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a b s t r a c t

We study vibrations of single- and multi-layered rectangular graphene nanoribbons (GNRs) using molec-
ular mechanics (MM) simulations by employing the MM3 potential. Two sets of boundary conditions are
considered, namely, clamping atoms on either all four edges (CCCC) or on the two small edges (CFCF).
Furthermore, we consider two scenarios for a single-layered GNR – one in which an interior atom is held
stationary and the other in which a bucky-ball is covalently bonded to an interior atom. For multi-layered
GNRs an interior atom only on the outermost layer is either held fixed or has a bucky-ball covalently
bonded to it. For CCCC single- and multi-layered GNRs, both scenarios are found to divide the GNR into
two differently vibrating regions such that in one region atoms have negligible while in the other region
large out-of-plane displacements; we call this mode localization. For multi-layered GNRs, mode localiza-
tion in the outermost layer leads to cooperative mode localization in the remaining layers. We also study
vibrations of prestretched CFCF single-layered GNRs with and without a covalently bonded bucky-ball,
and find that the attached bucky-ball localizes modes in a certain region of the single-layered GNRs.
For an unstretched single-layered GNR a very interesting result from MM simulations is that one region
undergoes bending while the other torsional vibration. The results for single-layered GNRs with CFCF
boundary condition are correlated with those derived from continuum models, namely a stretched
string-mass and a Kirchhoff plate. The frequency equation for the string-mass model is derived by solving
the equation of motion using the Laplace transform technique. Frequencies of vibrations of the Kirchhoff
plate are numerically found by using the finite element method. With increasing value of the prestretch
the string-mass system is found to have bending mode frequencies that are closer to those of the CFCF
single-layered GNR than those of the Kirchhoff plate. Using potential energy of deformation at each atom,
for multi-layered GNRs with a fixed interior atom, and for single-layered GNRs with a covalently bonded
bucky-ball, it is found that the classical parameter for quantifying vibration mode localization is not
valid; hence a new parameter is defined. This work highlights the importance of modes of vibration
for designing sensors to detect a mass attached to either a single- or a multi-layered GNR.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Single- and multi-layered graphene sheets (S/MLGSs) and
graphene nanoribbons (GNRs) have been studied using either
molecular mechanics/dynamics (MM/MD) simulations [1–6] or
experimentally as nano-electro-mechanical-systems (NEMSs) actu-
ators and sensors [7–12]. In order to quickly realize a workable and
reliable system, an accurate knowledge of dynamic characteristics
of S/MLGSs and GNRs is needed. Furthermore, some researchers
have analyzed dynamic/static deformations of S/MLGSs and GNRs
to find their elastic constants and basal plane stiffness [2,10]. To
achieve these objectives one usually compares dynamic/static char-
acteristics of graphene sheets (GSs) and nanoribbons (NRs) with
those of their equivalent continuum structures (ECSs). In the stud-
ies listed above these ECSs are considered to be either thin beams/
plates/strips or membranes. For an MLGS or a multi-layered GNR
the ECS could be a thin plate/membrane (equal to the number of
layers in the MLGS or multi-layered GNR) interconnected with each
other through van der Waals springs [13,14].

In NEMSs, atoms on the edges of an S/MLGS or a GNR are invari-
ably attached to a substrate and the interaction between them may
be due to van der Waals forces [7,10,12]. Modelling such interac-
tions, which translate as boundary conditions for the ECS, is
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computationally very challenging. Approximating these interac-
tions as clamped/simply supported or compliant boundary condi-
tions (if the substrate is taken as flexible) on the edges of the ECS
can lead to a wide variation in results [7,10]. In most cases it is
found that an ECS in the form of a thin plate/membrane predicts
well the vibrational characteristics and the basal plane stiffness
of GSs and NRs.

Filoche and Mayboroda [15] recently showed that if a thin elas-
tic rectangular Kirchhoff plate clamped on all edges has an interior
point held stationary then a line through that point in the plane of
the plate and parallel to an edge of the plate divides it into two
independently vibrating regions. Thus, at a given frequency the
corresponding standing wave will have almost negligible ampli-
tude in a region. Filoche and Mayboroda [15] termed this phenom-
enon mode localization. Furthermore, they showed that with an
increase in the aspect ratio of plates the localization of modes in
one of the two regions increased. In a similar study, Sharma et al.
[16] showed that for thin elastic orthotropic Mindlin plates one
can tailor either the material properties or the lamination scheme
to exploit the phenomenon of mode localization for controlling
vibration/noise. They also found that adding a mass at an interior
point of a plate localizes modes.

We envisage two situations similar to those studied in [15,16]
for S/MLGSs and GNRs: (i) a single- or multi-layered GNR is kept
over a patterned surface etched in a trench, and (ii) a single- or
multi-layered GNR is used as a mass sensor that attracts a single
foreign atom. In the first scenario the single- or multi-layered
GNR placed over a trench may have an interior atom interacting
with an etched pillar of height greater than that of other pillars
in the trench in such a way that the atom of the single- or multi-
layered GNR is considered to be fixed to that pillar. And, in the sec-
ond case a molecule is bonded covalently or attached by van der
Waals force to an interior atom. The second scenario is more com-
monly encountered. A typical GNR based mass sensor is function-
alized with receptors such that it adsorbs/attracts a single
molecule with greater probability. Hence, it is likely that when
such a sensor adsorbs/attracts a foreign molecule it will exhibit
mode localization due to mass loading because a GNR behaves like
a thin plate/membrane. This localization in turn may impair the
measurement of the out-of-plane vibrations depending on which
side of the GNR is probed. Hence, one may need to amplify and fil-
ter the signal to increase the signal to noise ratio. This will require
additional electronics which may lead to a bulky and un-manage-
able sensor system. As far as we know there is no available work in
the open literature that elucidates this phenomenon for a graphene
based mass sensor. A prior knowledge of mode localization while
designing a sensitive mass sensor may provide useful guidelines
on the placement of probes.

