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We study three-dimensional finite transient deformations of transparent poly-methyl-methacrylate
(PMMA)/adhesive/polycarbonate (PC) laminates impacted at low speed by a hemispherical nosed rigid
cylinder using the commercial finite element (FE) software LS-DYNA. The two glassy polymers PMMA
and PC are modeled as thermo-elasto-visco-plastic materials by using the constitutive relation proposed
by Mulliken and Boyce and modified by Varghese and Batra. For the nearly incompressible viscoelastic
bonding layer, the elastic response is modeled by the Ogden relation and the viscous response by the
Prony series. Delamination at interfaces between the adhesive and the polymeric sheets is simulated
by using the cohesive zone model incorporated in LS-DYNA. The effective plastic strain, the maximum
principal stress, and the maximum stretch based failure criteria are used for delineating failure in PC,
PMMA and the adhesive, respectively. Failed elements are deleted from the analysis domain. The three
layers are discretized by using 8-node brick elements and integrals over elements are numerically eval-
uated by using a reduced Gauss integration rule. The coupled nonlinear ordinary differential equations
obtained by the Galerkin approximation are integrated by using the conditionally stable explicit algo-
rithm. Results have been computed for at least two different FE meshes. The computed number and con-
figurations of cracks in the PMMA are found to qualitatively agree with the test observations. It is also
found that the energy dissipated due to plastic deformations in the PC is considerably more than that
due to cracks formed in the PMMA.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Polymers are composed of long chains of monomers while a
metal is generally a polycrystalline material. This difference in
the microstructure explains why their thermo-mechanical
response is quite different. Polymers usually exhibit strong
strain-rate dependence in their mechanical response and are
widely used as transparent armors because of their high specific
impact performance, e.g., see Radin and Goldsmith [1]. Sands
et al. [2] have reported that polymethylmetha-acrylate (PMMA)
and polycarbonate (PC) polymers have better impact resistance
than most glasses. Rabinowitz et al. [3] used a high pressure tor-
sion test to experimentally investigate the effect of pressure on
the quasi-static shear stress-shear strain response and on the frac-
ture strain of PMMA and poly(ethylene terephthalate). They found
that an increase in the hydrostatic pressure increases the yield
strain, the yield stress and the fracture stress of the materials but
decreases the fracture strain.
The mechanical behavior of glassy polymers has been experi-
mentally and computationally studied by several investigators.
Duckett et al. [4] experimentally studied the strain rate and pres-
sure dependence of the yield stress of PMMA and poly (ethylene
terephthalate) deformed in uniaxial compression at strain rates
from 10�6/s to 10�1/s. They found that the yield stresses in com-
pression and torsion increase monotonically with increasing
strain-rate and decreasing temperature. This was confirmed by
Arruda et al. [5] in the same range of strain rates and by Mullliken
and Boyce [6] for low to high strain rates (up to 103/s). Similar con-
clusions about the dependence of the yield strain and the yield
stress upon the strain rate and the temperature hold for the PC
material [6–11]. Moy et al. [8] performed uniaxial compression
tests on Lexan 9034A PC from 10�4/s to 4600/s strain rates. They
used an Instron test machine for the quasi-static tests and a
split-Hopkinson (Kolsky) bar for the high strain rate experiments.
Rittel et al. [12] studied heating of PMMA samples subjected to
uniaxial compressive cyclic loading at stress levels above the yield
stress of the PMMA and at strain rates up to 0.1/s. They related the
temperature rise to the chain mobility of the polymers. Rittel [13]
and Rittel and Rabinowitz [14] performed uniaxial tensile and
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cyclic tests on PMMA and PC at low strain rates and measured the
temperature rise.

Schmachtenberg et al. [15] proposed a method to find values of
material parameters for modeling the mechanical behavior of ther-
moplastics. Arruda et al. [5] performed uniaxial compression tests
on PMMA samples at various strain rates and temperatures, and
developed a material model for the PMMA based on the multipli-
cative decomposition of the deformation gradient into elastic, ther-
mal and inelastic parts. Moreover, they assumed that a part of the
energy dissipated due to inelastic deformations is converted into
heating while the remainder contributes to the back stress.
Richeton et al. [9–11] used shift factors for the strain rate and
the stresses to model the temperature and strain rate dependence
of the yield stress of amorphous polymers. Richeton et al. [16] and
Tervoort et al. [17] employed a spring in series with a dashpot and
a Langevin spring to derive constitutive equations for polymers.
Buckley and Jones [18] modeled the behavior of amorphous poly-
mers near the glass transition temperature by decomposing the
stress into two components, a bond stretching stress (partially irre-
versible) and a reversible conformational stress, and introduced a
shift factor for the temperature and the strain rate dependence of
the elastic moduli. Alavarado-Contreras et al. [19] used a simple
chemical description of the amorphous and the crystalline phases
to derive equations describing the mechanical behavior of amor-
phous semicrystalline materials. An eight-chain model is used for
the amorphous phase and the stress tensor for this phase is the
sum of a conformational stress tensor and a back-stress tensor.
The deformation of the crystalline phase is assumed to be driven
by effective shear stresses along its eight slip systems. Further-
more, they introduced two scalar variables that represent damage
in each phase, proposed their evolution relations, and considered
the loss of stiffness of the material due to progressive damage prior
to failure. Boyce et al. [20] and Mulliken and Boyce [6] introduced a
rate dependent model for the behavior of glassy polymers that
assumes the coexistence of three different phases with the same
values of the deformation gradient at a material point. Two of these
phases have similar constitutive equations with different values of
material parameters, and the third phase contributes to the general
stress via a back-stress component. This material model has been
generalized by Varghese and Batra [21,22] to account for the
dependence of the elastic moduli upon the temperature and tem-
perature dependent strain softening. Predictions from this work
for uniaxial tensile and compressive deformations compare well
with the test results at low and high strain rates.

The damage initiation and evolution, and the failure of poly-
mers have been studied experimentally and numerically. Lajtai
[23] studied the failure of pre-cracked specimens subjected to
compressive loading and used a modified Coulomb model to study
the final stages of their failure. Saghafi et al. [24] proposed a crite-
rion to predict mode II and mixed-mode fracture toughness of brit-
tle materials. Using data obtained from three-point bend tests on
marble specimens they found that their criterion predicted better
the failure of specimens than that given by the maximum tangen-
tial stress (MTS) criterion. Seweryn [25] proposed a criterion for
brittle fracture of structures with sharp notches based on modes
I, II and III stress intensity factors. Seweryn and Lukaszewicz [26]
analyzed crack initiation in brittle specimens with V-shaped
notches under mixed mode loading and found good agreement
between the experimental measurements and the J-integral com-
puted with the boundary element method. Vandenberghe et al.
[27] proposed a model of crack formation in PMMA plates
impacted at normal incidence. They considered energy dissipated
due to crack formation and for flexural deformations of petals
formed in the cracked plate. They could accurately predict the
number of cracks formed in the plate as a function of the impact
speed and the plate thickness.
Schultz [28] has related the failure of semicrystalline polymers
to the spherulitic structure of the material and the inter- and intra-
spherulitic fracture. Zaïri et al. [29] proposed constitutive equa-
tions to describe the progressive void growth in elasto-viscoplastic
polymers, and showed that their model could predict well the
stress–strain response of rubber-modified PMMA deformed in uni-
axial tension. Ayatollahi et al. [30] performed fracture tests on
semi-circular PMMA specimens containing an edge crack and mod-
eled crack propagation using the finite element method (FEM) and
the MTS failure criterion. They accurately predicted the crack
trajectory in semi-circular bend (SCB) specimens. For small pre-
existing cracks in an infinite PMMA medium, Beaumont et al.
[31] investigated the relation between the crack propagation speed
and the stress intensity factor at the crack tip for mode I failure of
sharply-notched specimens. Wada et al. [32] experimentally stud-
ied the impact fracture toughness of edge-cracked PMMA speci-
mens and computationally analyzed their 3D deformations using
the FEM. Marshall et al. [33] introduced a factor to account for
the notch size in the calculation of the energy release-rate for
the PMMA material, which enabled them to derive a material spe-
cific energy/area that is independent of the specimen geometry. In
their work the ratio of the initial crack length to the width of the
sample ranged between 0.03 and 0.5. Moy et al. [34] found that
the failure of PMMA is ductile at strain rates �1/s and brittle at
strain rates�1/s. Weerasooriya et al.’s [35] test data have revealed
that the fracture toughness of PMMA for strain rates >100/s is
almost twice that for quasi-static loading.

