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Abstract. We have developed an adaptive mesh refinement technique that rezones the given domain for a fixed number of 
quadrilateral elements such that fine elements are generated within the severely deformed region and coarse elements elsewhere. 
Loosely speaking, the area of an element is inversely proportional to the value of the deformation measure at its centroid. Here 
we use the temperature rise at a material point to gauge its deformations which is reasonable for the shear band problem since 
the material within the shear band is deformed intensely and is heated up significantly. It is shown that the proposed mesh 
refinement technique is independent of the initial starting mesh, and that the use of an adaptively refined mesh gives thinner 
shear bands, and sharper temperature rise and the growth of the second invariant of the plastic strain-rate within the band as 
compared to that for a fixed mesh having the same number of nodes. The method works well even when the deformation 
localizes into more than one narrow region. 

1 Introduction 

Most of the previous two-dimensional numerical studies of shear bands have used a fixed finite 
element mesh (e.g., see Batra and Liu 1989; Needleman 1989; Batra and Zhu 1991), an exception 
seems to be the recent work of Batra and Ko (1992) who developed a mesh refinement technique 
that generates fine triangular elements in the severely deforming region and coarse elements 
elsewhere. They added more elements to the region as the localization of the deformation into a 
narrow band progressed. Assuming that enough core storage is available in the computer being 
used, this technique enables one to resolve sharp gradients of the deformation within the severely 
deforming region in as great a detail as desired. Of course, adding new elements increases the 
computational cost, necessitates the generation of a new element topology, and may eventually 
make the system of algebraic equations to be solved ill-conditioned and/or extremely stiff. One 
could circumvent this by limiting the ratio of the largest to the smallest element in the mesh. 
Another way to refine a mesh is to use a fixed number of elements and nodes, and adjust the 
locations of nodes so as to concentrate fine elements in the severely deforming regions and coarse 
elements elsewhere. It keeps the element topology fixed and thus requires less bookkeeping and 
can be easily implemented in an existing code. It is shown that the mesh so generated is independent 
of the starting mesh and can adequately delineate the localization of the deformation into narrow 
bands. 

For one-dimensional problems, Drew and Flaherty (1984) have used the moving grid method 
to develop an adaptive finite element code that locates regions with large gradients and concen- 
trates fine elements there in order to minimize approximately the discretization error per time 
step. Pervaiz and Baron (1988) have discussed an adaptive technique which refines the spatial 
and/or temporal grid whenever preselected gradients exceed the threshold levels and have applied 
it to study quasi-one-dimensional unsteady flow problems involving finite rate chemistry. Batra 
and Kim (1990) developed an adaptive mesh refinement technique that distributes uniformly the 
scaled residuals of equations expressing the balance of linear momentum and the balance of 
internal energy. They subdivided elements having large scaled residuals and noted that large values 
of the scaled residuals occurred, in general, in non-overlapping regions. Their technique did not 
combine elements with large scaled residuals, and thus did not result in an optimum mesh. 
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We refer the reader to Safjan et al. (1991) and Zienkiewicz and Zhu (1991) for an extensive list 
of references on adaptive mesh refinement, to Batra and Zhu (1991) for several references on 
adiabatic shear banding, and to the recent book by Bai and Dodd (1992) for a summary of the 
work completed on adiabatic shear banding till 1989. 

2 Formulation of the shear band problem 

We study plane strain thermomechanical deformations of a thermally softening viscoplastic 
prismatic body of square cross-section, and use a fixed set of rectangular Cartesian coordinates 
with origin at its centroid (see Fig. 1). In terms of the referential description, governing equations 
are: 

(J)" = O, pi~i = T~,~, p~ = - Q~,~ + T~v~,~, (1-3) 

where 

J = det Fi~, Fi~ = xi.~ - Oxi/OX~, (4) 

xi is the present position of a material particle that occupied place X~ in the reference configuration, 
p its mass density, vi its present velocity, a superimposed dot signifies the material time derivative, 
a comma followed by an index ~(i) stands for partial derivative with respect to X~ (xi), a repeated 
index implies summation over the range of the index, T is the first Piola-Kirchhoff stress tensor, 
e is the specific internal energy, and Q is the heat flux per unit undeformed area. Equation (1) 
implies that the deformations are isochoric. The balance laws (1)-(3) are supplemented by the 
following constitutive relations 

o-ij=--ptS~i+2pD~j, T~=X~,ja~j ,  2 p = ~ ( l + b I ) "  1+  ( l - v 0 ) ,  ~=cO,  (5,6) 
,/3i 