The rest of the paper is organized as follows. In Section 2 we
describe the MM simulations using the MM3 potential. The mode
localization in single- and multi-layered GNRs due to fixing an
interior atom is studied in Section 3 where we also explain the
cooperative mode localization for multi-layered GNRs. In Section 4
the mode localization in single- or multi-layered GNRs due to an
attached foreign molecule and its quantification is discussed. We
Fig. 1. Structure of a GNR depicting geometric parameters, location of an interior atom a
and X2 (on the right side of the dividing line AB) in which vibration modes get localize
correlate results from MM simulations with those from continuum
theories in Section 5. Conclusions of this work are summarized in
Section 6.

2. Molecular mechanics simulations

We consider rectangular single- and multi-layered GNRs with
two different boundary conditions on its edges. In one case all
atoms on the four edges are fixed and in the other, atoms only
on two short edges are fixed; the former is usually called
clamped–clamped clamped–clamped (CCCC) and the latter
clamped-free-clamped-free (CFCF) boundary condition. Fixing or
clamping an atom implies that its three translational displace-
ments are equal to zero. Furthermore, the mode localization in
these ribbons is studied due to either fixing an interior carbon
atom or covalently bonding a bucky-ball to an interior carbon atom
of a single-layered GNR (in case of a multi-layered GNR an atom on
its outermost layer). The NRs without an interior fixed atom and
carrying no bucky-ball will be referred to as pristine NRs and those
with one of these conditions as treated NRs.

Vibration characteristics of GNRs are studied using molecular
mechanics (MM) simulations employing an open source code TIN-
KER [20] and the MM3 [17] potential. We have found the MM3 [17]
potential to be appropriate for modelling single-layered GNRs due
to the similarity between graphitic bonds in the GNRs and the aro-
matic protein structures for which the potential was constructed.
The mathematical expression of the potential is given by Eq. (1).
The terms Us, Uh and U/ are energies due to bond stretching,
bending and torsion, respectively, UvdW represents van der Waals
interaction between non-bonded atoms, and Ush, U/s and Uhh

0

represent energies of cross interactions between stretch–bend,
torsion–stretch and bend–bend deformations, respectively. The
degrees-of-freedom r, h, h0 and / stand for stretch, angle bending,
out-of-plane bending and dihedral torsion, respectively. A
subscript, e, on a variable signifies its value in the configuration
of the global minimum potential energy.
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The total potential energy of a body equals the sum of potential
energies of all atoms in the body (indices i and j in Eq. (1) range over
bonded atoms, and the index k over all atoms). Values of constants
t P (L/5, W/2), regions X1 (on the left side of the dividing line AB passing through P)
d after fixing an atom or attaching a foreign molecule at P.



Fig. 2. Vibration modes of a single-layered GNR. Modes (1,1) and (4,1) of the pristine GNR are shown in (a) and (c), respectively. Localized (1,1) and (4,1) modes after fixing
an interior atom at P, marked as red dot, are shown in (b) and (d), respectively.
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Ks, Kh, V1, V2, V3, ee, rm, Ksh, K/s and Khh0 are given in [17,20]. We note
that the van der Waals force between two atoms varies as weighted
sum of (rm/r)6 and exp(�12 r/rm). The first term is the same as that in
the Lennard-Jones potential, but the second term is different. The
MM3 potential has been validated by comparing predictions from
Fig. 3. Distribution of the mode localization parameter b1 computed over the first
40 out-of-plane modes for GNR (a) without, and (b) with interior fixed atom at P (cf.
Fig. 1).
it with the test data available in the open literature [10,18] in our
previous studies [2,19].

The first step in our work is the minimization of the potential
energy of a single- or a multi-layered GNR within rms potential
gradient of 0.001 kcal/mol/Å without using a cut-off distance and
without applying boundary conditions. For this step MINIMIZE
subroutine of TINKER [20] is used. In the second step atoms on
the edges are fixed according to the desired boundary conditions
and the vibration characteristics of the single- or the multi-layered
GNRs are obtained using VIBRATE subroutine. This module com-
putes eigenvalues and eigenvectors of the mass weighted Hessian
for the single- or multi-layered GNRs. For a treated GNR in which
an interior atom is fixed the procedure is similar to that described
above except that besides fixing edge atoms we also fix an interior
atom. However, when a foreign molecule is attached to an interior
atom of a single-layered GNR, we first compute the minimum
potential energy configuration of the bucky-ball alone and then
of the system comprised of the equilibrated bucky-ball covalently
bonded to the equilibrated clamped pristine GNR, each within rms
potential gradient of 0.001 kcal/mol/Å. Subsequently, the vibration
characteristics are computed as explained above. Fixing an interior
atom and attaching a bucky-ball to an interior atom of a NR leads
to localization of modes of vibration. Localization of in-plane and
out-of-plane vibration modes (phonons) indicates that the flow of heat
Fig. 4. For an atom fixed at (L/5, W/2) in a CCCC GNR, variation of the connection
coefficient with the aspect ratio. We note that the connection coefficient decreases
rapidly up to the aspect ratio �12.
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along/across GNRs might be affected. However, in this paper we only
study the out-of-plane modes of vibration of single- or multi-lay-
ered GNRs. Furthermore, we characterize the phenomenon of
mode localization by considering first forty out-of-plane modes.
3. Mode localization due to fixed interior atom

3.1. Single-layered GNRs

The structure of a single-layered GNR and its geometrical
parameters are shown in Fig. 1. The location (L/5, W/2) of the fixed
Table 1
Bending mode (BM) frequencies (in GHz) of one, two, three, four and five-layered GNRs w
L = 227.77 Å and W = 20.94 Å. Number of C-atoms in one layer = 2148. Mode shape corresp
bonded to an interior atom of an outermost layer is shown in Fig. 13.

