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Abstract—We propose a simple model of necking in a sheet reinforced with straight fibers made
of a shape-memory alloy and examine conditions under which the interface between the necked
and the unnecked region is morphologically stable. We use the Mullins and Sekerka (1963, J.
Appl. Phys. 34, 323-330; 1964, J. Appl. Phys. 35, 444-450) method, established for studying the
stability of a moving interface in a solidification problem, to investigate the interface stability of
a propagating neck. It is found that the moving straight interface is morphologically stable for
several typical cases even in the absence of surface-tension effects, and the stationary interface 1s
always stable.

1. INTRODUCTION

One-dimensional phase-transition problems in shape-memory alloys and certain polymers
modeled as nonlinear elastic solids have been extensively studied (Ericksen, 1975; James,
1979;: Hutchinson and Neale, 1983; Coleman, 1985; Falk and Seibel, 1987), and the
solution corresponding to a phase transition between two stable uniform states has been
referred to as necking (Hutchinson and Neal, 1983; Coleman, 1985). Physicists (Barsch
and Krumhansl, 1988; Jacobs, 1985, 1992) working in the area of ferroelasticity have
examined phase transformations in two-dimensional problems. In two-dimensional
solidification problems, it has been found (Langer, 1980; Delves, 1975; Godreche, 1992;
Davis et al., 1990) that the straight interface between the solid and liquid phases will
become unstable and deform into a cellular one under certain conditions, and may even
develop into a more complicated dendritic pattern.

Here we study the necking phenomenon in a sheet reinforced with a large number of
straight shape-memory alloy fibers aligned in the longitudinal direction. It is assumed that
the nonlinear stress-strain curve for the material of the fibers exhibits two stable
branches. We model the sheet as an elastic material, consider a simple two-dimensional
model for its deformations, and use Mullins and Sekerka’s (1963, 1964) method to study
the stability of the straight interphase boundary between the necked and unnecked
regions. The model predicts that unlike solidification problems wherein surface tension
forces are essential for the stability of the interface, the propagating straight boundary of
the necked region can be stable even when there are no surface tension forces.

2. FORMULATION OF THE PROBLEM

We consider a fiber-reinforced flat sheet of unit thickness with fibers aligned along
the x-direction, and the end surfaces of the sheet subjected to uniform surface tractions
in the x-direction. We assume that the sheet undergoes infinitesimal deformations so
that linear kinematic relations apply, and the fibers are densely packed so that lateral
deformations of the sheet are negligible. Thus every point of the sheet undergoes a
time-dependent displacement « in the x-direction, and « is in general also a tunction of x
and y. Whereas both the fibers and the matrix material are taken to be elastic, the
stress-strain curve for the former is taken to be nonlinear with two stable branches and
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271



272 C. Q. Ru and R. C. BATRA

that for the latter, linear. The material of the fibers is presumed to exhibit phase
transformations. Also, fibers are assumed to carry all of the tensile load and the matrix
material supports the shear stress. Thus

oW ou

3e. Exx = U5 Oy = 2GE,, = Gﬁ; = Gu,. (1)

Oxx = J (Exx) =

Here o,, and g,, are the nonzero components of the Cauchy stress tensor, ¢,, and ¢,, are
nonvanishing components of the infinitesimal strain tensor, W is the strain-energy density
for the fiber material normalized to vanish for null value of ¢,,, and G is the shear
modulus of the matrix material. The axial displacement u 1s governed by

pu,tt = fr(exx)u,xx + Gu,yy (2)

which is hyperbolic if f'(¢,,) > 0 and the mass density p is positive. Henceforth we assume
that p > 0 and f'(¢g,,) > O for the two stable branches. Here f' denotes the derivative of
f with respect to its argument. We note that eqn (2) differs from that in a solidification
problem wherein the governing equation is parabolic. The second term on the right-hand
side of eqn (2) describes the coupling effect between adjacent fibers.