Q ~ = X ~ j q j ,  q ~ = - k O , i ,  ~=a~D~j  1+  , 2D~j=v~4+v~, ~, 212=D~iDq. (7,8) 

Here ~ is the Cauchy stress tensor, p the hydrostatic pressure not determined by the deformation 
history of the material point, D the strain-rate tensor, o" o the yield stress of the material in a 
quasistatic simple tension or compression test conducted at the room temperature, parameters b 
and rn characterize the strain-rate sensitivity of the material, 0o and n its strain-hardening, v is the 
thermal softening coefficient, c the specific heat, k the ghermal conductivity, and 0 equals the 
temperature rise of a material particle. All of the material parameters are assumed to be inde- 
pendent of the temperature. Here we have neglected elastic deformations of the body since our 
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Fig. 1. A schematic sketch of the problem studied 
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interest is to study intense plastic deformations within the shear band. Also, all of the plastic 
working has been assumed to be converted into heating of the body. 

We nondimensionalize variables by scaling stress like quantities by ao, time by H/vo, length 
by H, and temperature by the reference temperature 0r defined as 

O, = ao/(pc). (9) 

Here 2H is the height of the square block and v 0 the steady value of the velocity applied to the 
top and bottom surfaces in the x/-direction. Henceforth we use nondimensional variables only 
and indicate them by the same symbols as those used for dimensional variables. 

We assume that the initial and boundary conditions are such that the deformations of the 
block are symmetrical about the horizontal and vertical centroidal axes, and study deformations 
of the material in the first quadrant. We take all four surfaces of the region studied to be thermally 
insulated and free of tangential tractions. Because of the assumed symmetry of deformations, the 
normal velocity is zero on the left and bottom surfaces. The right vertical surface is taken to be 
free of normal tractions also, and a uniform vertically downward velocity of unit magnitude is 
applied on the top surface. For the initial conditions, we take 

UI(X,0)  : X1, Uz(X,0)  ~--- - -  X2, (10.1) 

0(x, 0) = 0o + e(1 - r2)9e- 5r2, r 2 _ X~ + Xz z =< 1, 

= 0  o, r > l .  (10.2) 

That is, the transients have died out. It is highly unlikely that the transients will die out simultane- 
ously throughout the body. However, the assumption is justified on the grounds that it does not 
affect the qualitative nature of results and reduces significantly the CPU effort necessary to solve 
the problem. The initial temperature distribution (10.2) models a material inhomogeneity; the 
height e of the temperature bump can be thought of as representing the strength of the singularity. 

The problem formulated above is highly nonlinear. We assume that it has a solution and find 
its approximation by the finite element method. We use four-noded quadrilateral elements, take 
the hydrostatic pressure to be constant within each element, and use 2 x 2 Gauss quadrature rule 
to evaluate various integrals over an element, and the lumped mass matrix obtained by employing 
the special lumping technique (e.g. see Hughes (1987)). The Galerkin approximation of the 
governing equations gives a set of coupled highly nonlinear ordinary differential equations (ODEs) 
for nodal values of two components of the velocity, temperature, internal variable ~, and the values 
of the hydrostatic pressure p within each element. The ODEs are integrated by using the 
trapezoidal rule, hydrostatic pressure p is eliminated at the element level, and the nonlinear 
algebraic equations are solved iteratively by using one of the following two convergence criteria 
at each node point: 

[Av, I lay21 Ia01 IA~[ 
- - +  + + <e~, IAv l I+[AvzI+[AOI+[AIP[<e2.  (11.1,11.2) 
IVll Iv l 0 q, 

Here el and e z are preassigned small numbers, and A0 equals the difference in the nodal values of 
0 during two successive iterations within the same time increment. At boundary points where vl 
or v z is prescribed to be zero, Eq. (11.1) is not valid. 

3 Adaptive mesh refinement technique 

Here we discuss a mesh refinement technique in which the total number of elements, nodes and 
the element connectivity are kept fixed. The nodes are repositioned so that 

ae= S qd.O, e = l , 2  . . . . .  nel , (12) 
~e 

is nearly the same for each element ~e" In (12), q is a measure of the deformation such as the second 
invariant of the strain-rate tensor, temperature rise 0, the equivalent plastic strain, or the internal 
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variable 4s, n~ equals the number of elements desired in the mesh and "(~e is one of the elements. 
Our reason for making a e the same over each element ~r~ e is that within the region of localization 
of the deformation values of ~1 are expected to be very high as compared to those in the remaining 
region. The refined mesh will depend upon what deformation measure is associated with t#; here 
we take t/to be the temperature rise 0. 