The failure modes of PC are quite different from those of PMMA.
Chang and Chu [36] study the effect of temperature and notch-tip
radius on the fracture mode of PC and of a modified PC. They found
the existence of a semi-ductile fracture mode at low temperatures
(�40 �C) for some notch-tip radii and proposed a diagram describ-
ing the 2D-fracture mode of PC as a function of the temperature
and of the notch-tip radius. Mills [37] performed Charpy impact
tests on notched PC bars and studied the effect of annealing on
the ductile to brittle failure transitions. Fraser and Ward [38]
investigated the effect of the notch-tip radius on the impact frac-
ture behavior of PC samples. Allen et al. [39] measured the Charpy
impact strength of notched polydiancarbonate and found that the
polymer exists in two different varieties with different yield and
failure properties, but did not relate this difference to the morphol-
ogy of the polymers. Rittel et al. [40] tested cracked specimens and
delineated two failure mechanisms, opening and shear banding, in
PC as a function of the mode-mixity. Rittel and Levin [41] used two
different experimental set-ups to study crack propagation in PC
with either mode-I dominant or mode-II dominant deformations.
They found that the same mechanisms govern the failure of PC
regardless of the mode-mixity. Curran et al. [42] analyzed the frac-
ture of PC disks subjected to dynamic flat-plate impact and pre-
dicted the level of damage induced in the PC sample with a
damage model based on the nucleation, growth and coalescence
of cracks. Plati and Williams [43,44] compared the energy release
rate of different polymers including PMMA and PC obtained with
Charpy and Izod tests at different temperatures, and found that
they gave essentially the same value of the energy release rate.
Adams et al. [45] used three-point bend specimens made of five
different polymers (PC, polyacetal, two nylons and PMMA) to mea-
sure the plane strain fracture toughness of these materials under
impact loading. Ogihara et al. [46] examined fracture mechanisms
of polymeric materials by high velocity impact and quasistatic per-
foration tests and compared the static and the dynamic perforation
energies of PMMA plates with various edge lengths and thick-
nesses. Fleck et al. [47] pointed out that craze nucleation was the
principal failure mechanism for both PMMA and PC at high strain
rates despite PMMA exhibiting brittle failure and PC ductile failure.
Livingstone et al. [48] and Richards et al. [49] used a bulk strain
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based failure criterion to model damage in PC and a principal ten-
sile stress criterion to model the failure of polyurethane interlayer
during their simulations of the impact of a glass/interlayer/PC lam-
inate. They accurately simulated the fracture pattern of the
impacted plate, and predicted the ballistic limit (v50) within 10%
accuracy. Kelly [50] used the Johnson–Holmquist failure criterion
to simulate damage in PC and PMMA.

Kihara et al. [51] measured the impact shear strength of adhe-
sive interlayers, and developed an experimental apparatus that
can be used to deform an adhesive in shear at high strain rates.
They used it in conjunction with the FE simulations to determine
the maximum shear stress in the sample at fracture and showed
that it equals the impact shear strength.

The study of failure of plates subjected to low speed impact is
important for analyzing the survivability of goggles, aircraft can-
opy and windshields. Tsai and Chen [52] have investigated the
fracture of a glass plate impacted by a spherical (deformable or
rigid) body. They related the critical stress developed in the plate
to the impact velocity, the plate thickness and the support span.
They found that the Hertzian fracture (formation of a fracture cone
under the impact site) is predominant for short support span and
the sample fails due to flexural fracture for large support spans.
Fountzoulas et al. [53] used the FEM to investigate the effect of
defects on the impact response of aluminate spinel (MgAl2O4),
polyurethane and PC plates. Gilde et al. [54] performed ballistic
impact tests on monolithic PMMA plates and on glass/PMMA/PC
laminates, and exploited the synergy between glass and polymers
to create a lightweight transparent armor with improved ballistic
resistance. They showed that the laminated structure rather than
a monolithic glass increased the ballistic limit by nearly 50% for
the same areal density. In numerical work, the v50 of a structure
equals the minimum impact speed required to perforate it.

Zee et al. [55] used a gas gun to conduct impact tests on com-
posites made of epoxy matrix reinforced with polyethylene and
polyester fibers. They found that the energy loss mechanisms are
the fracture of the target and the generation of frictional heat
due to the passage of the projectile through the composite. Tarim
et al. [56] experimentally studied the ballistic impact performance
of polymer-based composites. They performed high velocity
(between 180 and 425 m/s, bullets with mass ranging from 3.2 to
15.55 g) impact experiments on composites and showed that add-
ing layers to the structure increases its bending and tensile stiff-
ness and reduces the residual velocity of the bullet for perforated
targets.

The low-velocity impact of composite panels is often modeled
as quasi-static indentation. Wu and Chang [57] used the finite ele-
ment method to study the quasi-static impact of a graphite/epoxy
sandwich beam with an elasto-plastic foam core. They found that
matrix cracking could be predicted by comparing the principal
stresses in the matrix with the transverse strength of the lamina
and used the strain-energy release rate (SERR) to predict the
delamination. Tita et al. [58] studied the low-velocity impact
(indentation) response of carbon fiber reinforced epoxy disks by
using a user defined subroutine implemented in the FE code ABA-
QUS. They accounted for progressive damage of the material by
degrading the material properties, i.e., the elastic moduli, and
found that the damage induced by indentation is more localized
than that for impact. Palazotto et al. [59] developed an analytical
model for the quasi-static impact of composite sandwich plates.
They used stress-based criteria to predict initiation of damage
and degraded the stiffness of the materials to study its progression.
The model accurately predicted the indentation response of the
laminate panel and the core failure load. Cheon et al. [60] proposed
that the progressive damage of glass fiber-reinforced composites
during a Charpy impact test be simulated by deleting the fractured
part of the specimen at each stage of the loading which degrades
the stiffness of the composite and causes the energy to dissipate.
Batra et al. [61] used constitutive relations based on a microme-
chanical approach to model the impact response of a carbon
fiber-reinforced polymer composite plate. They implemented the
material model in a user-defined subroutine in the finite element
code ABAQUS and considered inertia effects in the impact simula-
tions. They could predict accurately the contact force and the dam-
age and failure of the plate.

Stenzler and Goulbourne [62] and Stenzler [63] performed
impact tests on PMMA/Adhesive/PC laminated plates with
DFA4700, IM800A and VHB4905 as adhesives. The examination
of the post failure of plates revealed that the front PMMA plate
had radial cracks whereas the adhesive and the PC layers remained
undamaged (no failure of the adhesive interlayer or of the PC rear
plate was visually noticed). Zhang et al. [64] and Tekalur et al. [65]
studied the low speed impact of a PMMA plate, and reported crack
patterns typical of brittle failure. Gunnarson et al. [66] performed
impact tests on monolithic PC plates of various thicknesses. They
reported time histories of the maximum deflection of 3.0, 4.45
and 5.85 mm thick plates for impact velocities between 10 and
50 m/s, and found that the penetration velocity for the 5.85 and
3.0 mm thick plates equaled 80 m/s and 65 m/s, respectively.
Gunnarson et al. [67] conducted impact tests at velocities between
10 and 50 m/s on monolithic and laminated structures involving
PMMA, PC and an adhesive. They found that PMMA (PC) has brittle
(ductile) failure. Stickle and Shultz [68] simulated oblique ballistic
(�750 m/s) impact on a PMMA plate, used the Johnson–Cook dam-
age model (accounting for limited plastic deformations of PMMA),
and combined it with a principal stress fracture criterion (account-
ing for the brittle failure (spalling) of PMMA under tensile loading)
to model damage and failure of PMMA.

The mechanical behavior and failure of the PMMA, PC and TPUs
(thermoplastic polyurethanes) materials taken separately can be
accurately modeled for a wide range of strains, strain rates and
temperatures. However, the impact response of composite
PMMA/adhesive/PC laminates has mostly been studied experimen-
tally. Here we propose a mathematical and a computational model
that accounts for the complex response of the polymeric materials
including effects such as strain-rate and temperature dependence,
plasticity, viscosity, brittle and ductile failure and predicts the
impact response and survivability of monolithic and laminated
plates. The model includes brittle and ductile failure of the various
constituents of the plate (failure within the materials) as well as
interfacial failure on faces of the bonding interlayers (delamina-
tion). It can predict well the response of laminates to low velocity
impact. It can be used to improve our understanding of their
impact response, and delineate the role of the different constitu-
ents and interactions amongst them. We note that in our simula-
tions the steel impactor is regarded as rigid and all contact
surfaces as smooth.