Since fiber material is presumed to exhibit phase transformation, 1t 1s conceivable
that there is a surface of discontinuity, or a singular surface, in the sheet in the sense that
fibers are in different phases on the two sides of this surface. Across this surface, the
displacements must be continuous, i.e.

[u] = O 3)

where [u] = 4™ — u~ equals the difference in the values of # on the positive and negative
sides of the surface; the positive side of the surface being the one on which the outward
normal points in the direction of propagation of the surface. If this surface propagates
with speed V in the x-direction, then the Rankine-Hugoniot (Hutchinson and Neale,

1983; Falk and Seibel, 1987; Smoller, 1983) condition requires that

—pViu,l = [/(u)l (4)
The balance of total energy across the singular surface gives
~VIW + 3pu,)’] = [f(u)u,l. (5)

3. STEADY-STATE NECKING SOLUTION

We consider a necking solution that 1s independent of y, and with

z=x—Vt (6)
can be expressed as
u(x, t) = U(2). (7)
Thus
u, = U, u,=-vu’', U=U,. (8)
Substitution from (8) into (2) gives
pVZUﬂ — fr(Ur)Uu (9)
which holds when either
U' = const. or pV* = f"(U). (10)

As shown below [cf. eqn (17)], the second relation need not always holds, so we take
U' = const. as the solution of eqn (9). Thus the steady-state solution in the z, ¢ frame of
reference with interface z = 0 consists of

U =E, U=U =Ez forz<0 (11)
U =E, U=U=E,z forz>0, (12)



Interface stability of a propagating neck 273

‘ c =f(¢)

f(E1)

’N
\
|
]
|
|
L]
|
i
|
i
\
i
|
|
|
]
|
|
\
|
]
\
|

f(E2)

e O R N mie S S o
N IS IEE I S S S .

E2 E1 £

Fig. 1. The stress-strain curve for the shape-memory fibers, and geometric interpretation of
eqn (13).

where E, and E, are positive constants. Without any loss of generality, we take E, > E,.
The jump conditions (4) and (5) reduce to

PVZ(El — E,)) = f(E)) — J(E,), (13)
IWWU") + 1pVU' )] = [SWUHU']. (14)

Since E, > E,, therefore, relation (13) gives f(E,) > f(E,). Relations (13) and (14) also
imply the so called equal-area rule, 1.e.

W(E,) — W(E,) = (f(E)) + fIEIQNE, — E})/2. (13)

On the stress—-strain curve shown in Fig. 1, let the straight line joining the states
(E,, f(E)), (E,, f(E,)) subtend an angle § with the horizontal axis. Then

tg§ = pV? (16)
follows from eqn (13). Thus
pVi< fUE), pV* < [fUEY, (17)
and the maximum value V,, of V occurs when E, = 0. ¥V, is given by
pVaE, = f(E)), (18)
W(E,) = f(EDE,/2. (19)
However, when pV* is negligible, we have
f(E) = f(E,) = gy, the axial traction applied at the ends, (20)
W(E,) — W(E,) = 0(E, — E,), (21)

which is the classical ‘“Maxwell rule”’, e.g. see Ericksen (1975), Hutchinson and Neal
(1983) and Coleman (1985).

4. LINEARIZED ANALYSIS OF THE STABILITY OF THE INTERFACE

According to Mullins and Sekerka’s method (Langer, 1980; Delves, 1975; Godreche,
1992: Davis et al., 1990), we consider a perturbation of the interface geometry in the
reference frame {z = x — V¢, y, t}] moving with the speed V (cf. Fig. 2). Thus, let the

interface geometry be perturbed to that given by
z = 2%y, t) = dcos kye“, (22)
and the steady-state solution be replaced by
u(z, v, t) = E,z + u,(z) cos ky e*’, z < z2¥(y, 1), (23)
u(z, y, t) = E,z + up(z)coskye®’,  z>z%(y,1), (24)
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Fig. 2. A schematic sketch of a propagating neck in a uniaxially reinforced sheet.