Having solved the problem on an initial mesh we refine it as follows. We begin with either the 
horizontal boundary or the vertical one and relocate nodes on it according to the criterion 
described below. To be definite, let us begin with the left vertical edge. After having repositioned 
nodes on it we do the same on the almost vertical curve that passes through nodes next to the left 
vertical side, and continue the process till we reach the right vertical edge. The procedure is then 
repeated beginning with the top or bottom horizontal edge and going to the other end. 

Referring to Fig. 2, let AB be the curve on which nodes are to be relocated. We plot the 
temperature distribution on AB with abscissa as the distance of a point from A measured along 
AB and ordinate as the temperature at that point. Values of temperature at numerous points on 
AB are obtained by linear interpolation from the values at node points. If S equals the total area 
under the curve, the approximate location s~ of the nth node on AB is given by 

~ S 
I , 

where Nes  equals the number of elements on A B .  We reposition the node to the interpolation point 
immediately to the left of its approximate location determined from Eq. (13). In Fig. 2c, the position 
of a node as found from Eq. (13) is shown by a superimposed prime, and its relocation in Fig. 2d 
by superimposed two primes. Since the end points on AB are kept fixed, the aforestated procedure 
can be employed .by starting from either A or B. Note that when nodes on an approximate 
horizontal curve are relocated, positions of nodes A and B will change. 
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Fig. 2. a Curve AB on which nodes are to be 
relocated, b Temperature distribution on curve 
AB on which nodes are to be reposit ioned, e 
Temporary  pos i t ion on  curve AB of  relocated 
nodes, d Reposi t ioned nodes on curve AB 
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k 
Fig. 3, Relocation ofaninterior node to smoothen out the generated 
mesh 

The quadrilateral elements produced by the aforestated simple technique are not always well 
shaped in the sense that one of the interior angles may be either too small or too large. It usually 
happens in regions where the element size varies noticeably. We use the mesh smoothing method 
of Zhu et al. (1991) to improve upon the shapes of quadrilateral elements. Each internal node is 
repositioned to the centroid of the polygon formed by all of the elements meeting at the node. As 
illustrated in Fig. 3, the internal node i is moved to i' with coordinates given by 

x' - 1 M _--- Z i 4M ~ (Xj+2Xk+Xl)a, y , _  1 U i 4 IVI  (yj+ 2yk + Yt)a, (14) 
a : l  a 

where M is the number of elements sharing node i. After having relocated all of the internal nodes, 
the element shapes are checked to see if all interior angles of every element are between 20 ~ and 
160 ~ If not, the nodes are repositioned according to Eq. (14) till such is the case. For the problems 
studied herein, the mesh smoothing procedure had to be applied atmost three times to generate 
a satisfactory mesh. Because of the smoothening of the mesh, the value of a e defined by Eq. (12) is 
only approximately the same for all elements in the mesh. 

4 Results and discussion 

In order to illustrate the aforestated mesh refinement technique we compute results for the shear 
band problem with various variables assigned the following values. 

b = 10000 sec, v = 0.0222 ~ 1, ao = 333 MPa, k = 49.22 Win-  1 ~ 1, 

c = 4 7 3 J k g - l ~  p = 7 8 6 0 k g m - 3 ,  m=0.025, n=0.09,  

00=0.017, H = 5 m m ,  Vo=25m/s, e=0.2,  e l = 1 0  -3, e a = 1 0  -3, 0o=0.  (15) 

These values except that for v are for a typical steel and were also used by Batra and Ko (1992). 
Note that here we also account for the work hardening of the material through the internal variable 
0. Values of parameters given in (15) imply that the average strain-rate equals 5000sec -1, 
0 r = 89.6 ~ and the nondimensionaI melting temperature equals 0.503. The higher values of v and 

speed up the initiation of a shear band and cut down significantly the CPU time required to 
study the problem without affecting the qualitative nature of results. The test data to find values 
of material parameters at strain-rates, strains and temperatures likely to occur in a shear band is 
not currently available, and a quantitative comparison of computed results with test findings is 
still not feasible. 

