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Dynamic shear band development in dipolar 
thermoviscoplastic materials 
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Abstract We study thermomechanical deformations of a viscoplastic body deformed in plane strain 
compression at a nominal strain-rate of 5000 sec- ~. We develop a material model in which the second 
order gradients of the velocity field are also included as kinematic variables and propose constitutive 
relations for the corresponding higher order stresses. This introduces a material characteristic length I, in 
addition to the viscous and thermal lengths, into the theory. It is shown that the computed results 
become mesh independent for l greater than a certain value. Also, the consideration of higher order 
velocity gradients has a stabilizing effect in the sense that the initiation of shear bands is delayed and 
their growth is slower as compared to that for nonpolar (l -- 0) materials. 

1 
Introduction 
Since the early 198o's there has been a significant increase in research activity in the area of shear banding 
in materials deformed at high strain rates. Shear bands, which are narrow regions of intense plastic 
deformation have been termed adiabatic since, at high rates of deformation, there is not enough time 
for the heat to be conducted away. However, heat transfer out of the hotter severely deformed region 
probably plays an important role in controlling the width of these bands. 

Tresca (1878) was the first to observe these shear bands during the forging of a platinum bar. He 
termed these hot lines and stated that these were the lines of greatest development of heat. Subsequently, 
Massey (1921) observed these hot lines during the hot forging of a metal, and stated that "when diagonal 
'slipping' takes place, there is a great friction between particles and a considerable amount of heat is 
generated." Zener and Hollomon (1944) reported 32 ~tm wide shear bands during the punching of 
a hole in a steel plate and asserted that the heat generated because of plastic working softened the material 
and that the material became unstable when thermal softening equalled the combined effects of strain 
and strain-rate hardening. The reader is referred to the recent book by Bai and Dodd (1992) for numerous 
references on the subject. 

The study of shear bands in a thermoviscoplastic body being deformed in simple shear (e.g., see 
Batra (1992)) has revealed that peak strain gradients of the order of 0.2 per ~tm occur in the vicinity of 
the shear band. Motivated by such considerations, Wright and Batra (1987) proposed a one-dimensional 
theory for rate dependent dipolar materials by modifying the dipolar theory of Green et al. (1968) to include 
rate effects, and showed that the consideration of second order gradients of the velocity field delayed 
the initiation of the shear band. Here we first generalize the dipolar theory of Green et al. (1968) to 
rate-dependent materials, and then use it to study the phenomenon of shear banding in a body made 
of such a material and deformed in plane strain compression. Our formulation of the problem differs from 
that of de Borst (1991), who used the Cosserat (19o9) theory and included rotations and the corresponding 
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higher order stresses into the theory. Dillon and Kratochvil's (i97o) motivations in proposing a higher 
order gradient theory of infinitesimal deformations plasticity were: 1) the basic concept of work hardening 
due to Seeger (1957) in which dislocations interact and, therefore, the internal forces are not restricted 
to being of the contact type, and a) the experimentalist using a better strain gauge observes a change 
in the nonhomogeneous residual deformations in a standard tensile test if he also observes large-scale 
plastic strains. Coleman and Hodgdon (1985) and Zbib and Aifantis (1988) included gradients of the strain 
in the expression for the flow stress of the material and provided a different motivation for doing so, 
and did not consider higher order stresses in their works. In a series of papers Aifantis and 
co-workers (e.g. see Aifantis 1984; Vardoulakis and Aifantis 1991; and references cited 
therein), have motivated the consideration of higher-order deformation gradients in localization problems, 
and used these theories to compute widths of stationary shear bands in rigid plastic materials and the 
spacing of travelling Portevin-Le Chatelier bands in viscoplastic metals. 

Each one of these approaches introduces a material characteristic length in addition to the viscous 
and thermal lengths. Batra and Kim (1991) have shown that, for the one-dimensional simple shearing 
problem, the band width tends to zero as the thermal length goes to zero for the Litonski and the 
Johnson-Cook flow rules. However, for the Bodner-Partom flow rule the band-width approached a finite 
value even when the thermal conductivity was reduced to zero. Since the materials considered by Batra and 
Kim were rate-dependent, their computed results suggest that, at least for the Litonski and the 
Johnson-Cook flow rules, the band width is not controlled by the viscous length. Here we investigate 
the dependence of solution variables upon the material characteristic length I. 