The rest of the paper is organized as follows. Section 2 gives the
mathematical model of the problem (i.e., problem description, con-
stitutive relations for different constituents of the laminate, failure
criteria for the PMMA, the PC, the TPUs, and values of material
parameters). The computational model is described in Section 3,
and results of several problems are presented in Section 4, and dis-
cussed in Section 5. Conclusions from this work are summarized in
Section 6.

2. Mathematical model

2.1. Problem description

A schematic sketch of the problem studied is exhibited in Fig. 1.
The laminated rectangular plate of sides L1 and L2, and made of
PMMA/adhesive/PC layers is impacted at normal incidence by a
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slow moving steel cylinder of height h and a hemispherical nose of
diameter d0. We use rectangular Cartesian coordinate axes with
origin at the centroid of the top face of the rectangular laminated
plate clamped on all four edges, the positive x-axis pointing to
the right and the positive z-axis pointing upwards. The thicknesses
of the top PMMA, the middle adhesive and the bottom PC layers
are denoted by h1, h2 and h3, respectively. The mathematical model
developed and the analysis technique is applicable to an arbitrary
number of layers in the laminate, and their materials.

2.2. Equations of motion

We use the Lagrangian description of motion to study deforma-
tions of the laminate. Thus balance laws governing deformations of
the body are:

mass : qJ ¼ q0

linear momentum : q0 _v ¼ r̂ � T
momentum of momentum : T � FT ¼ F � TT

ð1Þ

Here q and q0 are mass densities in the current and the reference
configurations, respectively, J = det(F) is the Jacobian of the defor-
mation, F = @x/@X is the deformation gradient that maps a material
point from the reference position X to its current location x, a super-
imposed dot indicates the material time derivative, v is the velocity
of a material point, T is the first Piola–Kirchhoff stress tensor related
to the Cauchy stress tensor r by T = Jr � F�T, and ðr̂Þ is the gradient
operator with respect to X.

For low impact speeds, deformations of the steel impactor are
assumed to be negligible as compared to those of the composite
laminate. Thus we regard the impactor as rigid. Equations governing
the translational and rotational motion of the rigid impactor are:
x
z

y

O

L1

L2

top view of the plate s

PMMA

PC

h1
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h3

h2 adhesive  (DFA470

O

Fig. 1. Sketch of the imp
translation _p ¼ f

rotation _HC ¼ MC

ð2Þ

Here p and HC are the linear momentum and the moment of linear
momentum (or the angular momentum) of the rigid impactor,
respectively, f is the resultant force acting on the impactor, MC is
the moment of forces acting on it, and the subscript C on a quantity
implies that it is calculated with respect to the center of mass C of
the rigid body.

2.3. Initial, boundary and continuity conditions

We study problems with bounding surfaces of the laminate,
except for the surface contacting the impactor, either clamped or
free. At a clamped edge, the three displacement components are
set equal to zero. At a free surface, the surface tractions vanish.
The contact surface between the impactor and the laminated plate
is assumed to be smooth. Thus on it the following continuity con-
ditions are imposed.

normal velocity : s _ut � n ¼ 0

normal traction : s_tt � n ¼ 0

tangential traction on contact surface : t� n ¼ 0

ð3Þ

Here double brackets enclosing a variable indicate the jump in
it across the contact surface, n is a unit normal to the contact
surface, u is the displacement field, t is the traction vector,
and the symbol � denotes the cross product between two
vectors.

The PMMA, the PC and the adhesive are initially at rest, stress
free and at the uniform temperature of 300 K. At t = 0, the impactor
just contacts the top surface of the laminated structure.
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2.4. Constitutive equations for PMMA and PC

The thermo-elasto-visco-plastic response of the PMMA and the
PC polymers are modeled following the work of Mulliken and Boy-
ce [6] with the modifications suggested by Varghese and Batra
[21]. It assumes that the total Cauchy stress tensor r at a material
point equals the sum of contributions from three phases, namely B,
a and b, i.e., r = rB + ra + rb. The three phases coexist at a material
point and have the same value of the deformation gradient F. The
phase B behaves like a non-linear elastic Langevin spring for which

rB ¼
CR

3

ffiffiffiffiffi
Nl
p

kp L�1 kpffiffiffiffiffi
Nl
p
� �

B0B ð4Þ

Here rB is the Cauchy stress tensor, B0B the deviatoric part of

BB ¼ ðJÞ�2=3FFT; kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBBÞ=3

q
a measure of stretch, tr() the trace

operator, L�1 the inverse of the Langevin function defined by
L(b) � cothb � 1/b, Nl the limiting stretch, CR � nRkh the rubbery
modulus, h the temperature in Kelvin, k Boltzmann’s constant,
and nR a material parameter.

The other two phases, a and b, are modeled with the same con-
stitutive equation but with different values of material parameters.
For each phase the deformation gradient F is decomposed into
elastic and plastic parts, e.g., see Kroner [69] and Lee [70]:

F ¼ Fe
aFp

a ¼ Fe
bFp

b ð5Þ

Neither Fe
a; Fe

b nor Fp
a; Fp

b is gradient of a vector field. The plastic
deformation gradients Fp

a and Fp
b map a material point in the refer-

ence configuration to a material point in the intermediate configu-
ration obtained after elastically unloading the current configuration
to a stress-free state.

The rate of the plastic deformation gradient in phases a and b is
given by

_Fp
a ¼ _Fe�1

a
~Dp

aFa; _Fp
b ¼ _Fe�1

b
~Dp

bFb ð6Þ

where eDp
i is the plastic strain rate tensor in phase i (i = a,b), and it

has been assumed that the plastic spin tensors in phases a and b
identically vanish. We note that eDp

i does not equal the symmetric
part of the velocity gradient (with respect of x) of phase i.

The Hencky elastic strain tensors of phases a and b are defined
as

ee
a ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
Fe

aFe
a

T
q� �

; ee
b ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
Fe

bFe
b

T
q� �

ð7Þ

and the corresponding Cauchy stress tensors are given by

ra ¼
1
J

2lae
e
a þ katr ee

a

� �
d

� �
; rb ¼

1
J

2lbe
e
b þ kbtr ee

b

	 

d

h i
ð8Þ

where Young’s moduli of phases a and b of PMMA and PC and con-
sequently Lame’s constants, k and l, are temperature and strain-
rate dependent. They partly capture the temperature and the
strain-rate dependence of the material response while Poisson’s
ratio is taken to be constant. Using test data given in the Appendix
of Mulliken’s thesis [71], we compute the temperature and the
strain-rate dependence of Young’s moduli of PMMA and PC. These
results depicted in Figs. 2 and 3 imply that the total Young’s mod-
ulus of each material increases with an increase in the strain-rate
and decreases with a rise in the temperature. We note that Eq. (8)
is valid for finite deformations and accounts for all geometric
nonlinearities.

The plastic strain rates are assumed to be coaxial with the devi-
atoric Cauchy stress tensors in their respective phases, that is,

~Dp
a ¼ _cp

a
r0a
r0a
�� �� ; ~Dp

b ¼ _cp
b

r0b

r0b

��� ��� ð9Þ
where r0i ði ¼ a,b) is the deviatoric part of the Cauchy stress in

phase i; r0i
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr r0ir
0
i

� �q
is the magnitude of r0i, and _cp

i is the effec-

tive plastic strain rate in phase i. This equation implies that

tr eDp
i

	 

¼ 0.

The effective plastic strain rates in a and b phases are given by

_cp
i ¼ _cp

0i exp �DGi

kh
1� si

tiŝi þ ap
i p

� �� 
; i ¼ a; b ð10Þ

where _cp
0i ði ¼ a,b) is the pre-exponential factor, DGi the activation

energy, p = �tr(r)/3 the pressure, si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5tr r0ir

0
i

� �q
the equivalent

shear stress, ap
i the pressure coefficient, ŝi ¼ 0:077li=ð1� v iÞ the

athermal shear strength, vi Poisson’s ratio, k Boltzmann’s constant,
and ti an internal variable that evolves with plastic deformations.
The variable ŝi is function of li and is, therefore, temperature and
strain-rate dependent. Since no yield surface is postulated plastic
deformations always occur. The evolution of internal variable ti in
phases a and b is given by

_ti ¼
hi

ŝ0
i

1� ti

tss
i

� �
_cp

i ; i ¼ a; b ð11Þ

where tss
i and hi are softening parameters, and ŝ0

i is the reference
value of ŝi given by the reference values of li and mi. Eq. (11) implies
that the internal variable ti remains constant for elastic
deformations.