Structure No. laye

Pristine GNRs 1
2
3
4
5

GNRs with a fixed interior clamped atom on the outermost layer 1
2
3
4
5

GNRs with C180 attached on an interior atom on the outermost layer 1
2
3
4
5

Fig. 5. Mode localization in a double-layered GNR when only one layer has a fixed a
deformation in the two extreme configurations. For one of the extreme positions fringe
shown in (c) and (d), respectively. Similarly, for the other extreme position fringe plots of
in (e) and (f), respectively. Fringe plots in (c) through (f) confirm asymmetry in the energy
units of cal/mol. (For interpretation of the references to color in this figure legend, the r
atom is arbitrarily chosen. In mode (m, n) the transverse displace-
ment is in the form of m and n half sine waves along the x- and the
y-axes, respectively. The modes (1,1) and (4,1) of a CCCC pristine
single-layered GNR are shown in Fig. 2(a) and (c), respectively. In
Fig. 2(b) and (d) modes of vibration of the same single-layered
GNR after fixing the interior atom are depicted. From the deformed
shape shown in Fig. 2(b) it is evident that the out-of-plane dis-
placement of atoms in X1 is negligible and that in X2 are of mode
(1,1) type. On the contrary, in Fig. 2(d) the out-of-plane displace-
ment of atoms in X2 is less than that of atoms in X1 and the mode
in X2 is (4,1) type. Thus, we conceive an imaginary line AB
ith CCCC boundary condition computed from MM simulations. Dimensions of GNR:
onding to Mode 1 vibrations of the multi-layered GNRs with a bucky-ball covalently

rs Mode 1 BM 1 BM 2 BM 3 BM 4

– 299.67 306.90 319.56 337.35
– 301.35 308.64 320.97 338.55
– 303.27 310.50 322.74 340.14
– 305.04 312.21 324.33 341.64
– 306.57 313.68 325.74 342.93

– 301.26 313.44 333.90 359.43
– 302.91 314.88 334.98 360.18
– 304.59 316.32 336.45 360.93
– 306.51 318.12 337.65 360.78
– 308.01 319.41 338.64 359.79

179.85 301.50 313.86 334.65 361.89
231.36 308.46 320.64 340.80 378.51
252.12 305.13 317.52 337.74 363.36
275.85 321.27 333.57 353.55 378.63
275.22 308.55 320.85 340.86 365.64

tom (shown in red in a). Deformed shapes (a) and (b) evince asymmetry in the
plots of the potential energy of deformation for the top and the bottom layers are
the potential energy of deformation for the top and the bottom payers are depicted
distribution in extreme positions in the top and the bottom layers. The color bar has
eader is referred to the web version of this article.)



Fig. 6. Distribution of the mode localization parameter d1 computed over the first
40 out-of-plane modes for two-layered GNR (a) without, and (b) with interior fixed
atom at P (cf. Fig. 1).
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(cf. Fig. 1) passing through point P and parallel to the sheet width
which divides the single-layered GNR into two distinctly vibrating
regions. We note that the frequency of oscillation changes by fixing
an interior atom.

The mode localization in [15,16] has been defined by using a
parameter b that equals the ratio of the strain energy of deforma-
tion in one of the two regions divided by the strain energy of defor-
mation of the entire region. For region X1, the parameter b1 is
calculated from the equation

b1 ¼
P

X1
DUP

XDU
; ð2Þ

where X ¼ X1 [X2. Here the potential energy of an atom equals the
difference in its potential energies in the deformed (an extremum of
a mode) and the undeformed (mean) configurations of the single-
layered GNR. Of course, b2 = 1 � b1. For continuum structures stud-
ied in [15,16] one finds the modal strain energy to compute b by
assuming that the undeformed configuration has zero potential
energy. Here we use ANALYZE subroutine of TINKER [20] to com-
pute the potential energy of the deformed single-layered GNR.
The distribution of b1 for the first forty out-of-plane bending modes
of the single-layered GNR without an interior clamped atom is
shown in Fig. 3(a). It is found that for most modes b1 � 0.2 which
equals the ratio of the surface area of the region X1 to that of the
domain X of the single-layered GNR. However, when the interior
atom at P (cf. Fig. 1) is also fixed then modes get localized. For this
case modes with b1 > 0.2 get localized in region X1 and those with
b1 < 0.2 get localized in region X2. The distribution of b1 for a single-
layered GNR with a fixed interior atom is shown in Fig. 3(b). It is
clear that 13 modes with b1 � 0 are strongly localized in region X2.
Similarly, 2 modes with b1 � 0.9 (or b2 � 0.1) are strongly localized
in X1. Furthermore, a value of b1 close to 0.2 or b2 close to 0.8 indi-
cates moderate mode localization whereas a value of b1 = 0.2 or
b2 = 0.8 indicates no mode localization.

In order to quantify the dependence of mode localization on the
aspect ratio (L/W) of a single-layered GNR we define the connec-
tion coefficient [15,16], C ¼ 1

S

PS
j¼1 min ðb1; ð1� b1ÞÞj, where S

equals the number of out-of-plane modes of interest. In the present
study we have used S = 10. The variation in the value of C with L/W
is shown in Fig. 4 for both the pristine single-layered GNR and that
with a fixed interior atom at (L/5, W/2). For the latter case with
increasing aspect ratio (keeping the width W constant) the two
regions become more disconnected which implies that modes are
either localized in region X1 or in X2. However, for the former case
the value of C is found to oscillate around 0.2. This is similar to that
found by Filoche and Mayboroda [15] and Sharma et al. [16] for
vibration of CCCC plates/laminates with an interior fixed point.

In our studies on single-layered GNRs we have found that the
phenomenon of mode localization is independent of the position
of the fixed atom. However, the degree of mode localization varies.
For the sake of brevity these results are omitted.

3.2. Multi-layered GNRs

In practice it may be difficult and uneconomical to peel-off a
pristine single-layered GNR from bulk graphite. This motivates us
to study vibrations of multi-layered GNRs [7,21] with and without
an interior atom fixed only on one of the outermost layers. In our
simulations for one- through five-layered pristine GNRs subjected
to CCCC boundary condition we have found that the vibration char-
acteristics, i.e., the bending modes (BMs) and the frequencies of a
single layer govern the vibration characteristics of the entire stack.
From frequencies listed in the top set of Table 1 we see that for
two- to five-layered GNRs the frequencies of the 1st through the
4th bending mode differ from the corresponding modes of the
single-layered GNR by 62.5%. This is counter-intuitive in the sense
that increasing the number of layers of the same material (i.e., the
thickness of the GNR) the bending stiffness divided by the areal density
(i.e., mass density/volume multiplied by the GNR thickness) is almost
unchanged and hence very little change in the frequency occurs. Fur-
thermore, this suggests that the shear deformation, if any, plays a neg-
ligible role if one were to model multi-layered GNRs as continuum
plates to find the first few bending mode frequencies. We note that
studying vibrations of multi-layered GNRs with the Mindlin plate
theory requires more work [22,23] than that with the Kirchhoff
plate theory in which effects of shear deformations are neglected.

