
ε

000
22

ε12 ¼ ε
0
12 þ a3ε

0
12 þ a3

2
ε

00
12 þ a3

3
ε

000
12

ε13 ¼ ε
0
13 þ a3ε

0
13 þ a3

2
ε

00
13 þ a3

3
ε

000
13

ε23 ¼ ε
0
23 þ a3ε

0
23 þ a3

2
ε

00
23 þ a3

3
ε

000
23

(25)

where

ε
0
11 ¼u1;1; ε

0
11 ¼f1;1; ε

00
11 ¼0; ε

000
11 ¼�C

�
f1;1þu3;11

�
ε
0
22 ¼ð1=a3mÞu2;2þu3=a3m; ε

0
22 ¼ð1=a3mÞf2;2; ε

00
22 ¼0

ε

00
22 ¼C

�ð1=a3mÞu2;2�ð1=a3mÞf2;2�ð1=a3mÞu3;22
�

ε
0
12 ¼ð1=a3mÞu1;2þu2;1; ε

0
12 ¼ð1=a3mÞf1;2þf2;1 ε

00
12 ¼0

ε

000
12 ¼�ðC=a3mÞf1;2�ðC=a3mÞu3;12þðC=a3mÞu2;1�Cf2;1

ε
0
13 ¼f1þu3;1; ε

0
13 ¼ 0; ε

00
13 ¼�3C

�
f1þw;1

�
ε

000
13 ¼0; ε

0
23 ¼f2þð1=a3mÞu3;1; ε

0
23 ¼0

ε

00
23 ¼3C

��ð1=a3mÞu3;2�f2þðu2=a3mÞ
�
; ε

000
23 ¼0

(26)
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Setting s33 ¼0 in Hooke's law for infinitesimal thermo-elastic
deformations, solving it for ε33, and substituting for ε33 in
Hooke's law for 3-dimensional deformations, the reduced consti-
tutive relation for the cylindrical shell is given by

2
66664
s11
s22
s12
s13
s23

3
77775 ¼

2
66664
Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

3
77775

2
66664
ε11
ε22
ε12
ε13
ε23

3
77775�

2
66664
b11
b22
0
0
0

3
77775T

(27)

where ½Q � is the matrix of material elasticities, bi the stress moduli
for the thermal expansion coefficients [64], and T the change in
temperature from that in the stress-free reference configuration.
Expressions for the forces and the moments for the shell are given
by

8<
:
N11
N22
N12

9=
;¼

Zh=2
�h=2

8<
:
s11
s22
s12

9=
;da3;

8<
:
M11
M22
M12

9=
;¼

Zh=2
�h=2

8<
:
s11
s22
s12

9=
;a3da3;

(28)

8<
:

P11
P22
P12

9=
; ¼

Zh=2
�h=2

8<
:

s11
s22
s12

9=
;a3

3da3;


P13
P23

�

¼
Zh=2

�h=2



s13
s23

�
a3

3da3
A10 ¼
Zh=2

�h=2

Eða3; TÞ
1� v2

da3; A11 ¼
Zh=2

�h=2

Eða3; TÞa3
1� v2

da3; A

A13 ¼
Zh=2

�h=2

Eða3; TÞa33
1� v2

da3; T10 ¼ �
Zh=2

�h=2

Eða3; TÞb11T
1� v2

da3; T

T13 ¼ �
Zh=2

�h=2

Eða3; TÞa33b11T
1� v2

da3; B10 ¼
Zh=2

�h=2

Eða3; TÞ
2ð1þ vÞda3; B

B12 ¼
Zh=2

�h=2

Eða3; TÞa32
2ð1þ vÞ da3; B13 ¼

Zh=2
�h=2

Eða3; TÞa33
2ð1þ vÞ da3; B

B15 ¼
Zh=2

�h=2

Eða3; TÞa35
2ð1þ vÞ da3; B16 ¼

Zh=2
�h=2

Eða3; TÞa36
2ð1þ vÞ da3; T


Q13
Q23

�
¼

Zh=2
�h=2



s13
s23

�
da3;