where o0 i1s an infinitesimal number, and u,(z) and w,(z) are of order §. The balance of
linear momentum (2) in the frame {z, y, ¢} takes the form

pP(Vu o — 2VUu o+ uy) = ' u, + Gu,,. (25)

Keeping with the spirit of the Mullins and Sekerka method, we take
u,(z) = ae’’, < 72*(, 1), (26)
u,(z) = fe %, 2> 7%y, t), (27)

where ¢ and f are of order &, and p and g are two complex numbers with non-negative
real parts (due to the localized characteristics of the perturbation) determined by

(pV? — fUEDD® — 2Vwpp + (pw?* + Gk?) = 0, (28)
(pV? = fI(E)g* + 2Vwpg + (pw® + Gk?) = 0. (29)
Thus
p = Vop + (GK*(f'(E) — pV?) + po®f (ED)2/(pV* - f'(E)), (30)
g = (—Vwp + (GK*(f'(E) — pV?) + po®f(E)) 3/ (pV? - f(E,)). (31)

The sign in eqns (30) and (31) is selected to ensure that the real parts of p and g are
non-negative. That such roots exist, at least in some special cases, is illustrated below. For
the case of real w, inequalities (17) guarantee that the desired values of p and ¢ are
obtained by selecting the minus sign in expressions (30) and (31).

Let

A= (f'(E) - pV7)q — (f'(E) — pV ). (32)

In the neighborhood of the critical point @w = 0 of instability, if any, and for |w| < 1,
conditions (28) and (29) reduce to

(f'(E)) — pVHp* = GK?, (33)
(f'(Ey) — pV?q* = GK?, (34)

and
A = (GK*(f'(Ey) — pV)'? — (GKA(f(E)) - pVI)2. (35)

For infinitesimal perturbations (22) of the interface and the corresponding solution
(23) and (24) we make the following observations.

(a) Let ® be the angle that the normal to the interface makes with the x-direction.

Then
d, = cos ®d, + sin Od, . (36)
Since cos ® ~ 1 + O(6?), sin ® ~ O(J), d, ~ O(0), we may approximate (36) by
d, = d,, (37)

and we have 9, instead of 4, in the jump conditions for the curved interface
z = 2%
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(b) The local speed v of the interface is given by

v=%=V+zj, (38)

which need not equal V.

(¢) In solidification problems, the forces due to surface tension have a stabilizing
effect. Therefore, we consider them herein. Let n denote the surface tension per
unit length along the interface and y the local curvature of the intertface. Then

eqn (4) should be replaced by

—pvlu, Q= [/(u,)] + ny. (39)

The influence of n on the energy balance (5) is a second-order effect, and is
therefore negligible.

Substitution from (23), (24), (26) and (27) into (3), (5) and (39) yields the following
three linear homogeneous equations to determine o0, « and f:

MNE, — E) + (@ - p) =0, (40)
[(EDpa + f(E)Bg + dnk* = pViap + gB) + wpV((B — @) + I(E,; — Ey)) (41)
o(f(E)a + OE,) — f(E))B + JEy) — VI'(E\)paE, — Vf'(Ey)gPE,
= pVi(w(E,a — BE,;) — V(E,ap + gBE,)).

(42)

In egns (40)-(42), terms involving the product wd will disappear once we set v = V. The
requirement that these equations have a nontrivial solution gives an algebraic equation for
the determination of w whose sign decides the stability of the interface. Alternatively, we
derive from eqns (40)-(42) the following two homogeneous equations to solve for (a-£)

and B:
[(f'(Ey) — pV*)GE, + (f'(E\) — pV*)PE,)B
+ [(f'(E) = pVIPE, + wpV(E; + E)l(a - ) = 0,
[(f'(E) = pVHg + (f'(E) — pVIDUE, — E)B
+ [(f'(E) — pVID(E, ~ E)) + 2pwV(E, - Ey) - nk*}(« - B) = 0,