We postulate that the energy dissipated during plastic deforma-
tions in the a and b phases is converted into heat, that is

_Q ¼ J � ra : ~Dp
a þ rb : ~Dp

b

	 

ð12Þ

where _Q is the heat generated per unit volume in the reference con-
figuration. It is assumed that heating is mostly adiabatic for the
impact problems studied here because there is not enough time
for the heat to be conducted away, and neglecting heat conduction
facilitates numerical integration of the governing differential equa-
tions. Thus the temperature rise is given by

q0c _h ¼ _Q ð13Þ

where c is the specific heat of either the PMMA or the PC.
We refer the reader to Mulliken and Boyce [6] and Varghese and

Batra [21] for the determination of values of material parameters
from the test data for the PMMA and the PC, and for the compari-
son of the computed and experimental axial stress vs. axial strain
curves.

2.5. Constitutive equations for the adhesives

We assume that the adhesive can be modeled as a nearly
incompressible rubberlike material [63] with the elastic response
given by the Ogden strain energy density function W and the vis-
coelastic response by the Prony series [72,73]. That is,

W ¼
XN

n¼1

ln

an

~kan
1 þ ~kan

2 þ ~kan
3 � 3

	 

þ KðJ � 1� lnðJÞÞ ð14Þ

where N is an integer, ~ki ¼ ðJÞ�1=3ki is the volumetric independent
principal stretch, an and ln are material parameters, and K and G,
respectively, the initial bulk and the shear moduli given by
K ¼ 2ð1þvÞ

3ð1�2vÞG; G ¼ l ¼ 1
2

PN
n¼1anln

The viscoelastic response of the adhesive is assumed to obey the
following constitutive relation proposed by Christensen [73].

_r̂ve ¼
XM

m¼1

2GmD̂dev �
XM

m¼1

2bmGm

Z t

s¼0
e�bmðt�sÞD̂devðsÞds ð15Þ
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Here M is the number of terms in the summation, _r̂ve is the co-
rotated rate of stress tensor (see [74] for the definition of co-rotated
tensors), D̂dev is the co-rotated deviatoric rate-of-deformation ten-
sor, and Gm and bm are material parameters representing, respec-
tively, the shear moduli and the inverse of relaxation times. Note
that there are 2 terms that determine the instantaneous elastic
response of the material: Eq. (14) and the 1st term on the right-
hand side of Eq. (15)

Heating of the adhesive caused by the energy dissipated due to
viscous deformations is neglected since it is usually very small.

We use the test data of Stenzler [63] to find values of material
parameters for the DFA4700 and the IM800A. Stenzler tested these
materials in uniaxial tension at engineering strain rates of 0.01, 0.1,
1.0 and 5.0/s and in uniaxial compression at 0.001/s. The tests at
0.01/s and 0.001/s are assumed to correspond to the static nonlin-
ear elastic response of the material and are used to find values of
material parameters in the strain energy density potential (see
Eq. (14)). As described below, for the DFA4700 (IM800A), two
(one) terms in Eq. (14) are necessary to achieve satisfactory agree-
ment (within 5% deviation) between the computed and the exper-
imental axial stress–axial strain curves. Assuming that the
adhesive material is incompressible, the axial stress–axial strain
relation for a uniaxial tensile test conducted at constant engineer-
ing strain rate is:

rTrue ¼
XN

n¼1

ln expðaneTrueÞ � exp �1
2
aneTrue

� �� �

þ
XM

m¼1

3Gm exp � expðeTrueÞ
_eEng bm

� �

� Ei
expðeTrueÞ

_eEng bm

� �
� Ei

bm

_eEng

� �� 
ð16Þ

where rTrue is the axial Cauchy stress, eTrue the axial logarithmic
strain, _eEng the constant engineering strain rate at which the test
is conducted, and EiðxÞ ¼ �
R1

t¼�x
e�t

t dt. The software Mathematica
was used to find values of parameters in Eq. (16) so that the com-
puted axial stress–strain curve is close to the experimental one. A
single term in the series for the IM800A and two terms for the
DFA4700 adhesive were found to be sufficient. The values of mate-
rial parameters are given in Table 1, and the computed and the
experimental stress–strain curves are depicted in Fig. 4 for the
DFA4700 and in Fig. 5 for the IM800A. The deviations between
the two sets of curves are listed in Table 2. We note that the two
adhesives are assumed to be slightly compressible because we
could not model incompressible materials in LS-DYNA. The three
different values, 0.490, 0.495 and 0.498, of Poisson’s ratio showed
no noticeable differences among the computed results. The numer-
ical results presented and discussed herein are obtained with Pois-
son’s ratio = 0.498 which gives the initial bulk modulus of about 250
times the initial shear modulus. Values of Poisson’s ratio greater
than 0.498 significantly increase the computational cost, and were
not considered. We note that only the monotonic part of the exper-
imental axial stress–strain curve has been employed to find values
of material parameters.

2.6. Failure models

We model the brittle failure of PMMA in tension by using the
following maximum tensile stress based criterion proposed by
Fleck et al. [47]:

rf ¼
1
v f

kT ln
_e
_e0

� �
þ Q f

� �
ð17Þ

Here _e is the effective strain rate, _e0 ¼ 1:0=s the reference effective
strain rate, k the Boltzmann constant, rf the tensile stress at
failure, T the local temperature in Kelvin, Qf = 2.95 � 10�19 J and
vf = 2.30 � 10�18 mm3. These values of Qf and vf correspond to
178 kJ/mol activation energy and 2.3 nm3 activation volume and



Table 1
Values of material parameters of the DFA4700 and the IM800A adhesives.

DFA4700 IM800A

Mass density (mg/mm3) Initial Poisson’s ratio Mass density (mg/mm3) Initial Poisson’s ratio

1.08 0.498 1.04 0.498

Elastic properties (strain rate independent response) for the Ogden strain energy density W)
n ln (MPa) an ln (MPa) an

1 0.0421 5.70 2.55 1.28
2 �4.49 �1.03

Viscoelastic properties (strain rate dependent response, parameters in Prony series) Shear modulus, 1/relaxation time
m Gm (MPa) bm (s�1) Gm (MPa) bm (s�1)

1 2.63 3.76 0.358 0.391
2 0.563 0.139
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are comparable to the values given in [47] (54 kJ/mol activation
energy and 4 nm3 activation volume for tensile tests). According
to Eq. (17) the tensile stress at failure increases with the increase
in the strain rate.

A strain based failure criterion is used to model the ductile fail-
ure of the PMMA and the PC. That is, the material point is assumed
to fail when the accumulated logarithmic equivalent plastic strain
in either phase a or phase b reaches a critical value of 5% for the
PMMA [68] and 200% for the PC [49]. We note that there are two
failure criteria for the PMMA – one given by Eq. (17) for the brittle
failure and the 5% plastic strain for the ductile failure.

Following the work of Richards et al. [49] the failure of the
DFA4700 and the IM800A adhesives is assumed to be controlled
by the maximum principal tensile stress. Folgar [75] and MacAlo-
ney et al. [76] performed quasi-static uniaxial tensile tests on the
IM800A polyurethane until specimens failed. The manufacturer
documentation [75] lists an ultimate elongation of 510% at failure
(1.8 true strain) with 28 MPa ultimate engineering stress (170 MPa
true stress) while ultimate elongations between 1400% and 1500%
(2.7–2.8 true strain) were measured by MacAloney et al. [76]. The
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Fig. 5. Experimental and numerical results for the uniaxial tensile
manufacturer documentation of the DFA4700 adhesive [77] lists
500% ultimate elongation with 37.9 MPa ultimate strength for a
uniaxial tensile test. This corresponds to the true axial strain of
1.8 and the true axial stress of 225 MPa.

In the results presented below, it has been assumed that the
DFA4700 (IM800A) fails when the maximum principal tensile
stress equals 225 MPa (170 MPa).

2.7. Delamination criterion

We use the bilinear traction-separation relation, exhibited in
Fig. 6, in the cohesive zone model (CZM) to simulate delamination
at an interface between two distinct materials, e.g., see Gerlach
et al. [78]. The ultimate displacements in modes I and II have the
same value df, the damage initiation displacements in modes I
and II also have the same value d0, and we take d0 = df/2. For

mixed-mode deformations, we define dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

I þ d2
II

q
where dI is

the separation in the normal direction (mode I) while dII is the rel-
ative tangential displacement (mode II). The mixed-mode damage
Strain
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Table 2
Deviations in L2-norm between the predicted and the experimental responses of the
DFA4700 and the IM800A subjected to axial loading.