R13
R23

�
¼

Zh=2
�h=2



s13
s23

�
a3

2da3

(29)

Substituting from Eqs. (26) and (27) into Eqs. (28) and (29) gives

N11 ¼ A10ε
0
11 þ A11ε

0
11 þ A12ε

00
11 þ A13ε

000
11 þ T10

N22 ¼ A10ε
0
22 þ A11ε

0
22 þ A12ε

00
22 þ A13ε

000
22 þ T20

N12 ¼ B10ε
0
12 þ B11ε

0
12 þ B12ε

00
12 þ B13ε

000
12

M11 ¼ A11ε
0
11 þ A12ε

0
11 þ A13ε

00
11 þ A14ε

000
11 þ T11

M22 ¼ A11ε
0
22 þ A12ε

0
22 þ A13ε

00
22 þ A14ε

000
22 þ T11

M12 ¼ B11ε
0
12 þ B12ε

0
12 þ B13ε

00
12 þ B14ε

000
12

P11 ¼ A13ε
0
11 þ A14ε

0
11 þ A15ε

00
11 þ A16ε

000
11 þ T13

P22 ¼ A13ε
0
22 þ A14ε

0
22 þ A15ε

00
22 þ A16ε

000
22 þ T23

P12 ¼ B13ε
0
12 þ B14ε

0
12 þ B15ε

00
12 þ B16ε

000
12

P13 ¼ B13ε
0
13 þ B14ε

0
13 þ B15ε

00
13 þ B16ε

000
13

P23 ¼ B13ε
0
23 þ B14ε

0
23 þ B15ε

00
23 þ B16ε

000
23

Q13 ¼ B10ε
0
13 þ B11ε

0
13 þ B12ε

00
13 þ B13ε

000
13

Q23 ¼ B10ε
0
23 þ B11ε

0
23 þ B12ε

00
23 þ B13ε

000
23

R13 ¼ B12ε
0
13 þ B13ε

0
13 þ B14ε

00
13 þ B15ε

000
13

R23 ¼ B12ε
0
23 þ B13ε

0
23 þ B14ε

00
23 þ B15ε

000
23 (30)

in which
12 ¼
Zh=2

�h=2

Eða3; TÞa32
1� v2

da3;

11 ¼ �
Zh=2

�h=2

Eða3; TÞa3b11T
1� v2

da3;

11 ¼
Zh=2

�h=2

Eða3; TÞa3
2ð1þ vÞ da3;

14 ¼
Zh=2

�h=2

Eða3; TÞa34
2ð1þ vÞ da3;

20 ¼ �
Zh=2

�h=2

Eða3; TÞb22T
1� v2

da3;
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T11 ¼ �
Zh=2

�h=2

Eða3; TÞb22T
1� v2

da3; T23 ¼ �
Zh=2

�h=2

Eða3; TÞb22a33T
1� v2

da

(31)

Equations governing infinitesimal deformations of the thermo-
elastic shell can be written as follows:
a3mvN11

va1
� vN12

va2
¼ 0

vN22

va2
þ a3mvN12

va1
þ Q23 þ

C
a3m

vP22
va2

þ C
vP12
va1

� 3CR23 �
C

a3m
P23 ¼ 0

�Ca3m
v2P11
va1

2 þ N22 �
C

a3m

v2P22
va2

2 � C
v2P12
va1va2

� a3m
vQ23

va1
þ 3Ca3m

vR13
va1

� vQ23

va2
þ 3C

vR23
va2

� C
a3m

vP23
va2

¼ 0

a3mvM11

va1
� Ca3m

vP11
vx

þ vM12

va2
� C

vP12
va2

þ 3CR13 � a3mQ13 ¼ 0
vM22

va2
þ C

vP22
va2

� va1
vM12

va1
þ Ca3m

vP12
va1

þ a3m

�
Q23 � 3CQ23

� 2C
1

a3m
P23

�
¼ 0

(32)