The computed results indicate that the consideration of diploar effects stiffens the material repsonse 
in the sense that the rate of growth of the second invariant of the strain-rate tensor and temperature 
at the point of initiation of the shear band is lower as compared to that for nonpolar materials. Also, the 
width of the severely deforming region is more for diploar materials as compared to that for nonpolar 
materials. 

2 

Formulation of the problem 
We use rectangular Cartesian coordinates to describe the dynamic thermomechanical deformations of an 
isotropic prismatic body of square cross-section being deformed in simple compression (cf. Fig. 1). We 
pressure that a plane strain state of deformation prevails. When second order gradients of the velocity field 
are also taken as independent kinematic variables and the corresponding higher-order (hereinafter referred 
to as dipolar) stresses as kinetic variables, equations governing the deformations of the body may be 
written as follows (e.g., see Mindlin (1965) who studies infinitesimal deformations of an elastic body). 

Ba la nc e  o f  m a s s :  v i ,  i = O, (1) 

Balance of linear momentum:  pgi  ~ - -  a i j , j  - -  Ti j k , j k  , (2) 

Balance of internal energy: P ~ = - qi,i + crij vi,j + zuk vi4 k. (3) 

These equations are written in the spatial description. In them, v denotes the velocity of a material 
particle, p the mass density, wthe Cauchy stress tensor, r the dipolar stress tensor, e the internal energy 
per unit mass, q the heat flux per unit area in the present configuration, a superimposed dot indicates 
the material time derivative, a comma followed by an indexj indicates partial differentiation with 
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Fig. 1, A schematic sketch of the problem studied 
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respect to the present position xj of a material particle, the usual summation convention is used, and 
%k is the permutation symbol that assumes the following values. 

1, 

8ij k = - -  1, 

O, 

according as i, j, k form an even permutat ion of 1, 2, and 3, 

according as i, j, k form an odd permutat ion of 1, 2, and 3, 
if any two of the three indices are equal. 

(4) 
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We refer the reader to Mindlin (1965), Toupin (1962), Green et al. (1968), and Dillon and Kratochvil 
(1970) for motivation and derivation of these equations. Here we have followed an approach similar to 
that of Mindlin, and have assumed that the deformations of the body are isochoric, and the supplies 
of linear momentum and internal energy are null. Since our interest is in studying the intense plastic 
deformations of the body, we neglect its elastic deformations. We postulate that 

Z~tjkl =--- ~ ( ~ jk  - Z ikj) = O, (5) 

and note that Z~[jk I contributes nothing to the balance of linear momentum and the balance of internal 
energy. Green et al. (1968) made a similar assumption; our main reason for assuming (5) is to 
avoid finding constitutive relations for z~[jk I and keeping the formulation of the problem simple. A closer 
look at Eq. (2) reveals that (aij - Zijk.k) equals the flux of linear momentum. 

In Eq. (3) we have assumed that all of the plastic work is converted into heat. Sulijoadikusumo and 
Dillon (1979) 'presumed that only about 90% of the plastic work was transformed into heat. Farren and 
Taylor (1925) found that in tensile experiments on steels, copper and aluminum, the heat rise represented 
86.5, 90.5-92, and 95% respectively, of the plastic work. 

For the one-dimensional theory of dipolar materials, Wright and Batra (1987) provided some motivation 
for the assumption that the plastic strain-rate and plastic part of the dipolar strain-rate are proportional 
to the same plastic multiplier. Here we make a similar postulate, viz., 

- - 1  
Di j  = ~(Vi ,  ) + 1,'j,i) = As~, 

A 
Aij k = A ik  j = Vi,jk = ~ ZOk' 

where 

(6) 

(7) 

sij = % + p 6~j, (8) 

p being the hydrostatic pressure not determined by the deformation of the body, and I is a material 
characteristic length. As in classical plasticity, we assume that a scalar yield or loading function fexists 
such that 

f ( s ,  r,O,D, A ) = tc, (9) 

where tr describes the work hardening of the material. In (9), 0 is the temperature rise of a material 
particle. We assume that plastic flow occurs for every value of s, r, and 0, and find A from 

f ( s , r , O ,  A s , A r ) = K .  (lO) 

We restrict the loading function f to be such that the derivative fA is negative for all values of other 
arguments. It ensures that Eq. (lO) will have a unique solution with A > 0. Motivated by the yon Mises 
yield criterion in classical plasticity and the one-dimensional dipolar theory of Wright and Batra (1987), 
we select f a n d  K as follows. 