Figure 4a shows the initial mesh consisting of 400 uniform elements, the generated refined 
meshes when the temperature 0 at the centroid equalled 0.25, 0.35, and 0.45 are plotted in Figs. 4b, 4c, 
and 4d, respectively; the mesh was also refined when 0 at the centroid reached 0.30 and 0.40, but 
these are not depicted in the figure for the sake of brevity. We choose to refine the mesh for equal 
increments of the temperature rise. However, other criteria such as the second invariant I of the 
strain-rate tensor attaining certain values, or equal increments in the value of ~ would be equally 
good. The meshes shown in Fig. 4 vividly reveal that the aforestated refinement technique 
generated a nonuniform mesh with finer elements in the severely deformed region and coarse 
elements elsewhere. The mesh smoothing criterion (14) had to be applied atmost three times to 
satisfy the requirement that the interior angles of every quadrilateral element be between 20 ~ and 
160 ~ . We note that the mesh generation scheme does not impose any restriction on the ratio of 
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Fig. 4. a Initial uniform mesh of 400 elements, b-d  Finite element meshes generated by using the mesh refinement technique 
when the temperature at the center of the specimen reached 0.25, 0.35, and 0.45 

the area of the largest to that of the smallest element in the mesh. Even though this did not cause 
an unduly skewed mesh to be generated for the present problem, in other situations such a 
restriction may be necessary. One could avoid this either by having more elements in the initial 
mesh or by adding more elements at a few intermediate stages. The latter would necessitate the 
creation of a new element topology. 

Figure 5 exhibits, in the deformed configuration, contours of the second invariant I of the 
deviatoric strain-rate tensor when the average strain 7,v0 = 0.0166, 0.0352, and 0.044. These 
evidence that as the block continues to be deformed, the deformation localizes into an increasingly 
narrower band. The contours of I in the deformed configuration at 7avo = 0.044 obtained by using 
a fixed mesh of initially 400 uniform elements plotted in Fig. 5d affirm the advantage of using an 
adaptively refined mesh. Not only the computed peak values of I within the band are higher for 
the refined mesh, the width of the region of localization is much narrower as compared to that 
obtained with a fixed mesh. From these contours one can estimate the band centerline to be the 
curve CED shown in Fig. 6a. In Figs. 6b and 6c, we have exhibited the variation, at different times, 
of the temperature rise 0 and the second invariant I of the deviatoric strain-rate tensor on line AB 
that is perpendicular to the estimated band centerline and is shown in Fig. 6a. These plots confirm 
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the localization of the deformation into a narrow band as the block continues to be compressed. 
We note that the temperature rise 0 is a measure of the total plastic work done at a point since 
the final nondimensional time of 0.044 equals 8.8/~s and the heat conducted away from a point 
during that interval is indeed minuscule. Thus, not only the accumulated deformation within the 
band is large, the material there is deforming severely at t = 0.044 as indicated by the high values 
of I there. 

In Fig. 7 we have plotted for the fixed uniform mesh and for the adaptively refined mesh the 
evolution at the origin of the temperature rise, the second invariant I of the deviatoric strain-rate 
tensor and the effective stress s e defined as 

s e = ~ ( 1 -  v0)(1 + hi)m(1 + ~/~o)". (16) 

It is clear that the rates of growth of 0 and I and the rate of drop of s e at the origin are sharper 
for the refined mesh as compared to that for the fixed mesh with the same number of nodes. 
Computations were stopped when the temperature at the origin reached the presumed melting 
temperature of the material. There is no assurance that the computed results are optimum for the 
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given number of nodes since they may also depend upon the finite element basis functions used 
to approximate the solution of the problem. For the refined mesh the second invariant of the 
deviatoric strain-rate tensor at the origin seems to reach a plateau due to the temperature there 
approaching the melting point of the material. Once that happens, the effective stress there 
vanishes. However, the surrounding material still contributes to the strength of the body. 