When an interior atom on an outermost layer of a multi-layered
GNR was fixed we found that the mode localization in this outer-
most layer of the GNR induced localization in the remaining layers.
This new phenomenon of cooperative mode localization for a two-
layered GNR is exhibited in Fig. 5. The quantification of mode local-
ization in multi-layered GNRs requires a new parameter because
the parameter b1 [15] defined above does not yield a unique value
for the two extreme configurations of a particular mode. This is due
to the fact that the fixed interior atom in an outermost layer leads
to asymmetric out-of-plane deformations in the two extreme
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configurations of a mode (cf. insets of Fig. 5(a) and (b)). Hence the
computed potential energy of atoms in region X1 is different for
the two configurations. This asymmetry leads to different values
of localization parameter b for the two extreme configurations.
However, the total change in the potential energy is the same in
both extreme positions. Accordingly, we introduce a new parame-
ter d1 defined by

d1 ¼
P

X1
Dx2

i þ Dy2
i þ Dz2

i

� �
P

X Dx2
i þ Dy2

i þ Dz2
i

� � ; ð3Þ

where Dxi, Dyi, and Dzi are displacements of the ith atom in the x-,
the y-, and the z-directions, respectively, from the initial equili-
brated configuration to that of extreme position for the mode of
vibration being considered. The region X1 is defined in the same
way as for a single-layered GNR but it now includes atoms in all lay-
ers on the left of the plane perpendicular to the plane of GNR pass-
ing through AB (cf. Fig. 1), and X has all atoms in all layers. Whereas
values of b for the two extreme configurations of a mode are differ-
ent, those of d1 are the same.

The distribution of d1 with and without a fixed interior atom in
a layer computed for the first forty out-of-plane modes for a two-
layered GNR is exhibited in Fig. 6. As for a single-layered GNR with
no interior atom clamped we see that for most modes d1 � 0.2.
Fig. 7. Cooperative mode localization in multi-layered GNR due to a fixed interior atom
layers mode localization is found to be stronger as evidenced by the value of the d1 � p
legend, the reader is referred to the web version of this article.)

Fig. 8. Mode localization in GNR due to attached mass: (a) clamped–clamped-clamped–c
(c) and (d) show the localized modes (1,1) and (2,1), respectively.
After fixing an interior atom in a layer, a significant number of
modes have d1 � 0 implying that the two-layered GNR has modes
silent in region X1. Additionally, out of the forty out-of-plane
modes studied here it is found that there is a mode with
d1 = 0.9862 in the two-layered GNR which gets localized in X1. This
mode is shown in Fig. 5.

In Table 1 we have compared frequencies of the first four bend-
ing modes (BMs) for pristine single- and multi-layered GNRs (top
set) with those computed for the single- and the multi-layered
GNRs (middle set) having an interior atom fixed on an outermost
layer. In general clamping an atom increases the frequency for a
given mode number in the spectrum over that of the pristine sin-
gle- or multi-layered GNR. For the first BM the increase in the value
of the frequency for the single- and the multi-layered GNRs studied
here is less than 1%. For higher modes the percent change in the
frequency is found to be more, for example in the 4th BM the value
of frequencies for all the single- and the multi-layered GNRs is
found to increase by �6% after fixing an atom on an outermost
layer. In Fig. 7 we show cooperative mode localization in one- to
five-layered GNRs for (5,1) mode. In this particular mode of vibra-
tion with increasing number of layers the value of d1 is found to
increase indicating almost negligible out-of-plane deflections in
region X2. Since the fixed atom is at L/5 (a node point for the fifth
mode (5,1) of the pristine GNRs) the frequency of vibration for all
(shown as red dot) on the topmost layer (gray colored). With increasing number of
arameter for each case. (For interpretation of the references to color in this figure

lamped GNR with C60 molecule covalently bonded at P (see Fig. 1), (b) the first mode,



Table 2
Frequencies (in GHz) of different bending modes (BMs) of pristine GNR, GNR with
attached family of bucky-balls at (L/5, W/2), and GNR with a fixed interior atom at (L/
5, W/2) computed from MM simulations. For all configurations GNRs are subjected to
CCCC boundary condition. Dimensions of GNR; L = 227.77 Å and W = 20.94 Å. Number
of C-atoms in GNR = 2148. Mode shape corresponding to Mode 1 vibrations of the
GNR with a bucky-ball covalently bonded to an interior atom is shown in Fig. 8b.

Molecular structure Mode 1 BM 1 BM 2

Pristine GNR 299.52a 307.05a 319.56a

GNR + C30 273.51 301.62 313.86
GNR + C60 241.11 301.59 314.49
GNR + C90 218.82 301.71 314.61
GNR + C100 215.67 301.02 314.04
GNR + C180 179.85 301.50 313.86
GNR + C240 170.19 301.20 313.80
GNR with fixed atom at P – 301.26 313.44

a Marked numbers are to be read as frequencies of 1st, 2nd and 3rd modes in
increasing order for pristine GNR.