Engineering strain rate 0.01/s 0.1/s 1.0/s 5.0/s
DFA4700 5.01% 6.50% 9.87% 3.74%
IM800A 3.97% 5.10% 5.81% 4.50%
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initiation displacement is d0
m ¼ d0. Likewise the mixed-mode ulti-

mate displacement is df
m ¼ df .

Different values of the ultimate displacement df between 0.01
and 0.05 mm gave essentially the same values of the resisting force
experienced by the impactor and the energy dissipated. Here we
have assumed that df = 0.05 mm. The value of the maximum trac-
tion in the CZM is determined from the value of the critical strain
energy release rate (SERR) for the interface.

Pickett et al. [79] have conducted 90� peel tests on aluminum/
DFA4700/PC assemblies, and reported the peel strength of
26.18 kN/m for one adhesive/PC configuration. Thus 26.2 N/mm
(or equivalently 0.02618 J/mm2) corresponds to the mode I tough-
ness of the DFA4700/PC interface. Due to lack of data about the
mode II toughness of this interface, we assume that GII,C = 2GI,C,
which is typical for an interface between a soft polyurethane adhe-
sive and a material with surface properties similar to those of PC.
Furthermore, it is assumed that the PMMA/DFA4700 and
DFA4700/PC interfaces have the same toughness values.

The manufacturer documentation for the IM800A [75] gives
results of 90� peel tests of the IM800A from a glass substrate. For
80, 90, 100 and 120 �C temperature, the IM800A/glass peel force
equals, respectively, 144, 155, 160 and 138 pli (pounds per linear
inch). A linear fit of the peel force vs. the temperature through the
first three data points gave the peel strength of 17 N/mm at 20 �C.

It was then assumed that the PMMA/IM800A and the IM800A/
PC interfaces have the same properties as the IM800A/glass inter-
face, and that GII,C = 2GI,C.

3. Computational model

3.1. General description

We use the commercial FE software LS-DYNA with explicit sol-
ver in which constitutive relations for the PMMA and the PC have
been implemented in a user-defined subroutine written in FOR-
TRAN. The software has in-built material model to simulate defor-
mations of the adhesives.

For an impact problem, Khalili et al. [80] computed numerical
results for different choices of the shell element, the integration
scheme and the FE mesh. They found that the ‘‘unstructured’’ mesh
gave better results in terms of convergence vs. computational cost.
We also observed a similar trend (see description of the FE mesh
Fig. 6. Traction-separation law for delamination in m
later in this section). They also showed that assuming the impactor
to be rigid reduces the computation time with minor effects on the
numerical results.

As stated above, the impactor has been modeled as a rigid body
translating with a uniform velocity normal to the impact surface.
All contact surfaces are assumed to be frictionless. Non-interpene-
tration of one material into the other is satisfied by using a pen-
alty-based contact algorithm that considers the newly formed
surfaces due to the deletion of failed elements.

In LS-DYNA, the governing partial differential equations are first
reduced to nonlinear and coupled ordinary differential equations
(ODEs) in time by using the Galerkin approximation. The ODEs
are integrated with respect to time by using the explicit condition-
ally stable central-difference method using the lumped mass
matrix. The critical time step size equals the time taken for an elas-
tic wave to propagate through the smallest element in the FE mesh.
We set the time step size equal to a fraction of the critical time step
to ensure stability of the computed solution. The effect of the time
step size on the numerical solution was investigated and the time
step is fixed to a value for which the numerical solution converged.
Of course, each FE mesh requires a different time step size.

The FE mesh consisted of 8-node brick elements with one point
integration (reduced integration) used to evaluate element matri-
ces. Since zero energy deformation modes (or hourglass modes)
can arise due to using reduced integration rule, an hourglass con-
trol algorithm was used. The suitability of this algorithm was
checked with a 3D-patch test. A cube is discretized into seven
irregularly shaped hexahedrons (one for each face and one for
the center, see Fig. 7). The master cube is then quasi-statically
deformed in uniaxial tension. Results computed with the default
and the Belytschko–Bindeman formulations are shown in Fig. 8
for an isotropic elastic material with Young’s modulus = 1 GPa
and Poisson’s ratio = 0.25. The later formulation was selected for
all numerical simulations presented herein. The energy of hour-
glass mode deformations was found to be less than 5% of the peak
strain energy of the elastic cube implying that the hourglass modes
did not introduce significant errors in the numerical solution.

For the Hertz contact problem analyzed with LS-DYNA, the
maximum difference between the computed and the analytical
reaction force was found to be 9.1%.

For each impact problem studied in this paper, results were
computed with at least two FE meshes. The FE mesh A was uni-
formly refined to obtain a finer mesh B having at least 30% more
nodes than those in mesh A. The solution with two FE meshes
was taken to have converged if the difference in two values of
the reaction force, the energy dissipated and the length of the
radial cracks was less than 10%. For brevity we describe here the
mesh used for the impact simulations of the laminate discussed
in Section 4.3 (and that gave the converged solution). For each
ode I (bottom, left) and mode II (bottom, right).
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one of the three layers the mesh in the xy-plane is the same. The
PMMA, the interlayer and the PC are discretized, respectively, with
9, 6 and 9 uniform elements through the thickness. The CZM ele-
ments are initially flat and placed at the adhesive interfaces. The
pattern of the FE mesh in the xy-plane is obtained by partitioning
the plate along its diagonals. Then each of the four quarters of the
plate is partitioned by a 10-mm radius circle centered at the point
of impact. Each quarter of circumference of the circle, the part of
each one of the four diagonals that are within the circle, and each
edge of the plate are discretized with 55 uniform elements. The
outer part of the plate diagonals, i.e., the part located more than
10-mm from the plate center, was divided into 64 segments of dif-
ferent lengths so that the ratio of the smallest segment – located
near the circle – to the largest segment – located at the corner –
equaled 15. The mesh in the impactor near the contact region
was refined until the element size there was comparable to that
of the elements at the plate center. The rest of the impactor was
discretized with coarse elements. The FE mesh had 19,680 ele-
ments in the impactor, 209,376 elements in the PMMA and the
PC layers, 139,584 elements in the adhesive interlayer, and
23,264 flat CZM elements in each interface.

The computed values of the time histories of the reaction force
and the energy dissipated with perfect bonding at the PMMA/
adhesive and the adhesive/PC interfaces differed from those com-
puted considering delamination at these interfaces by less than
5%. Thus we present and discuss here only the results obtained
using CZM elements at the adhesive interfaces.

3.2. Calculation of the energy dissipation

There are two main sources of energy dissipation, namely,
energy dissipated due to failure of the materials (modeled with
element deletion) and the energy dissipated due to inelastic
deformations of the material (plasticity, viscosity, softening).
When a failed element is deleted from the computational domain,
its internal energy and kinetic energy are also removed. This
decreases the energy of the remaining system. This change in
energy is referred to as the eroded energy in LS-DYNA. The eroded
energies calculated by LS-DYNA were verified using a set of simple
problems for which internal and kinetic energies could be analyti-
cally determined and compared with the computed ones.

The energy dissipated due to viscous deformations of the adhe-
sives is computed during the post-processing phase. The energy
dissipated due to inelastic deformations of the PMMA and the PC
is calculated for each element at each time step inside the subrou-
tine developed for these materials. There are two sources of
dissipation for these materials: energy dissipated by plastic defor-
mations, and energy dissipated by the softening of the material
attributed to decrease in Young’s modulus caused by the tempera-
ture rise. This latter contribution to the energy dissipated will be
referred to as ‘‘softening energy’’. An analogy for 1D linear elastic-
ity and discrete stiffnesses (i.e., springs) is shown in Fig. 9. Due to
stretching of the springs elastic energy is stored in the system.
Subsequent heating reduces the stiffness of the material that can
be simulated by removing a spring which dissipates a part of the
elastic energy stored in the spring that is taken out of the system.