Here we consider shells with edges a1 ¼ 0, L clamped, and the
inner and the outer surfaces a3¼ h/2, -h/2 traction free. In order to
further simplify the problem, we assume the displacement field to
have the following series expansion:

8>>>><
>>>>:

u1
u2
u3
f1
f2

9>>>>=
>>>>;

¼
X∞
n¼1

8>>>><
>>>>:

u1nða1Þcosðna2Þ
u2nða1Þsinðna2Þ
u3nða1Þcosðna2Þ
f1nða1Þcosðna2Þ
f2nða1Þsinðna2Þ

9>>>>=
>>>>;

(33)

While solving the mechanical problem, the temperature field is
assumed to be known.

The 3-dimensional steady-state heat conduction equation in the
absence of heat sources can be stated as [65]

vk
va3

vT
va3

þ k
v2T
va32

þ
�

a3m
a3m þ a3

�2
k
vT2

va22
þ vk
va1

vT
va1

þ k
v2T
va12

þ 1
a3m þ a3

k
vT
va3

¼ 0

(34)

Because of the dependence of the thermal conductivity kða3; TÞ
upon the temperature, Eq. (34) is non-linear inT. Thermal boundary
conditions considered in this work are:

Heat convection at a1 ¼ 0 : kða3; TÞ
vT
va1

þ haðT � T∞Þ ¼ 0

(35)
Heat convection at a1 ¼ L : kða3; TÞ
vT
va1

þ haðT � T∞Þ ¼ 0

(36)

Temperature prescribed at a3 ¼ h=2 : T ¼ T0 (37)

Heat flux prescribed at a3 ¼ �h=2 : q ¼ qflux (38)
In Eqs. (35) and (36), T∞ ¼ 300K equals the temperature of the
ambient air, and ha the convective heat transfer coefficient, and we
set T0 ¼ 523K.

3. Numerical solution

The one-way coupled thermo-mechanical problem is analyzed
by first solving nonlinear Eq. (34) for the temperature field and then
analyzing the linear mechanical problem. Equation (34) is numer-
ically solved by the GDQM-based iterative procedure.

3.1. Thermal problem

The temperature field is assumed to be given by

Tða1;a2;a3Þ ¼
X∞
n¼1

Tnða1;a3Þsinðna2Þ (39)

Substitution from Eq. (39) into Eq. (34) results in an equation
that involves partial derivatives of Tn with respect to a1 and a3.
These are approximated in terms of the values of Tn at discrete
points by the GDQM [31,55] as follows

vrf ð2Þ
v2r

����
ð2¼2iÞ

¼
XN2

k¼1

cðrÞik f ð2kÞ; i ¼ 1;2;…;N2 (40)

Here N2 denotes the number of grid points and cðrÞij the corre-
sponding weights given by the following recursive relations for the
first-order derivative, i.e., r ¼ 1.

cð1Þij ¼ Lð1Þð2iÞ�
2i � 2j

�
Lð1Þ
�
2j
�; i; j ¼ 1;2;…;N2; isj (41)

where

Lð1Þð2iÞ ¼
YN2

j¼1;isj

�
2i � 2j

�
; (42)

The weighting coefficients for the higher-order derivatives are
derived by the following iterative relations.
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cðrÞij ¼ r

0
@cðr�1Þ

ii cð1Þij �
cðr�1Þ
ij�

2i � 2j
�
1
A; i; j ¼ 1;2;…;N2; isj r

¼ 2;3; ;…N2 � 1

(43)

cðrÞii ¼ �
XN2

j¼1;isj

cðrÞij ; i ¼ 1;2;…;N2; r ¼ 1;2;…N2 � 1

(44)

We employ the Chebyshev-Gauss-Lobatto (CGL) quadrature
points given by Ref. [40]

2i ¼
1
2

�
1� cos

�
i� 1
N2 � 1

p

��
; i ¼ 1;2;…;N2 (45)

as the grid points. As reported in a number of papers including
[55,56] the use of these non-uniformly distributed sampling points
yields results of good accuracy. We note that Eq. (40) is similar to
that obtained by using the smooth symmetric hydrodynamics basis
functions, e.g., see Refs. [66,67].