D. Verma et al. / Computational Materials Science 95 (2014) 41–52 47
the cases is found to be nearly the same, however, mode shapes are
different. From these results it can be concluded that the cooperative
mode localization is inevitable in a multi-layered GNR if an outermost
layer has a localized mode of vibration.
4. Mode localization due to attached foreign molecule

In this section we investigate the phenomenon of mode locali-
zation due to a bucky-ball covalently bonded to an interior atom
in CCCC and CFCF single-layered GNRs and to an interior atom of
an outermost layer of multi-layered CCCC GNRs. The work is
Fig. 9. Two extreme configurations (a) and (c) of the mode of vibration of a GNR with the
plots of the total energy and van der Waal energy of deformation for configuration in (a) a
is shown below (e) and that for (f) and (g) is shown below (g). Both have units of cal/mol
DU in Eq. (2). (For interpretation of the references to color in this figure legend, the rea
motivated by the work in the area of NEMSs [5,7–9,24] in which
GNRs are suspended over a trench.
4.1. Single-layered GNRs

4.1.1. CCCC boundary condition
We use the geometry shown in Fig. 1. Moreover, the sp3

hybridized atom located at P (cf. Fig. 1) is covalently bonded to
an atom of a bucky-ball as shown in the inset of Fig. 8(a). The
minimum potential energy configuration of this combined system
is found by using the method described in Section 2. Similar to
the studies of continuum plates by Sharma et al. [16] attaching a
mass on a single-layered GNR also results in localization of
modes of vibration as shown in Fig. 8(b–d). We have studied mode
localization when an atom of the C30, C60, C90, C100, C180, and C240

molecules is covalently bonded to the atom at P. We note that
modes of vibration of these GNRs are not necessarily of the type
(m, n) mentioned above. In all these cases the frequency of the first
mode (Mode 1) corresponding to Fig. 8(b) is found to decrease
with an increase in the mass (cf. Table 2) of the attached bucky-
ball. This agrees with the fundamentals of the theory of vibration
and is exploited in mass sensors [3,11,25]. For the reason
discussed in Section 3.2 to quantify mode localization we use the
parameter d1 defined by Eq. (3). Furthermore, for localized first
and second BMs depicted in Fig. 8(c) and (d), respectively, the
value of the parameter d1 is found to be very small. Thus, the
effective length of the GNR could be considered to be reduced by
L/5. Hence for these modes for different values of the added mass
the frequencies are found to be approximately the same as those
listed in Table 2. This also holds when an atom at P is fixed
(cf. the last row of Table 2).
C60 bucky-ball covalently bonded to an interior atom of a GNR shown in (b). Fringe
re shown in (d) and (e), and for (c) in (f) and (g), respectively. Color bar for (d) and (e)
. The values of b1 for both the cases are computed by substituting relevant values of
der is referred to the web version of this article.)



Fig. 10. Distribution of the mode localization parameter d1 computed over first 40
out-of-plane modes for (a) single- and (b) double-layered GNRs when C180 molecule
is covalently bonded to the atom at P (cf. Fig. 1).
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We have displayed in Fig. 9 extreme positions of a mode of
vibration of a GNR with the C60 bucky-ball covalently bonded to
an interior atom and fringe plots of the potential energy of defor-
mation (DU). Energy plots shown in Fig. 9(d) and (f) are obtained
after subtracting the total energy of an atom in configuration
shown in Fig. 9(b) from those in configurations of Fig. 9(a) and
(c), respectively. It is found that the difference in the total potential
energy in the energy plots in most of the region is positive. How-
ever, the region close to bucky ball has this difference negative.

In order to better understand this we have used the ANALYZE
module of TINKER to compute values of each component of the
potential energy given in Eq. (1) for configurations of Fig. 9(a)
and (c). In Fig. 9(e) and (g) plots of only the van der Waals energy
of deformation for these extreme configurations of the GNR and
the bucky-ball system is shown. It is found from these plots that
the energy landscape of atoms in the GNR near the bucky-ball is
approximately the same for both the total potential energy and
the van der Waals energy of deformation for each extreme config-
uration of the GNR and the bucky-ball system. Therefore, we con-
clude that the significant contribution to the negative energy of
deformation is due to the van der Waals interaction between the
bucky-ball and the GNR. The negative values of the energy of defor-
mation for GNR are also found to be from the bond-stretch, the
angle-bend, the stretch–bend, the out-of-plane bend, the torsional,
and the stretch–torsional deformations but these are insignificant
compared to van der Waals energy and hence are not shown here.
Further, the components of the energy for different configurations
of GNR and bucky ball combined are tabulated in Table 5. It is
found that the total difference in the energy for the entire GNR
and the bucky-ball system is positive and mostly due to van der
Waals interactions. The negative values of the energy in Fig. 9(d)
and (f) are for atoms only in the small neighborhood of the
bucky-ball.

The asymmetry in the two extreme configurations of a vibratory
mode results in a non-unique value of the parameter b1. Hence, we
use the parameter d1 to quantify mode localization. Histograms
plotted in Fig. 10 show the degree of mode localization for the first
forty out-of-plane modes in a single- and a two-layered graphene
sheet when a C180 molecule is attached to the atom at P (cf.
Fig. 1). More number of modes (out of the first 20) is localized in
region X2 for the single-layered GNR than those in the two-layered
GNR. This is because the two-layered GNR is stiffer than the single-
layered GNR, therefore, the development of standing waves in
region X1 is possible only at very high frequency except when
the atom at P is on the nodal line of vibrating pristine GNR. We
note that for pristine single- and multi-layered GNRs the histo-
grams will have most modes clustered around d1 = 0.2, similar to
that shown in Figs. 3(a) and 6(a), respectively.

4.1.2. CFCF boundary condition
In this sub-section, using MM, we first study vibrations of an

un-stretched and stretched rectangular pristine GNR having aspect
ratio (AR, length/width) of �10. We note that in devices using sin-
gle-layered GNRs there is a built-in tension due to van der Waals
interaction between the edges of a suspended single-layered GNR
and the substrate [7,9,10,26]. The procedure to compute mode
shapes and frequencies of vibrations of stretched single-layered
GNRs using MM simulations is as follows. Atoms on the small edge
(x = 0) are fixed and those on the other small edge (x = L) are pre-
scribed incremental displacement D such that these atoms occupy
new positions (x + D, y, 0). Atoms on the two edges (x = 0, L) are
then held stationary. The minimum potential energy configuration
of a single-layered GNR for incremental values of D is found to
within rms gradient of 0.001 kcal/mol/Å, and the VIBRATE subrou-
tine is used to find frequencies of vibration for different modes. The
values of the frequencies of the first four BMs and the first two
torsional modes (TMs) for various values of D are given in Table 3.
These suggest that with increase in D the higher bending mode fre-
quencies are found to be nearly integer multiple of the lowest BM
frequency. This indicates that at high value of D the membrane
strain energy dominates over the bending strain energy and hence
the single-layered GNR behaves as a membrane or a continuum
string. We recall that the AR of the single-layered GNR studied is
�10. However, if one were to simulate or experiment with a pre-
stretched single-layered GNR of AR � 1 then the membrane model
would be more appropriate. Furthermore, the variation with D of
the values of the BM frequencies of the single-layered GNR is qua-
dratic which also holds for frequencies of a continuum string [27]
with initial stretch D. Frequencies of the continuum models are
discussed in Section 5.