4. Results and discussion

4.1. Impact of monolithic PMMA plates

We first simulate the impact experiments of Zhang et al. [64] in
which initially stationary and stress free clamped circular 6.35 mm
thick PMMA plates of 76.2 mm diameter are impacted at normal
incidence by 6.95 kg cylindrical impactor with hemispherical nose
of 12.7 mm diameter translating at 0.7, 1.0, 2.0, 3.0 or 5.0 m/s. It is



Fig. 9. Visualization of the energy dissipated due to material softening for 1D linear elastic system with a discrete spring model.
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clear from the experimental and the computed fracture patterns in
the plates impacted at 2.0 m/s and 3.0 m/s shown in Fig. 10 that
the two sets of results agree well qualitatively. Both in tests and
in simulations radial cracks but no hole developed in the plate
impacted at 2.0 m/s, while the panel impacted at 3.0 m/s had radial
cracks and had been perforated by the drop weight. The computed
number of cracks and the crack patterns differ from those found
experimentally.

4.2. Impact of monolithic PC plates

We now simulate impact experiments of Gunnarson et al. [66]
in which initially stationary and stress free clamped square PC
plates of side 25.4 cm and different thicknesses are impacted at
normal incidence by a 104 g cylindrical steel impactor with hemi-
spherical nose of 12.7 cm diameter. For various values of the plate
thickness and the impact speed, we have compared in Table 3 the
experimentally measured and the computed maximum deflections
of the center of the back surface of the plates. The maximum differ-
ence in the two sets of values of 10.3% validates the mathematical
model for the impact of the PC plate, at least for finding the max-
imum deflections. In Fig. 11 we have plotted time histories of the
experimental and the computed deflections of the center of the
back surface of the 5.85 and 12.32 mm thick panels impacted at
various velocities. While the time of return to 0 deflection is well
Experimental [64]

v0 = 2.0 m/s

v0 = 3.0 m/s

Fig. 10. Experimental and computed fracture patterns in the PMMA panels impacted a
captured by the model for the 12.32 mm thick panel, it is not so
for the 5.85 mm thick panel especially at the higher impact speed
of 50.6 m/s.

The time periods of the first three modes of free vibrations of
the 5.85 mm and the 12.32 mm thick clamped PC plates are 1.32,
1.60, 2.35 ms, and 0.66, 0.80, 1.12 ms, respectively. Comparing
these with the time histories of the deflection of the plates shown
above, we see that there is no clear correlation between the time
periods of free vibration and time periods of the contact force
histories.

4.3. Impact of laminated plates

We now study transient deformations of 12.7 � 12.7 cm2

clamped PMMA/Adhesive/PC laminated plate impacted at normal
incidence by a 28.5 g 1-cm diameter hemispherical nosed steel cyl-
inder at either 12 m/s or 22 m/s. Using the notation of Fig. 1, we set
h1 = h3 = 1.5875 mm, and h2 = 0.635 mm for the adhesive inter-
layer. Thus the top PMMA and the bottom PC layer have the same
thickness. This configuration was used by Stenzler [63] in his
experiments.

Time histories of the experimental [63] and the computed reac-
tion force for the plates bonded with the DFA4700 and the IM800A
adhesives are displayed in Fig. 12 and the deviations between the
two sets of results are summarized in Table 4.
Computed

t normal incidence by the rigid cylindrical impactor translating at 2.0 and 3.0 m/s.



Table 3
Comparison of the experimental and the computed maximum deflections (measured at the center of the back face of the plate) of the clamped circular PC panels.

Panel thickness (mm) Impact velocity (m/s)

10 20 30 40 50

Experimental (computed) maximum deflection (mm)

3.00 13.2 (13.0)
error: �1.5%

16.1 (17.1)
error: +6.2%

4.45 9.4 (9.0)
error: �4.3%

12.9 (13.1)
error: +1.6%

5.85 6.5 (7.1)
error: +9.2%

10.9 (10.2)
error: �6.4%

15.2 (14.8)
error: �2.6%

19.2 (19.0)
error: �1.0%

22.0 (22.7)
error: +3.2%

9.27 10.2 (10.4)
error: +2.0%

11.3 (12.1)
error: +7.1%

14.0 (14.8)
error: +5.7%

12.32 6.9 (7.3)
error: +5.8%

8.7 (9.6)
error: +10.3%

10.7 (11.3)
error: +5.6%
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The time periods of the first four modes of free vibrations of the
clamped laminated plates are 0.82, 0.96, and 1.34 ms (two modes)
for the plate with the DFA4700 interlayer, and 0.97, 1.03, and
1.43 ms (two modes) for the IM800A adhesive. Therefore we can
see that for both plates the drop in the reaction force coincides
with the time period of the 1st mode, the second peak to that of
the 2nd mode, and the contact termination with that of the 3rd
period.

We note that the computed and the experimental time histories
of the reaction force for the PMMA/DFA4700/PC laminate are close
to each other except for small times for the 22 m/s impact speed
and around 1.2 ms for the 12 m/s impact speed. The large local dif-
ferences between the two curves give L2-norms of deviations of
�0.25. However, the numerically computed results for the
PMMA/IM800A/PC laminate differ noticeably from the correspond-
ing test findings for times beyond the time of the first peak in the
reaction force. In particular the second spike in the computed reac-
tion force at t 	 1.1 ms is not found in test results. The qualitative
shape of the reaction force history curve (two peaks separated by a
drop) is consistent with the experimental results of Wu and Chang
[57] and to the corresponding simulations by Her and Liang [81]
who used ANSYS/LS-DYNA (these results were obtained for low-
velocity impact of graphite/epoxy composites). Moreover we
notice that the maximum value reached by the reaction force is
nearly proportional to the impact velocity, which agrees with the
observations of Her and Liang [81].

The characteristics of the computed crack patterns in the PMMA
plate are compared with those found experimentally in Table 5. In
Fig. 13 we have exhibited the crack patterns on the back surface of
the PMMA plate obtained for the impact speed of 12 m/s, and in
Figs. 14 and 15 we have depicted the experimental and the com-
puted post-impact failure of the PMMA plate. These two sets of
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results are in good agreement with each other for the four impact
scenarios studied. One can conclude from these results that the
adhesive significantly affects the fracture of the PMMA plate since
a change in the adhesive material noticeably alters the fracture
induced in the PMMA plate. The evolution with time of the failed
and hence the deleted region in the PMMA plate is also exhibited
in Fig. 15. Whereas in the simulations, a cavity is developed in
the PMMA plate, in tests this material is severely deformed and
its mechanical properties severely degraded but it is not removed
from the plate.

The energy balance at the instant of separation of the impactor
from the laminates is given in Table 6. For the laminate using the
DFA4700 (IM800A) this time equals �1.6 (1.8) ms and �1.4
(1.6) ms, respectively, for 12 m/s and 22 m/s impact speeds.

Values of different energies listed in the Table indicate that the
main energy dissipation mechanisms are plastic deformations of
the PC plate and the energy dissipated due to cracking (element
deletion) of the PMMA plate. Since the PMMA is brittle, it is not
surprising that its plastic deformations are negligible. The only
material which partially failed in the simulations is the PMMA.
The failure criteria for the other materials were not met at any
point in their domains. The energy dissipated due to viscous defor-
mations of the adhesives is small, which is consistent with the
large relaxation times (b�1 � 1 s) of the DFA4700 and the IM800A
as compared to the impact duration (�1 ms) considered. The
delamination at the adhesive interfaces dissipated a negligible
amount of energy. For the lowest impact velocity, the dissipation
due to the softening of the PMMA and the PC materials contributed
to about 7% of the total energy dissipation.

By comparing results depicted in Figs. 14 and 15, and consider-
ing the energy dissipated due to cracking of the PMMA plate listed
in Table 6, we conclude that choosing a softer – in terms of the
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Table 4
L2-norm of the difference between the experimental and the computed reaction force
vs. time curves.