The discrete form of Eqs. (34)e(38) can be written in the
following compact form
7

Fig. 3. Flow chart for iterative solution procedure of non-linear heat transfer equation.
� ½Abb� ½Abd�
½Adb� ½Add�

�

Tb
Td

�
¼

 ffCg

f0g
�

(46)

where subscripts ‘d’ and ‘b’ denote the domain and the boundary
points, respectively, and the vector ffCg includes terms due to heat
convection conditions prescribed at a1 ¼ 0 and a1 ¼ L. By
condensation of the boundary degrees of freedom, the tempera-
tures at the domain grid points are given by

fTdg ¼ ½B��1½Adb�½Abb��1ffCg (47)

where

½B� ¼ ½Adb�½Abb��1½Abd� � ½Add� (48)

Noted that Eq. (47) is non-linear in temperature due to the
temperature-dependent thermal conductivity, kða3; TÞ. It is itera-
tively solved with the procedure described in the flow chart of
Fig. 3.
3.2. Mechanical problem

With the temperature distribution known, equations for the
mechanical problem are discretized by using the GDQM. Denoting
degrees of freedom of the sampling points within and on the
boundary of the domain by subscripts d and b, respectively, we
arrive at the following set of linear algebraic equations.� ½Abb� ½Abd�
½Adb� ½Add�

�

db
dd

�
¼

 fFTbg
fFTdg

�
(49)

Here fFTbg and fFTdg are load vectors due to the temperature field.
Similar to the solution technique for Eq. (46), we get

fddg ¼ ½L��1
h
fFTdg � ½Adb�½Abb��1fFTbg

i
(50)

where
Fig. 4. Variation of the transverse shear stress through the thickness of CNT-reinforced
cylindrical panel subjected to a thermal load (red and blue lines, respectively, corre-
spond to V*

CNT ¼ 0:17 and 0.14). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



Fig. 5. Convergence of the through-the-thickness non-dimensional thermal stresses and the radial displacement in a linearly graded CNT-CMC cylindrical shell
a3m=h ¼ 20; g ¼ 1; s ¼ 1; x ¼ 0:7; z ¼ 0:5.

Fig. 6. Variation of the temperature field and the transverse shear stress in the CNT-CMC cylindrical shell for several values of the CNT volume fraction index
ða3m=h ¼ 10; a1 ¼ L=2; s ¼ 1; x ¼ 1Þ.

B. Sobhaniaragh et al. / Composites Part B 118 (2017) 41e5348



B. Sobhaniaragh et al. / Composites Part B 118 (2017) 41e53 49
½L� ¼ ½Add� � ½Adb�½Abb��1½Abd� (51)

4. Results and discussion

In order to verify our computational algorithm, we compare
computed results for the simply-supported cylindrical panel
problem with those of Ref. [53] for the (10, 10) SWCNTs-polymer
composite. In Ref. [53] the ERM homogenization technique is
employed and following values are assigned to different variables:

a3m
h

¼ 10; h ¼ 10mm; Q ¼ p

3
;

L
a3m

¼ 3 (52)

Thermal and mechanical loads:

at a3 ¼ h=2 :; T ¼ T0 sin
�pa2

Q

	
; Q ¼ Q0 sin

�pa2
Q

	
;

at a3 ¼ �h=2 : T ¼ T1 sin
�pa2

Q

	
; Q ¼ 0 (53)