We now study vibrations of the single-layered GNR with a C180

molecule attached at P (cf. Fig. 1). Frequencies of vibration for the
first four BMs and the first two TMs for various value of the initial
stretch D are listed in Table 4. For D P 0.4 Å frequencies of all
modes studied here are found to be lower than those for the
untreated prestretched single-layered GNR (cf. Table 3). This is
similar to that for the unstretched CCCC single- or multi-layered
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GNRs for which results are given in Table 1. In the MM simulations
for D = 0.8 Å we could not locate the 4th BM. Two BMs and one TM
of vibration for the unstretched single-layered GNR with attached
C180 molecule are shown in Fig. 11. The mode depicted in Fig. 12(c)
is very interesting because in this mode of vibration the material in
region X1 undergoes bending while that in X2 torsional oscilla-
tions. In this case indeed the attached C180 molecule divides the sin-
gle-layered GNR into two independently vibrating regions. In Fig. 12
two BMs and a TM are shown for the single-layered GNR with
D = 1 Å. For this case we did not find localized BM in the spectrum
before the appearance of the localized TM as shown in Fig. 12(c). It
is possible that for the stretched single-layered GNR localized BMs
are shifted towards the far end of the spectrum.
4.2. Multi-layered GNRs

When a C180 molecule is covalently bonded to an atom of an
outermost layer of a multi-layered GNR, we get cooperative mode
localization. Frequencies of the first five BMs for one- to five-lay-
ered GNR with C180 molecule covalently bonded to an atom at
point P (cf. Fig. 1) of an outermost layer are listed in the last set
of Table 1. Unlike the situation when an atom at P on an outermost
layer is fixed in this case we get an additional mode of vibration for
Table 3
Comparison of frequencies (in GHz) of bending and torsional modes of a GNR with CFCF b
element method (FEM) for different values of the initial stretch. Dimensions of GNR: L
equivalent continuum structures are taken from [2]. N.A. stands for not applicable.

Mode D = 0 Å D = 0.2 Å D = 0.4 Å D =

MM FEM MM SM FEM MM SM FEM MM

BM 1 2.46 3.87 12.72 12.66 13.98 17.85 17.91 19.14 21.8
BM 2 9.78 10.68 26.94 25.32 28.68 36.75 35.82 38.79 44.4
BM 3 21.90 20.91 43.53 37.98 44.79 57.51 53.73 59.46 68.6
BM 4 38.94 34.59 63.48 50.64 62.85 80.85 71.64 81.60 95.0
TM 1 35.40 26.97 37.59 N.A. 29.91 39.48 N.A. 32.55 41.3
TM 2 71.70 54.33 75.78 N.A. 60.12 79.53 N.A. 65.37 83.1

Table 4
Comparison of frequencies (in GHz) of bending and torsion modes of a GNR with CFCF
simulations, string model (SM), and the finite element method (FEM) for different values o
atoms in GNR = 2148. Material properties of equivalent continuum structures are taken from

Mode D = 0 Å D = 0.2 Å D = 0.4 Å D =

MM FEM MM SM FEM MM SM FEM MM

BM 1 4.11 3.81 12.96 12.27 13.62 16.23 17.34 18.63 18.
BM 2 10.29 10.05 25.02 23.46 26.73 33.33 33.18 36.06 39.
BM 3 21.81 19.35 34.68 35.76 41.79 53.28 50.55 55.59 63.
BM 4 37.62 32.97 59.25 49.59 60.69 62.07 70.11 65.37 95.
TM 1 32.79 26.97 40.65 N.A. 29.91 35.31 N.A. 32.55 36.
TM 2 58.02 54.33 60.15 N.A. 60.12 71.55 N.A. 65.37 64.

Table 5
Energy components of GNR and buck-ball combined for configurations shown in Fig. 9.

Energy components Energy corresponding
to Fig. 9(a) (kcal/mol) (I)

Energy corresponding
to Fig. 9(b) (kcal/mol) (II)

Bond-stretch 307.74 307.35
Angle bend 505.31 505.33
Stretch–bend �114.00 �113.94
Angle–angle �32.47 �32.47
Out-of-plane bend 85.85 85.86
Torsional �3353.99 �3354.06
Stretch–torsion �1.81 �1.80
van der Waals 3373.13 3150.91
Total 552.22 774.80
GNRs. The frequency of this mode is lower than that of the 1st BM
of pristine GNRs. For a five-layered GNR this mode is shown in
Fig. 13. Only after this mode the localized BMs are found in the
spectrum. As mentioned before the mode localization reduces
the effective length of the GNR and hence the frequencies of oscil-
lations (cf. Table 1) of the 1st BM to the 4th BM in the last set are
almost the same as those for the middle set.

5. Continuum models

5.1. String model for single-layered GNRs subjected to CFCF boundary
condition

The frequency fn (in Hz) of a prestretched string made of a linear
elastic, isotropic and homogeneous material is proportional to the
square root of the pretension T0. For a stretched single-layered
GNR, the expression for fn in terms of D can be written as [27]

fn ¼
n
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DWðEhÞ

Nmc

s
;n ¼ 1;2; . . . ð4Þ

In Eq. (4) L, W, h, and E are the length, the width, the thickness, and
Young’s modulus of the single-layered GNR, respectively, and N and
mc are the total number of C-atoms in the single-layered GNR and
oundary condition, obtained from MM simulations, string model (SM), and the finite
= 227.77 Å and W = 20.94 Å. No. of C-atoms in GNR = 2148. Material properties of

0.6 Å D = 0.8 Å D = 1 Å

SM FEM MM SM FEM MM SM FEM

1 21.93 23.13 25.11 25.32 26.49 28.05 28.32 29.61
6 43.86 46.68 50.97 50.64 53.40 56.73 56.64 59.28
4 65.79 71.07 78.15 75.99 80.94 86.58 84.96 89.70
1 87.72 96.63 107.25 101.31 81.66 118.20 113.28 121.08
1 N.A. 34.98 43.02 N.A. 37.26 44.64 N.A. 39.42
0 N.A. 70.23 86.52 N.A. 74.79 89.73 N.A. 79.05

boundary condition, with attached C180 molecule at (L/5, W/2), obtained from MM
f the initial stretch. Dimensions of GNR: L = 227.77 Å and W = 20.94 Å. Number of C-
[2]. N.A. stands for not applicable. For D = 0.8 Å BM 4 is not found in MM simulations.