s~ (11) 
f =  (1 + bAs~)m(1 - o ~ ( 0 -  Oo))' 

(12) 

2 
_ A s ~  03) 

~~ 1 + ~ '  r 
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1 
S2e =-- SoS~j + ~ Z~(jk ) ZiVk). (14) 

Here ~0 is the yield stress of the material in a quasistatic simple tension or compression test, if0 and 
n describe the work hardening of the material, b and m characterize its strain-rate hardening, ~ is the 
coefficient of thermal softening, and 0 equals the present temperature of a material particle whose initial 
temperature was 0 0. The parameter r introduced through Eqs. (12) and (13) may be thought of as an 
internal variable and equated with the plastic strain. It describes the effect of the history of 
deformation on the current value of the yield stress. With K interpreted as the axial stress and ff the 
axial plastic strain, Eq. (12) describes the stress-strain curve for the material deformed quasistatically in 
simple tension or compression. 

In addition to the foregoing, we need constitutive relations for the heat flux q and the specific internal 
energy e. For these, we take 

qi = - k O ,  (15) 

e = c(O - 0o), (16) 

where c is the specific heat and k the thermal conductivity. Before stating the initial and boundary 
conditions we introduce nondimensional variables, indicated by a superimposed bar, as follows. 

=x/H,  [ = t g o  , !7=v/Hg0 , K = ~ l a  o, J=O/O r , g = s / a  0, ~ ' = r / l a  0, 

p = p l a o ,  A = A a o l g o ,  Se=Selffo, D = D I j o ,  A = A H / 9 o ,  
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{=  I/H, ~ =  ~0 r, b-= bTo, k-= kl(pcgoH2), fi = pH29~/o'o, (17) 

where 

0,=- aolpc, 90 =- volH, (18) 

2H is the length of a side of the square cross-section, and v 0 is the steady speed at which the top 
surface is compressed. Thus, 90 equals the average strain-rate. Writing Eqs. (1) through (16) 
in terms of nondimensional variables and dropping the superimposed bars, we arrive at the 
following. 

Vi, i = 0, (19.1) 

f l  1/i = - - P , i  -}- $ij,j  - l 'Cijk,jk'  (19"2) 

0 = kO, i i + sliD v + IzijkAok, (19.3) 

s i j D i j  -~- l"CijkAijk,  

A 
D~j = A s~j, Aijk = -{ Zijk, (19.5, 6) 

2 _ + (19.7) S e - -  Si jSi j  gijk"Cijk , 

A = [e , (19.8) 

I +  ( 1 - ~ ( O - O o ) ) ( l  +bIe)  m 

IZe =- DijDij + 12 AijkAijk �9 (19.9) 
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Equations (19.2), (19.3), (19.4), (19.8), and (19.9) reduce to those for simple (nonpolar) materials when 
I is set equal to zero in them. These equations with l set equal to zero and subject to suitable initial and 
boundary conditions have been studied extensively by Batra and Liu (1989), Batra and Zhu 0991), and 
Batra and Zhang (199o) as far as the initiation and growth of a shear band at an inhomogeneity is 
concerned. 

We presume that the initial values of 0 and ~ are symmetric and those of vl and v2 are antisymmetric 
in x 1 and x2, and seek solutions of Eqs. (19.1) through (19.9) with the same symmetries. Thus, the problem 
is to be studied over the spatial domain [0, b] • [0, h] and the boundary conditions become 
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V 1 (0, X2, t) = 0, 01 (0, X2, t) -~ O, ( 0-21 - -  lTY21k,k)I(0,x2,t) = 0, (20.1) 

V 2 (X 1, O, t)  = O, 0,2 (Xl, O, t )  = O, ( 0-12 - -  lZlzk,k)[txl,0,t) = O, (20.2) 

v 2 ( x  I ,  h ,  t )  = - 1, 0,2 (x 1, h, t) = O, (0-12 --  lz12k,k)I(xl,h,t) = O, (20.3) 

0,2(b, x2, t) = O, (0-11 - -  lZilk,k)l(b,x2,t) -~- O. (20.4) 

For the initial conditions, we take 

VI(XI ,X2 ,0 )=Xl  , V 2 ( X l , X 2 , 0 ) =  - - X  2, 

O ( X l , X 2 , 0 ) = O o + g ( 1 - - r 2 ) 9 e  -5r2, r2~-X~q-X~, 

=00,  r > l .  