Here Q denotes the panel angle, T0 ¼ 300K and T1 ¼ 273K, and the
Q0 is peak value of the distributed surface traction applied on the
outer surface of the shell. Following [53], we set Q0 ¼ 2.1 GPa. It is
Fig. 7. Through-the-thickness distributions of the temperature, the circumferential and the t
various CNT volume fraction profiles ða3m=h ¼ 5; a1 ¼ L=2; g ¼ 1; s ¼ 1; x ¼ 1Þ.
clear from results plotted in Fig. 4 that the presently computed
transverse shear stress with z ¼ 1 (i.e., no aggression of CNTs in the
matrix phase) and the EMT homogenization scheme agrees well
with that reported in Fig. 3c of [53]; the nomenclature and the non-
dimensionalization used are the same as in Ref. [53]. The magni-
tude of the transverse shear stress based on the EMT model is
slightly higher than that based on the ERM approach. An increase in
V*
CNT from 0.14 to 0.17 increases the maximum transverse normal

stress by a factor of about 3.
We report below through-the-thickness variations of the ther-

mal stresses, displacements, and the temperature field for contin-
uously graded and temperature-dependent CMC cylindrical shell
reinforced with different volume fractions of aggregated CNTs and
with clamped edges. Results are presented in terms of non-
dimensional displacements and stresses denoted by an * and
defined as (see [68])

�
u*1;u

*
2;u

*
3
� ¼ kmðu1;u2;u3Þ

amL2qo
; s*i ¼

kmsi
amEmLqo

(55)

Here am, km, and Em are properties of the matrix phase of the
nanocomposite and a3m denotes the radius of the shell mid-surface.
The geometrical parameters of the shell are L ¼ 0:7m; a3m ¼ 0:3m,
the matrix material is Alumina with temperature-dependent
properties borrowed from Refs. [13,63] and the reinforcements
ransverse shear thermal stresses in a continuously graded CNT-CMC cylindrical shell for
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are armchair (10, 10) SWCNTs [17] with V*
CNT ¼ 0:17 unless other-

wise mentioned. In the parametric study provided in this section,
the temperature is in Kelvin and the heat flux applied to the shell
inner surface qo ¼ 1E6 W=m2K [68]. The heat transfer coefficient of
the air is assumed to be ha ¼ 100 W=m2K. The shell thickness co-
ordinate normalized by h/2 is denoted by h.

A convergence study of the through-the-thickness thermal
stresses and the radial displacement is presented in Fig. 5 for the
CNTs volume fraction corresponding to s ¼ 1;g ¼ 1 in Eq. (22).
These results evince that the solution obtained with the GDQM
rapidly converges with an increase in the number of sampling
points in the a1 and the a2 directions. The convergence of the
transverse shear and the transverse normal stresses is faster than
that of the in-plane shear stress and the radial displacement. The
maximum values of the three stress components plotted in Fig. 5
are of the same order of magnitude.

In Fig. 6 we have exhibited the through-the-thickness variation
of the temperature and the transverse shear stress for different
values of g in Eq. (22) for the CNTs volume fraction and x ¼ 1, i.e., all
CNTs are aggregated in the inclusions. The temperature gradient at
the outer surface, h ¼ 0.5, and the transverse shear stress at the
mid-surface, h ¼ 0, increase as the value of g is increased from 1/10
Fig. 8. Effect of values of the sigmoidal exponent on the through-the-thickness variati
ða3m=h ¼ 50; a1 ¼ L=2; g ¼ 1; x ¼ 1Þ.
to 10. The value of g thatminimizes s23 at the shell mid-surface also
gives the smallest temperature at the shell inner surface.

The effects of several CNT volume fraction profiles, namely X, O,
sigmoidal and uniform [21,37,53], on the through-the-thickness
distributions of the temperature, the circumferential or the hoop,
and the transverse shear stresses are depicted in Fig. 7. The O and
the sigmoidal profiles have no CNTs on the shell inner surface. The
temperature on the shell inner surface is the lowest for the O and
the X profiles and the highest for the uniform profile. The
maximumvalue of the hoop stress is highest for the X profile and it
occurs at the shell outer surface. For the O profile, the hoop stress
has the maximum value at the shell mid-surface. For the O and the
X profiles, the slope of the in-plane shear stress is discontinuous at
the shell mid-surface. The four CNT profiles considered give qual-
itatively similar through-the-thickness distributions of the trans-
verse shear stress with the O (X) profile giving the smallest (largest)
value at the shell mid-surface.