0.6 Å D = 0.8 Å D = 1 Å

SM FEM MM SM FEM MM SM FEM

24 21.27 22.5 25.38 24.57 25.77 27.39 27.45 28.65
75 40.62 43.32 46.74 46.92 49.50 52.62 52.44 54.93
03 61.92 66.45 72.57 71.49 80.25 78.33 79.95 83.91
31 85.89 93.72 - 99.18 106.35 117.03 110.88 117.57
69 N.A. 34.98 39.21 N.A. 37.26 40.38 N.A. 39.42
11 N.A. 70.23 66.21 N.A. 74.79 67.98 N.A. 79.05

Energy corresponding
to Fig. 9(c) (kcal/mol) (III)

(I)–(II) (kcal/mol) (III)–(II) (kcal/mol)

307.62 0.39 0.27
505.34 �0.02 0.01
�113.96 �0.05 �0.02
�32.47 0.00 0.00

85.88 �0.01 0.02
�3353.98 0.06 0.08
�1.79 �0.01 0.01

3373.12 222.22 222.21
774.80 222.58 222.58



Fig. 11. Localized modes of vibration of an un-stretched GNR with bucky-ball C180 attached to an interior atom. Modes in (a) and (b) are the bending modes. The mode of
vibration in (c) shows bending oscillation on the left and torsion oscillation on the right of C180 molecule.

Fig. 12. Modes of vibration of 1 Å stretched GNR with bucky-ball C180 bonded to an interior atom. Modes in (a) and (b) are the bending modes. The mode in (c) shows
negligible oscillations on the left and torsion oscillations on the right of the atom to which C180 molecule is covalently bonded.

Fig. 13. Cooperative mode localization in the 5-layered GNR due to C180 bucky-ball covalently bonded to an atom on the outermost layer. The slope discontinuity in the eigen-
modes of the outermost layer is not present in the layers below it.

x 

z, w

a O 

m 

L 

Fig. 14. Schematic diagram of a string with a concentrated mass m at an arbitrary
distance a from the left edge O. The transverse displacement of a material particle of
the string along the z-axis is w.
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the mass of a C-atom, respectively. The quantity Eh is the basal
plane stiffness of the single-layered GNR and its value of 340 N/m
is taken from our previous work [2] which agrees with the experi-
mental value reported in [6]. Note that for D = 0 the string model
is not valid. For different values of D – 0 values of frequencies for
BMs computed from the string model (SM), i.e., Eq. (4), listed in
Table 3 agree well with those found from our MM simulations.
However, the SM does not give TMs of vibrations found in the
MM simulations.

We investigate below if the SM with a concentrated mass
attached to an interior point can predict results close to those given
by the MM simulations.

5.1.1. Frequency equation of equivalent string-mass system
Consider a uniform, homogeneous string held taut between two

fixed ends, as shown in Fig. 14, having uniform tension T0, mass
density/volume q, cross sectional area A, length L, and a concen-
trated mass m attached to it at distance a from the left end. The
governing equation of motion obtained using Newton’s 2nd law
and the associated boundary conditions for the system are [30]

½qAþmdðx� aÞ�w;tt � T0w;xx ¼ 0; wð0Þ ¼ wðLÞ ¼ 0: ð5Þ
Using the method of separation of variables, we set w(x, t) = W0/
(x)eipt, where W0 is the amplitude of vibration, /(x) is the configura-
tion of the string-mass system and p is the frequency of vibration.
Substitution for w(x, t) in Eq. (5) yields

p2½qAþmdðx� aÞ�/ðxÞ þ T0/
00ðxÞ ¼ 0; /ð0Þ ¼ /ðLÞ ¼ 0: ð6Þ

The Laplace transform of Eq. (6) reduces it to the following algebraic
equation

T0½s2 �/ðsÞ � s/ð0Þ � /0ð0Þ� þ p2qA�/ðsÞ þ p2m/ðaÞe�saHðaÞ ¼ 0; ð7Þ

where s is the Laplace variable, �/ðsÞ is the Laplace transform of /(x),
and H(�) is the Heaviside step function. By substituting / (0) = 0 in
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Eq. (7) that follows from the boundary conditions listed in Eq. (6),
and rearranging terms we obtain

�/ðsÞ ¼ /0ð0Þ
s2 þ b2 �

p2m/ðaÞHðaÞ
T0

� �
e�as

s2 þ b2

� �
; ð8Þ

where b2 = p2qA/T0. Taking the inverse Laplace transformation of
Eq. (8) we get

/ðxÞ ¼ /0ð0Þ sin bx
b

� p2m/ðaÞHðaÞ
T0

� �
Hðx� aÞ sinððx� aÞbÞ

b

� �
: ð9Þ

In Eq. (9) the unknown /0(0) can be found using the second of the
boundary conditions given in Eq. (6). We thus get

/ðxÞ¼ p2m/ðaÞHðaÞ
bT0

� �
HðL�aÞsinððL�aÞbÞsinbx�Hðx�aÞsinððx�aÞbÞsinbL

sinbL

� �
:

ð10Þ

Setting x = a, and using the definition of the Heaviside step function
gives

/ðaÞ 1� p2m
bT0

sinððL� aÞbÞ sin ba
sin bL

� �� �
¼ 0: ð11Þ

Since / (a) = 0 implies / (x) = 0 from Eq. (10), we conclude from Eq.
(11) that the term in brackets must vanish which is the frequency
equation. Furthermore, using Hooke’s law, the tension in the string
is given by T0 = KWe, where K, W and e are the basal plane stiffness
(Eh), the width and the applied initial axial strain in the GNR,
respectively. In particular, for a = L/5 the frequency equation is