Plate 12 m/s Impact velocity 22 m/s Impact velocity
PMMA-DFA4700-PC 0.26 0.23
PMMA-IM800A-PC 0.46 0.43

10 mm 10 mm

Fig. 13. Computed fracture patterns on the back surface of the PMMA plates of the
PMMA/DFA4700/PC (left) and the PMMA/IM800A/PC (right) laminates for the
impact speed of 12 m.
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instantaneous modulus – adhesive interlayer (IM800A over
DFA4700) induces longer cracks and hence larger energy dissipa-
tion due to failure of the impacted front PMMA layer but decreases
the energy dissipated due to plastic deformations of the PC layer. In
order to relate this to the stress wave reflections introduced by the
acoustic impedance mismatch at the PMMA/adhesive and the
adhesive/PC interfaces, we consider their 1-D deformations and
linear elastic response. The acoustic impedance of the PMMA,
DFA4700 and IM800A are, respectively, �2.3, 0.11 and
0.077 mg mm�2 ls�1. Therefore, in this approximation, 9% of the
stress wave amplitude coming from the PMMA material and reach-
ing the PMMA/DFA4700 interface will be transmitted to the
DFA4700 interlayer, while only 6% will be transmitted for the
PMMA/IM800A interface. Since the rest of the stress wave is
reflected, stresses in the PMMA layer induce more damage with
the IM800A adhesive. This also explains, at least partially, the
lower energy dissipation in the PC layer with the IM800A rather
than the DFA4700 as the adhesive. In Fig. 16, we have exhibited
fringe plots of the larger of the effective plastic strain in the a
and the b phases at the bottom surface of the PC plate, and in a
plane orthogonal to the plate edge. It is clear that larger surface
area of the PC plate is more severely plastically deformed for the
DFA4700 adhesive as compared to that for the IM800A adhesive.

Time histories of the in-plane lengths of the computed cracks
on the back surface of the PMMA layer in the two laminates for
impact speeds of 12 and 22 m/s are plotted in Figs. 17 and 18,
respectively.
Table 5
Comparison of the experimental and the computed fracture patterns on the back surface

Impact velocity (m/s) Interlayer material Experimental

12 DFA4700 No damaged material at the imp
5 cracks, length 4–7 mm

12 IM800A No damaged material at the imp
5 cracks, length 14–17 mm

22 DFA4700 Diameter of damaged zone at the
7 cracks, length 11–12 mm

22 IM800A Diameter of damaged zone at the
6 cracks, length 22–28 mm
The length of a radial crack increases rapidly in the early forma-
tion phase (25–35 ls for the 12 m/s impact speed, 5–15 ls for the
22 m/s impact speed) and the crack speed reaches a peak value of
1.0 mm/ls (1 km/s) for the four cases investigated. For 5000/s
strain rate (which is typical for impact problems) and 300 K tem-
perature the speed of an elastic wave in the PMMA is �2.5 mm/
ls and the Rayleigh wave speed is 1.19 mm/ls. Thus the maximum
crack speed is 40% of the elastic wave speed and 84% of the Ray-
leigh wave speed. The crack initiation times and the corresponding
values of the maximum principal stress and the strain rate at the
crack initiation site are given in Table 7. The maximum principal
stress in the PMMA at the time of crack initiation is essentially
the same for the four cases studied, and the strain rate for the
12 m/s impact speed is about 40% less for the IM800A adhesive
than that for the DFA4700 adhesive. Also, the crack initiates 4 ls
earlier with the IM800A interlayer than that with the DFA4700
adhesive. For the higher impact speed of 22 m/s, the crack
initiation times, the maximum principal stress and the strain rates
are essentially the same for the two adhesives.
of the PMMA plate for the PMMA/DFA4700/PC and the PMMA/IM800A/PC laminates.

Computed

act site No damaged material at the impact site
4 cracks, length 10–11 mm

act site No damaged material at the impact site
4 cracks, length 12–13 mm

impact site = 5 mm Diameter of damaged zone at the impact site = 6 mm
8–9 cracks, length 10–11 mm

impact site = 5 mm Diameter of damaged zone at the impact site = 7 mm
8 cracks, length 31–33 mm
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Fig. 14. Details of the experimental (left) [63] and the computed (right) fracture
pattern on the back surface of the PMMA plate of the PMMA/DFA4700/PC laminate
for the impact speed of 22 m/s, (bottom) the view normal to (ex + ey) (since the
main cracks form along the diagonals) for the PMMA plate at various times.

10 mm

Fig. 15. (Top) Details of the experimental (left) [63] and the computed (right)
fracture pattern on the back surface of the PMMA plate for the PMMA/IM800A/PC
laminate for the impact speed of 22 m/s.

G.O. Antoine, R.C. Batra / Composite Structures 116 (2014) 193–210 205
The reaction force, the energy dissipation, the deflection (mea-
sured at the center of the back face of the PC layer) and the in-
plane extension of the cracks in the PMMA are plotted against time
in Fig. 19. More than 75% of the erosion energy is not due to the
elongation of radial cracks but due to the formation of the ‘‘second-
ary cracks’’, i.e., to the formation of smaller cracks and to the dam-
age induced at the impact site (e.g., see Fig. 20 in which crack
patterns at t = 0.8 and 1.0 ms are exhibited). This is because the
number of elements that fail due to ductile failure (Johnson–Cook
damage criterion) increases with time and more energy/volume is
dissipated due to the ductile failure than that due to the brittle fail-
ure. We also notice that the drop in the reaction force (at �0.7 ms)
occurs when the plate deflection is the maximum. At this time, the
radial cracks have reached their maximum length. There is almost
no energy eroded subsequent to the reaction force decreasing to
0.65 kN at t = �0.7 ms as shown by the eroded energy reaching a
plateau between 0.65 ms and 0.90 ms. The majority of the energy
erosion occurs during the spring back phase of the plate (reloading
corresponding to the second peak of the reaction force, and return
to the 0 deflection position).
5. Summary and discussion

We have analyzed by the FEM transient deformations of PMMA/
DFA4700/PC and PMMA/IM800A/PC laminates impacted at normal
incidence by a 28.5 g hemispherical nosed steel cylinder translat-
ing at 12 m/s and 22 m/s. The computed results are found to rea-
sonably agree with the corresponding experimental ones. These
simulations confirm the ‘‘sacrificial’’ role of the front PMMA plate.
Results computed by enhancing the failure stress of the PMMA by
15% induced less damage in the impacted face of the PMMA in the
PMMA/DFA4700/PC laminate but increased by 20% damage at the
center of the rear face of the PC plate. Hence plastic deformations
and failure of the impacted PMMA plate dissipate energy and pro-
tect the rear plate of the assembly.

In Fig. 21 are plotted the equivalent stress r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 r0 : r0

q
against

the effective strain ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 e
0 : e0

q
at the center of the back surface of

the PC layer (where the damage is maximum). Here r0 is the devi-
atoric part of the Cauchy stress tensor and e0 the deviatoric part of
the Hencky strain tensor. The stress–strain curves for the PMMA/
DFA4700/PC and the PMMA/IM800A/PC laminates are qualitatively
similar, but the times corresponding to various features of the
curves and magnitudes of the stresses and strains differ quantita-
tively. In both cases the yield stress of PC – about 80 MPa – is
reached 50 ls after contact initiation. This initial phase of elastic
deformation is followed by softening of the PC material that lasts
until 0.5 (0.55) ms for the laminates with the DFA4700 (IM800A)
adhesive. These times correspond to the first peak in the time-his-
tory of the reaction force, see Fig. 12, and with the initiation of elas-
tic unloading of the PC during which the effective stress drops to
nearly one-fourth (one-third) of its original value for the DF4700
(IMA800A) adhesive. The subsequent increase of the contact force
corresponds to the elastic re-loading of the PC material. The PC
deforms then plastically until the effective strain reaches its max-
imum value. Then there is elastic unloading of the PC followed by
an increase in the effective stress while the effective strain
decreases. This corresponds to switching from tensile to compres-
sive deformations of the PC as made clear by the two non-zero in-
plane principal stresses plotted in Fig. 22, the 3rd out-of-plane
principal stress is zero. The maximum effective strain at the point
in the PC layer and the transition from tensile to compressive
deformations occurs during the second peak of the reaction force.
It is clear from these plots that the evolution of stresses and strains
in the PC is unaffected by the initiation and propagation of cracks
in the PMMA layer.

The dominant stress component in the adhesives at points more
than 5 mm in-plane distance from the interlayer centroid is the
shear stress rrz. Its time history for the two laminates is plotted
in Fig. 23 for the impact speed of 22 m/s. This stress component
was found to be the dominant one by examining stress compo-
nents at different points on the mid-plane of the adhesive layer.
Therefore, the adhesive deforms mostly in shear suggesting
thereby that it is mainly loaded by the relative radial sliding of
the PMMA and the PC layers. However, at the centroid of the adhe-
sive interlayer the pressure is greater than the effective stress
implying that near the center of impact the adhesive transmits
normal tractions mainly due to the high value of the hydrodynamic
pressure.



Table 6
Energy analysis of the impact of the laminates. Energies are given in Joules.