(43)

(44)

where the common factor V in (43) has been cancelled. In order for eqns (43) and (44) to
have a nontrivial solution ((« — £5), ), we must have

wB = A (43)
where
A = ~(E, - EDXf'(E) - pVIS(E) — pVIPG - nkX(f(Ey) — pVI)qE, (46)
+ (f'(Ey) — pV*)PE)),
B = pV(E, — E,)’A. @7

When V = 07, B = 0, and eqn (45) gives A = 0. Therefore, there does not exist any
admissible perturbation with Re(w) > 0 and we conclude that the interface z = 0 with
V = 0 is stable in the sense of Mullins and Sekerka’s criterion of interface stability.

For the more interesting case of V # 0, eqn (45) determines w and the sign of real
part of w decides the stability of the interface.

5. EXAMPLES OF THE INTERFACE STABILITY OF A PROPAGATING NECK

We now consider a few simple cases for which ¥V # 0 and examine the interface
stability of a propagating neck.
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1) k=0
This corresponds to a one-dimensional problem and has also been studied earlier,
e.g. see Hutchinson and Neale (1983). For V s 0 and p # 0, egns (45)-(47) give

w = 0. (48)
Thus the interface z = 0 with V # 0 is always stable in the sense of Mullins and Sekerka.

(1) n=0and f'(E)) = S(Ey)
That is, there is no surface tension and the two modulii are equal. Equation (45) gives

w* = —~GK*(f'(Ey) - pV)/(p(f'(E)) + pV?)) < O, (49)

which implies
Gk*(f'(Ey) — pV?) + po*f'(E)) > 0. (50)

The 1nequality (50) ensures that Re(g) > 0 and Re(p) > 0. Therefore, we conclude that,
when n = 0 and f'(E,) = f'(E,), the admissible perturbation corresponds to w? < 0, and
the straight interface z = 0 is stable in the sense of Mullins and Sekerka.

(m) G =20

Such a situation will occur approximately when the matrix material is very weak.
Parameters A and B appearing in eqn (45) are given, respectively, by (46) and (47) with
A defined by (32), and parameters p and g are determined from (30) and (31). The
eigenequation (45) gives that either

w =70 (31)
or

nkZ[(pV + Vpf'(E))E; + (- pV + vpf’ (Ez))Ez]
pE, — Ez) [pV? + \/f’(Ez)fr(El)]
The value of w given by (52) contradicts (30) and (31). Therefore, we conclude that, when

G = 0, the admissible perturbation corresponds to w = 0 and the straight interface z = 0
with V # 0 is always stable.

v) p=0
This simulates the situation when fibers are extremely light but are quite strong.

From (47) we get B = 0 and the eigenequation (45) gives
A =0. (53)

(52)

It follows from eqn (46) that
(E, — E))f(ENf(EDpqV = —nk*V [ f(Ey)qE, + f(E)DE,], (54)

which cannot be satisfied unless # < 0, since p > 0 and g > 0 are determined by (30) and
(31). Thus the interface is stable.

6. CONCLUSIONS

We have proposed a simple model for mechanical deformations of a thin sheet
reinforced with shape-memory fibers, and have used Mullins and Sekerka’s method to
analyze the stability of a straight interface between the necked and the unnecked regions.
The fibers have been modeled as nonlinear elastic but the matrix as linearly elastic, and
the end surfaces of the sheet are subjected to uniform surface tractions in the longitudinal
direction. Whereas in solidification problems the surface tension is essential for interface
stability, for the present problem, the propagating neck is found to be stable for several
cases even in the absence of surface-tension forces. Also, the stationary interface is always
stable. We note that the Mullins and Sekerka criterion of interface stability is con-
ceptually different from the so-called ‘‘Marginal Stability’’ approach (Benjacob ef al.,
1985) developed for studying the stability of a front propagating into an unstable state.
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