1
p

ffiffiffiffiffiffiffi
Mn
m2

r
¼

sin 4p
5

ffiffiffi
M
n

qh i
sin p

5

ffiffiffi
M
n

qh i
sin p

ffiffiffi
M
n

qh i ; ð12Þ

where M is the mass of the GNR, and n = KWe/L. Roots of Eq. (12) are
the natural frequencies of the system described by Eq. (5). For var-
ious values of D these roots are found using MATHEMATICA [32].
Frequencies for the first four BMs are given in Table 4. As stated
above, this model is not valid for D = 0 and TMs cannot be captured.
Predictions from this model listed in Table 4 suggest that with an
increase in the value of D the difference in values of frequencies
from Eq. (12) and the MM simulations decreases. We note that in
[30,31] authors have given the frequency equation for the specific
case of a = L/2.

5.2. Plate model for CFCF single-layered GNRs

In order to capture the TMs we model the single-layered GNR as
a thin plate using Kirchhoff’s plate theory [28], and use the finite
element method (FEM) with the 8-node shell-93 element in ANSYS
[29] to find frequencies for various values of D considered in the
MM simulations. The elastic and mass properties for the FE simu-
lations are taken from our previous work [2]. A converged solution
is obtained with the FE mesh 10 � 100 (uniform elements along
the width and the length, respectively) within 1% error in the fre-
quencies of first 20 modes. The plate is prestretched by fixing all
six degrees of freedom (three translational and three rotational)
of nodes on one end while nodes on the other end are prescribed
only the axial displacement keeping other five degrees-of-freedom
restrained. Values of frequencies computed from the FE analysis
are listed in Table 3. Even though the plate model is valid for the
initial stretch D = 0 due to non-zero bending stiffness of the plate,
for D = 0 frequencies of bending and torsional modes computed
from the FE simulations appreciably differ from those derived from
the MM simulations. With an increase in the value of D, this
difference in the two sets of BM frequencies decreases more rap-
idly than that in the TB frequencies.

Frequencies of the first four BMs and the first two TMs of vibra-
tion of a single-layered GNR with the attached C180 molecule
obtained from the FE simulations are listed in Table 4. We have
used the same FE as that for the single-layered GNR but now
we also use Mass-21 FE to simulate the C180 molecule, and place
it at (L/5, W/2) on the mid-plane of the ECS of the single-layered
GNR. The Mass-21 FE has only three translational degrees of free-
dom. In general, differences in the frequencies for all modes com-
puted from the FEM are found to be larger than those when the
C180 was not attached to the single-layered GNR. Possible reasons
for this mismatch are: (i) placement of the mass element, and (ii)
the van der Waals interaction between the C180 and the single-lay-
ered GNR could alter the local stiffness of the single-layered GNR
that has not been considered in the FE model. For D > 0.4 Å, fre-
quencies of the bending and the torsion modes are found to
decrease after attaching C180 molecule. Since the mass is attached
at the bisector of the width of the FE model and is placed at the
mid-plane frequencies of torsional modes are unaffected and are
exactly the same as those for the case when no mass is attached
to the ECS of the single-layered GNR (cf. Table 3.)

A careful examination of the mode shapes computed from MM
simulations and shown in Figs. 12 and 13 reveals that the bucky-
ball deforms and oscillates. In order to simulate these, the FE
model will require a flexible shell (an ECS of a bucky-ball) attached
to the ECS of the single-layered GNR using flexible beam (an ECS of
the bond between the bucky-ball and the single-layered GNR). Fur-
thermore, the accuracy of the model can be increased by specifying
interactions of the bucky-ball with the single-layered GNR using
van der Waals springs. We leave this work for a future study. An
attempt to consider these interactions was made by Batra and
Sears [33] who developed continuum structures equivalent to a
multi-walled carbon nanotube.

6. Conclusions

We have studied vibrations of single- and multi-layered graph-
ene nano-ribbons (GNRs) using MM simulations and employing
the MM3 potential. Two types of boundary conditions, all edges
clamped (CCCC) and only two smaller edges clamped while the
other two free (CFCF), are considered. In single- and multi-layered
GNRs modes of vibrations are found to get localized due to either
fixing an interior atom or attaching a (covalently bonded) bucky-
ball to an interior atom. For both cases, in multi-layered GNRs
mode localization in an outermost layer is found to induce locali-
zation in the remaining layers; we call this cooperative mode local-
ization. A new parameter to quantify mode localization is defined
for multi-layered GNRs with a fixed interior atom and for single-
and multi-layered GNRs when a mass is attached to an interior
atom. For CCCC single- and multi-layered GNRs, attaching a mass
to an interior atom is found to reduce the frequency of vibrations
of the first mode. Vibrations of CFCF single-layered GNRs with
and without a mass attached to an interior atom are studied for dif-
ferent values of the initial stretch (0–1 Å) using MM and, contin-
uum string-mass and thin plate models. With increasing value of
the initial stretch the frequency of vibrations for bending and tor-
sional modes is found to increase. For initial stretch of 1 Å values of
the first four bending mode frequencies from the string-mass
model are found to be closer to those obtained from the MM sim-
ulations than those computed from the thin plate model. With
increasing value of initial stretch the difference in the frequencies
computed from the FE model and those from MM simulations are
found to decrease albeit not monotonically. In MM simulations for
CFCF single-layered GNRs, the torsional modes are also found to
get localized after attaching a C180 molecule to an interior atom.
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It is noted here that even though we have studied single- and
multi-layered GNRs with long armchair edges, due to the basal
plane isotropy of GNRs [2,10], the findings of this research will
remain unaffected if one were to use long zigzag edges. This study
highlights the role of mode shapes and will be useful in designing
efficient sensitive mass sensors and studying dynamics of single-
and multi-layered GNRs suspended over a patterned surface.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.commatsci.2014.
07.005.
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