Adhesive material of the laminated plate DFA4700 IM800A

Impact velocity 12 m/s 22 m/s 12 m/s 22 m/s
Initial impactor kinetic energy 2.041 6.860 2.041 6.860
Impactor kinetic energy 1.603 5.123 1.629 4.992

Plate kinetic energy 0.185 0.264 0.179 0.357
PMMA 0.078 0.101 0.076 0.139
Adhesive 0.029 0.61 0.027 0.081
PC 0.078 0.102 0.076 0.137

Elastic energy of the plate 0.109 0.336 0.092 0.471
PMMA 0.039 0.096 0.039 0.151
Adhesive 0.031 0.068 0.026 0.147
PC 0.038 0.172 0.028 0.173

Dissipation by plasticity, softening and viscosity 0.133 0.894 0.111 0.789
PMMA Plasticity 0.000 0.003 0.000 0.001

Softening 0.005 0.007 0.005 0.007
Adhesive Viscosity 0.001 0.004 0.000 0.000
PC Plasticity 0.121 0.871 0.102 0.771

Softening 0.005 0.010 0.004 0.010

Dissipation due to cracking/failure 0.020 0.154 0.030 0.279
PMMA 0.020 0.154 0.030 0.279
Adhesive 0.000 0.000 0.000 0.000
PC 0.000 0.000 0.000 0.000

Dissipation by delamination 0.000 0.001 0.000 0.001
PMMA-adhesive interface 0.000 0.001 0.000 0.001
PC-adhesive interface 0.000 0.000 0.000 0.000

Remaining energy (elastic and kinetic) 1.897 5.722 1.900 5.820
Energy dissipation 0.153 1.049 0.142 1.069
Total 2.049 6.771 2.041 6.889
Variation w.r.t. initial energy +0.42% �1.29% +0.02% +0.43%

Adhesive v0 = 12 m/s v0 = 22 m/s

DFA4700 

IM800A

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

equivalent 
plastic strain

5 mm 5 mm

5 mm 5 mm

x
z

10 mm

Fig. 16. For the impact of PMMA/adhesive/PC plate at 22 m/s, fringe plots in the PC layer of the computed equivalent plastic strain on the back surface (top) and for the
PMMA/DFA4700/PC laminate in a plane orthogonal to the edge of the plate and passing through its center (bottom).
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Fig. 18. Radial lengths of the cracks in the PMMA plate bonded with DFA4700 and IM800A adhesives impacted at 22 m/s. The figure on the right is a magnified view of that on
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Table 7
Computed times of crack initiation (first element deletion), corresponding strain rates
and the maximum principal stress in parentheses at the crack initiation sites. The
temperature rise at these times was insignificant.

Plate 12 m/s Impact speed 22 m/s Impact speed

PMMA/DFA4700/PC 28.6 ls
(1687/s, 141 MPa)

7.39 ls
(2319/s, 142 MPa)

PMMA/IM800A/PC 24.4 ls
(1095/s, 141 MPa)

7.51 ls
(2213/s, 142 MPa)
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The deformed shape of the PC layer is plotted in Fig. 24 for
the 22 m/s impact speed and the PMMA/DFA4700/PC laminate.
The maximum deflection, 7.57 mm, of the plate occurs at its center
at 0.68 ms. It is interesting to observe that the sides of the
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Fig. 19. Time histories of the crack length, eroded energy, reaction force, and the lamina
solid for crack extension and dashed for eroded energy; Blue curve, solid for reaction force
legend, the reader is referred to the web version of this article.)
plate initially have a negative deflection, i.e., that they have an
upward displacement. This agrees with the experimental results
of Stenzler [63].

The main energy dissipation mechanisms have been identified
and quantified. While the viscous deformations of the adhesive
interlayers do not contribute significantly to the energy dissipated
during the impact process, the plastic deformations of the PC mate-
rial and the cracking of the PMMA materials are responsible for
more than 90% of the energy dissipated. The energy dissipated by
softening of the PMMA and the PC due to temperature rise had a
small contribution. The energy dissipated due to delamination at
the interfaces was also miniscule.

Factors such as values of material parameters, failure criteria,
delamination criteria, constitutive relations (material models) for
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Fig. 20. Details of the crack patterns in the PMMA plate of the PMMA/DFA4700/PC
laminate impacted at 22 m/s at t = 0.8 ms (left) and t = 1.0 ms (right).
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the PMMA, the PC and the adhesives, and the boundary conditions
affect computed results. No single paper in the literature provides a
complete set of material data in order to compute results. Algo-
rithms employed in the computational model such as the numeri-
cal integration with respect to time of the coupled nonlinear
ordinary differential equations, element deletion algorithm, and
the FE mesh size and the gradation of elements in the FE mesh
introduce dissipation and errors in the computed solution. Of
course, the test data is not necessarily exactly reproducible. It is
an arduous task to quantify error introduced by each factor/param-
eter in a complex system such as the one analyzed here. Neverthe-
less the model enables one to delineate details of deformations in
each component of the system, and identify dominant sources of
energy dissipation.
Effective Strain

Ef
fe

ct
iv

e
St

re
ss

[M
Pa

]

0 0.1 0.2 0.3
0

20

40

60

80

100
t=0.05ms t=1.0ms

t=1.77ms

t=1.3ms

t=1.1ms

t=0.75ms

t=0.55ms

t=1.7ms

rear surface of the PC layer of the PMMA/DFA4700/PC (left) and PMMA/IM800A/PC

Time [ms]

Pr
in

ci
pa

lC
au

ch
y

St
re

ss
[M

Pa
]

0 0.5 1 1.5 2
-60

-40

-20

0

20

40

60

80

100

σ1
σ2

enter of the rear surface of the PC plate of the PMMA/DFA4700/PC (left) and PMMA/
ro since the surface is traction free.

Time [ms]

σ rz
at

5m
m

fro
m

ce
nt

ro
id

[M
Pa

]

0 0.5 1 1.5 2
-1

0

1

2

3

4

5

6

7

nent at 5 mm in-plane offset from the adhesive centroid for the PMMA/DFA4700/PC



Position from plate center [mm]

D
ef

le
ct

io
n

[m
m

]

-60 -40 -20 0 20 40 60

0

2

4

6

8

Position from plate center [mm]

D
ef

le
ct

io
n

[m
m

]

-12 -9 -6 -3 0 3 6 9 12

0

2

4

6

8

t = 0.2ms
t = 0.4ms
t = 0.6ms
t = 0.8ms
t = 1.0ms
t = 1.2ms
t = 1.4ms

Fig. 24. Deformed shapes of the back surface of the PC plate of the PMMA/DFA4700/PC laminate impacted at 22 m/s; the right figure is a blown up view of the deformed
central region of the plate.

G.O. Antoine, R.C. Batra / Composite Structures 116 (2014) 193–210 209
6. Conclusions

We have developed a mathematical and a computational model
to study finite transient deformations of a laminated plate
impacted at normal incidence by a hemispherical nosed steel cyl-
inder. The PMMA and the PC have been modeled as thermo-elas-
to-visco-plastic materials and the adhesive as a viscoelastic
material. Failure of each material and of the interface between
two distinct materials has been considered. Values of material
parameters have been determined by using test data available in
the literature. The user defined subroutine for modeling the PMMA
and the PC have been implemented in the commercial software,
LS-DYNA.

During the impact of the PMMA/DFA4700/PC and PMMA/
IM800A/PC laminates the time history of the reaction force experi-
enced by the impactor has two dominant peaks before dropping to
zero when the impactor separates from the laminate. Whereas the
computational model predicts reasonably well the portion of the
reaction force time history until the first peak and the maximum
deflection of the laminate, the reaction force beyond the first peak
and hence the time of separation between the impactor and the
laminate are not well predicted. The dominant source of energy
dissipation is the plastic deformation in the PC back plate rather
than the cracking of the front PMMA plate. The time of rapid drop
in the reaction force corresponds to that of the maximum deflec-
tion of the plate, and at this time the radial cracks in the PMMA
have reached their maximum in-plane extension. The majority of
the eroded energy occurs during the rebound of the laminate to
the zero deflection position. The mechanical properties of the
adhesive significantly influence both the time when cracks in the
PMMA initiate, the damage zone in the PMMA plate developed
around the impact site, and the lengths and the number of cracks.
An adhesive with a small value of instantaneous Young’s modulus
will result in more damage to the front layer due to the greater
impedance mismatch between the PMMA and the adhesive, and
will protect the rear PC layer more effectively in the sense that
there will be less damage induced in it due to plastic deformations.
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