r < l ,  

(21.1) 

(21.2) 

Here b and h equal, in the present configuration, the length of the base and the height of the quarter 
of block. The boundary conditions (20) imply that the boundaries of the block are thermally 
insulated, the right surface is free of flux of linear momentum, there is no flux of linear momentum in 
the tangential direction on the other three bounding surfaces, and the normal component of velocity 
on the left and bottom surfaces vanishes. The boundary conditions on the left and bottom 
surfaces follow from the assumed symmetry of the deformation field. The initial conditions on the velocity 
field represent the situation when the transients have just died out. It is highly unlikely that the transients 
will die out at the same instant throughout the body. However, the assumption is justified on the grounds 
that it reduces significantly the CPU effort required to solve the problem and does not affect the 
qualitative nature of computed results. The initial temperature distribution given by (21.2) models 
a material inhomogeneity; the amplitude e of the perturbation can be thought of as representing the 
strength of the singularity. 

One way to motivate the aforestated mechanical boundary conditions is to take the inner product 
of Eq. (19.2) with a smooth virtual displacement, integrate the resulting equation over the domain occupied 
by the body at time t, and use the divergence theorem. The term involving integration on the boundary 
of the domain suggests mechanical boundary conditions stated in Eq. (20). 

The initial-boundary-value problem defined by Eqs. (19) through (21) is highly nonlinear. There is 
no hope of proving an existence or uniqueness theorem for it. Here we seek its approximate solution by the 
finite element method. 

3 
Computational considerations 
Since second order spatial derivatives of the dipolar stress z appear in the balance of linear momentum 
(19.z), we introduce auxiliary variables f by 

fij = T'ijk,k" (22) 

We use the Galerkin approximation (e.g., see Hughes 1987) to derive the weak form of Eqs. (19) and 
(22). The natural boundary conditions (20.1)2. 3, (20.2)2.3, (20.3)2,3, and (20.4) are incorporated into the 
weak formulation of the problem obtained by using the Galerkin approximation. The auxiliary variables 
f are eliminated at the element level, and nodal values of s and r are expressed in terms of the nodal values 
of D and A by using Eqs. (19.5) and (19.6). By using Eq. (6) 1 and the intermediate variable gij --- vl,j, we 
express the nodal values of D and A in terms of the nodal values of v. The reason for introducing 
auxiliary or intermediate variables is to have, at most, first order derivatives of various field quantities. 
It enables us to select test functions and trial solutions from the space H ~ of functions, which includes 
functions defined on the domain of interest and whose first order derivatives are square integrable. The 
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disadvantage of having auxiliary and/or intermediate variables is that the number of unknowns becomes 
very large. It is obviated somewhat herein by eliminating these auxiliary variables before integrating 
the ordinary differential equations with respect to time t. Here we use four-noded quadrilateral elements 
and regard the pressure to be constant within each element. We employ 2 x 2 Gauss quadrature rule 
to evaluate various integrals over an element. The result of this exercise is a set of coupled highly 
nonlinear ordinary differential equations (ODEs) for the nodal values of the two components of the 
velocity, temperature, and the internal variable ~, and a set of algebraic equations for values of the 
hydrostatic pressure at the element centroids. Thus, the number of ODEs equals four times the number 
of nodes, and the number of algebraic equations equals the number of elements in the mesh. 

In deriving the above-referenced ODEs, a lumped mass matrix obtained by using the special lumping 
technique (e.g., see Hughes 1987) is employed. Even though there is no mathematical theory to support 
it, the lumped mass matrix so obtained gives optimal rates of convergence and works well for structural 
and solid mechanics problems (Hinton et al. 1976). 

The ODEs are integrated with respect to time t by using the trapezoidal rule (Hughes 1987), which 
is a member of the Newmark family of methods. For linear problems, the method is implicit, second order 
accurate, and unconditionally stable. For the nonlinear problem studied herein, the time step had to 
be controlled to achieve stability. The application of the trapezoidal rule results in a system of 
coupled nonlinear algebraic equations, which are solved iteratively for the nodal values of the two 
components of the velocity v, temperature 0, and the internal variable ~ and values ofp at the element 
centroids. The iterative process is stopped when, at each node point, either 
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[Av~l 

[A 'vI [ -4- [A 'v2I-J - IA0]- [ - IA@[ ~ ~2, (23.2) 

where ~ and ~2 are preassigned small numbers, and AO denotes the differences in the nodal values of 
0 during two successive iterations within the same time increment. A reason for applying either 
criterion (23.1) or (23.2) is that, at nodes on the boundary where essential boundary conditions are 
prescribed to be zero, criterion (23.1) is meaningless. 