The through-the-thickness variations of the temperature, the
circumferential stress, and the out-of-plane transverse shear
stresses for different values of s in Eq. (22) are shown in Fig. 8. With
an increase in the value of s, the temperature gradient in going from
the outer to the inner shell surface increases especially from the
ons of the temperature and the circumferential and the transverse shear stresses



Fig. 10. Temperature field in a continuously graded CNT-CMC cylindrical shell for two
volume fractions of CNTs ða3m=h ¼ 5; a1 ¼ L=2; g ¼ 1; s ¼ 10; x ¼ 1Þ. Here l is non-
dimensional coordinate along the a1-direction.

Fig. 9. Impact of aggregation parameter z on the transverse shear thermal stresses in a continuously graded CNT-CMC cylindrical shell
ða3m=h ¼ 20; a1 ¼ L=2; g ¼ 1; s ¼ 1; x ¼ 0:9Þ.
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mid-surface to the inner surface, the maximum value of the
transverse shear stress increases with an increase in the value of s
and their qualitative distributions are nearly the same for s¼ 1, 5,10
and 50. We note that an increase in the value of s results in lower
volume fraction of CNTs at the shell inner surface. As shown in
Fig. 2, for s¼ 50 we have a laminated shell with negligible (highest)
volume fraction of CNTs on the inner (outer) one-half of the shell.
This affects more through-the-thickness distribution of the trans-
verse shear stress around the mid-surface than the temperature
and the hoop stress distributions.

In Fig. 9 we have displayed through-the-thickness variations of
the hoop and the transverse shear stress for the aggregation
parameter z ¼ 0.1, 0.3, 0.4, 0.5 and 0.7. The hoop stress at the outer
surface of the shell does not vary monotonically with the change in
z. For volume fractions of the CNTs equal to 0.11 and 0.17, distri-
butions of the temperature on the a1a3- plane are displayed in
Fig. 10. It should be noted that the temperature is prescribed on the
shell outer surface. These plots evince that increasing the CNT
volume fraction from 0.11 to 0.17 decreases the maximum tem-
perature induced from 1100 to 1020 K. The temperature in the axial
direction, except at points near the end faces, is uniform because
the material properties are independent of the a1� coordinate.
5. Remarks

We note that the exact solution for thermoelastic deformations
of rectangular plates is provided in [69] and a higher-order shear
and normal deformable plate theory is used in [70] to analyze
transient thermoelastic deformations. Finite deformations of
curved beams considering both geometric and material non-
linearities are studied in [71,72] using a third-order shear and
normal deformable theory.

6. Conclusions

Thermal stresses induced in a CNT-reinforced ceramic matrix
composite cylindrical shell with temperature-dependent material
properties have been analyzed by first solving the nonlinear heat
conduction equation and then the linear thermoelasticity equations
by using Reddy's TSDT and the GDQM. The effective moduli have
been deduced by using the Eshelby-Mori-Tanaka scheme consid-
ering the agglomeration of CNTs. The cylinder is clamped at the
edges and its inner and outer surfaces are traction free. The tem-
perature is prescribed on the outer surface and the heat flux on the
inner surface. It is found that the thermal design of continuously
graded CNTRCs using the widely assumed through-the-thickness
CNT variations known as, profile-O and profile-X, give discontinu-
ities at the shell mid-surface in slopes of the hoop and the in-plane
shear stresses. Furthermore, for the profile-X the peak magnitude
of the stresses is higher than that for other variations of the CNTs.
The consideration of the aggregation of CNTs noticeably increases
the maximum magnitudes of the in-plane thermal stresses.
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