We now investigate the improvement, if any, in the quality of the approximate solution 
obtained by refining the mesh adaptively. Since the analytical solution of the problem is unknown 
and there is no hope of finding one in the near future, we compare the approximate solution with a 
higher-order approximate solution (Hinton and Campbell 1974) obtained by smoothening out 
the computed solution. Let g be one of the variables to be smoothened. For the four-noded 
quadrilateral element, we write 

g(~, q) = a + b~ + crl + d~tl (17) 

where (4, q) are the coordinates of a point with respect to a set of local coordinate axes, and 
constants a, b, c, and d are determined from the values of g at the four quadrature points within 
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the element. We use Eq. (17) to evaluate g at the vertices of the quadrilateral element. The value 
g* of the smoothened solution at the nth node is given by 

g.  1 N~ 
- Y ,  a.m, (18) 

]~em=l 
where Ne equals the number of elements meeting at the node n, and g.m equals the value of g at 
the nth node belonging to element m. Knowing g* at each node, we can interpolate its value at 
any other point by using the finite element basis functions. The percentage error E in the deviatoric 
strain-rate tensor D defined by 

E =  tlello x 100, (19) 
II e II o 2 + II D II 

Ne! 
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where Net equals the number of elements in the mesh, is plotted in Fig. 8. The error for the solution 
obtained by using the adaptively refined mesh is lower for 7,vg =< 0.037 and it then suddenly 
increases to match with that obtained for the solution computed by using a fixed mesh. It probably 
is due to the large errors caused by smoothening out of the approximate solution in the late stages 
of the band development when the deformations within the band are very intense. Batra and Ko 
(1992) found that, contrary to the intuitive thinking, the error as given by Eq. (19) was higher for 
the approximate solution computed by using a fixed mesh of three-noded triangular elements with 
841 nodes as compared to that for a similar mesh with 441 nodes. They remarked that the error 
measure (19) is rather crude. 

Since the adaptively refined meshes are obtained by repositioning the nodes, one might suspect 
that the solution so obtained will depend upon the initial mesh at time t -- 0. That such is not case 
is confirmed by results depicted in Fig. 9 and obtained by using two different initial meshes, namely, 
a uniform mesh of 400 elements and a nonuniform mesh of 400 elements shown in Fig. 9a. The 
curves delineating the evolution at the origin of the temperature rise, effective strain-rate and the 
effective stress, and of the error measure (19) for the two solutions essentially coincide with each 
other. We note that the error measure is not plotted in Fig. 9. 

In an attempt to study the interaction between bands originating from two different locations, 
Batra and Liu (1990) introduced two identical temperature perturbations with their centers 
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situated on the vertical centroidal axis and equidistant on either side of the horizontal centroidal 
axis. Assuming that the deformation of the block was symmetrical about the two centroidal axes, 
they studied deformations of the region in the first quadrant only and found that deformation 
localized into regions with their centerlines forming a parallelogram. We analyzed the problem 
defined in Sect. 2 except that the center of the temperature bump (10.2) is now located at (0, 0.375) 
rather than at the origin. The initial mesh consisted of 400 uniform quadrilateral elements, the 
meshes generated at ~,vq = 0.02, 0.03, and 0.037 by using the mesh refinement technique of Sect. 3 
and depicted in Fig. 10 show that fine elements are generated within severely deformed regions 
and coarse elements elsewhere. The contours of the effective strain-rate plotted in Fig. 11 at 
7,,,0 = 0.02, 0.03, and 0.037 show that the material along the side passing through the center of 
the temperature bump and making an angle of nearly 45 ~ clockwise with the vertical line is 
deforming more severely than that along the other three sides of the parallelogram. Similar results 
were obtained by Batra and Liu (1990) who used a fixed mesh of nine-noded quadrilateral 
elements. 

5 Conclusions 

We have developed an adaptive mesh refinement technique that generates quadrilateral elements 
such that the integral of a deformation measure over an element is nearly the same for all elements 
in the mesh and all interior angles of the elements generated have values between 20 ~ and 160 ~ . 
The technique is easy to implement in an existing code since it only repositions the nodes and does 
not change the element connectivity. Values of solution variables at the relocated nodes are 
obtained by first determining to which element in the previous mesh a particular node belonged, 
and then interpolating values by using the finite element basis functions. The technique can be 
easily modified to generate triangular elements obtained by subdividing a quadrilateral into four 
triangles. Adaptively refined meshes when used to study the localization of the deformation into 
narrow bands in a thermally softening viscoplastic material give considerably sharper results as 
compared to those obtained by using a fixed mesh. Computed results for the shear band problem 
obtained by using adaptively refined meshes are found to be independent of the initial mesh used. 
The method was quite successful in analyzing the localization problem in which the deformation 
was expected to concentrate into narrow regions around the sides of a parallelogram. 
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