A few trial runs indicated that At = 5 • 10 -5 was a good starting step size. The time step size was 
reduced by a factor of 0.7 chosen by trial and error, every time the convergence criterion (23.1) or (23.2) 
failed. In a typical run, A t had to be reduced ten times so that, during the final stages of computation, A t 
equalled 0.1412 x 10 -s. 

4 
Computation and discussion of results 
We took the following values of various material and geometric parameters to compute numerical results. 

b =  10000sec, o~=0.0222~ -1, ao=333MPa, k=49 .22Wm-1~ ~, 

c=473jkg- lOC 1, p = 7 8 6 0 k g m - 3 ,  m=0.025,  n=0.09,  

$0=0"017, H = 5 m m ,  ~0=5000sec-1, ~=0.2,  

~:1=10-3, e2=10-3, 0 o=0 .  (24) 

These values, except that for the coefficient of thermal softening, are for a typical steel and were used 
by Batra and Liu (1989) and Batra and Ko (1992). They studied the problem for nonpolar materials 
only. Whereas Batra and Liu used nine-noded quadrilateral elements, Batra and Ko used an adaptively 
refined mesh consisting of three-noded triangular elements to study the problem. Both these studies 
considered volumetric elastic strains and assumed the material to be compressible. The purposely chosen 
high values of the thermal softening coefficient and the magnitude of the initial temperature perturbation 
should reduce significantly the computational time required to analyze the problem. It should not 
affect the qualitative nature of results reported herein. For the values given above, 0 r = 89.6 ~ and the 
nondimensional melting temperature equals 0.5027. We note that the test data to find values of material 
parameters at strains, strain-rates, and temperatures likely to occur in a shear band is not available in 
the open literature. It is also not clear to what material variables like the grain size, mean distance 
among dislocations, etc. is the material characteristic length I related. Therefore, we study the problem 
for a range of values of I. 
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Figure 2 depicts the vertical load and the effective stress s~ versus the average strain in the vertical 
direction when the block is deformed homogeneously, i.e., with no temperature perturbation introduced 
initially and the material characteristic length I set equal to zero. The vertical load P on the top surface 
is given by 

1 

P = - ~ (a22 (x~, h, t) - 17:222, 2 (xl,  h, t ) )  dx~ (25) 
0 

where the negative sign in front of the integral is to get a positive value of P. For homogeneous deformations 
of the block, the dipolar stress vanishes identically. In order to evaluate P, we need to find the value of 
the hydrostatic pressure p at points on the top surface. Since p is assumed to be constant within 
each element, its values at the node points are computed by using the following smoothing technique. 

# t'2 t2~ 
(26) 

Here {~b~, c~ = 1, 2 . . . .  } is the set of piecewise linear finite element basis functions defined on/2,  p~, P2 . . . .  
are nodal values of the hydrostatic pressure, and p on the right hand side of Eq. (26) is the piecewise 
constant pressure field computed as a solution of the problem. It is obvious from the plot of Fig. 
2 that the peak in the load occurs at an average strain of 0.012, and beyond this value of the average 
strain, the softening caused by the heating of the material exceeds the hardening due to the strain and 
strain-rate effects. The difference between the magnitude of the vertical load and the effective stress is due 
to the hydrostatic pressure. Note that our definition of the effective stress differs from the usual one 
by a constant factor. 

In Fig. 3, we have plotted the vertical load versus the average strain curves for l = 0, 0.05, and 0.1 
when there is a temperature perturbation introduced. Thus, the deformations of the block will be 
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nonuniform. The results were computed with three initial meshes having eight, twelve, or twenty uniform 
elements in both the horizontal and vertical directions. The coordinates of the node points are updated 
after each time increment so that once the block begins to deform nonhomogeneously, the finite element 
mesh becomes nonuniform. The plotted results reveal that, for nonpolar materials with / = 0.0, the load 
drops severely soon after its peak occurs. At an average strain of 0.06, the load has dropped to nearly half 
of its peak value for the 64-element mesh and to 22% of the peak value for the 400-element mesh. The results 
computed with the 144-element and 400-element meshes are smoother and the drop in the load is more 
than that obtained by using the 64-element mesh. For l = 0.05 and / = 0.1, the drop in the load is less 
rapid and the rate of drop in load with increasing average strain decreases with an increase in the value of 
I. Also, the dependence of the computed value of the load upon the mesh used decreases with an 
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increase in the value of t, the results for the three meshes used being essentially identical for I = 0.1. 
At an average strain of 0.06 and for the 144 element mesh, the vertical load has dropped to 1.06, 2.0 
and 2.05 from a peak of 2.275 for l =  0.0, 0.05, and 0.1, respectively. 

The evolution of the temperature, effective stress s,, and effective strain-rate I, at the block center 
where the applied temperature perturbation takes on its highest value are depicted in Figs. 4a-c, 
respectively. The nondimensional effective stress and effective strain-rate are defined by Eqs. (19.7) 
and (a9.9), respectively. The evolution of the effective stress at the block center is similar to that of 
the applied load in the sense that it first increases and then decreases with an increase in the average 
strain in the specimen. However, because of the temperature perturbation applied at the block center, the 
peak in the effective stress occurs at a much lower value of the average strain as compared to that at 
which the applied load attains it maximum value in Fig. z. The finer meshes of 144 and 400 
elements give sharper results than those obtained with 64 elements in the sense that the effective strain-rate 
increases more rapidly, the temperature rise is more, and the drop in the effective stress is more 
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severe. For I = 0.05 and 0.1, the differences in the solution variables obtained with different meshes 
become minuscule enough to conclude that the results are independent  of the mesh used for I = 0.1. 
The consideration of dipolar effects does not  alter the qualitative nature of computed resuts, except that 
the temperature rise, the drop in the effective stress, and the evolution of the effective strain-rate at 
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the block center for a fixed value of the average strain are higher for nonpolar materials than that for 
dipolar materials. 

In order to see how the elements are distorted, we have plotted in Fig. 5 the deformed meshes at an 
average strain, 7avg, of 0.06 for I = 0, 0.05, and 0.1, and the deformed meshes at an average strain of 0.12 for 
l = 0.05 and 0.1. It is clear that, for l = 0 and ?avg = 0.06, elements along the main diagonal passing through 
the block center are severely distorted, and the straining of the elements is far less for dipolar 
materials with l = 0.05 as compared to that for nonpolar materials. For l = 0.1, the elements seem not 
to be distorted at all. At an average strain of 0.12, the elements along the main diagonal have undergone 
intense deformations for l -- 0.05, but the body is deformed essentially homogeneously for l -- 0.1. Since 
the tangential flux of linear momentum at the top surface is assumed to be zero, the material points 
there slide to the right as the block is compressed. For low values of l, this results in significant deformations 
of the element adjoining the top right corner, and the effective strain-rate there eventually exceeds that 
at the block center. It is shown in Fig. 6 for a 12 • 12 uniform mesh. We note that Batra and Ko (1993) 
obtained similar results for the axisymmetric compression of the block. This observation suggests that 
the singularity in the deformations caused by the difference in the boundary conditions on the two 
surfaces that meet at the top right corner may be enough to cause the initiation of the severe deformations 
and, hence, of the localization of the deformation. That this is not so is confirmed by the results computed 
without introducing a temperature perturbation at the block center. In this case, the deformations of 
the block stayed essentially uniform. 

The computation of results for different values of the material characteristic length I revealed 
that the CPU time needed to study the problem for a fixed mesh increased significantly with an 
increase in the value of l, and for a fixed value of l, the CPU time increased with a refinement 
of the mesh. In order to conserve on the available computational resources and still use a 
reasonably fine mesh, we subsequently used a 20 x 20 uniform mesh and computed results for l = 0, 
0.01, and 0.05. Figure 7 depicts contours in the reference configuration of the maximum 
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principal logarithmic strain %, defined as 

% = 1 n 2 1 =  - l n 2 ;  (ZT) 

at the average strain 7avg = 0.02, 0.04, and 0.06 and for l = 0.0 and at 7avg = 0.06, 0.12 and 0.15 for l = 0.05. 
Here ).~, 222 , and 1 equal eigenvalues of the left Cauchy-Green tensor or the right Cauchy-Green tensor 
and the equality (27)2 follows from the assumption that the deformations are isochoric. These 
plots suggest that contours of successively higher values of ep originate at the block center and propagate 
outward along the main diagonal. As the block continues to be compressed, the severely deforming 
region narrows down and eventually forms a thin band. For nonpolar materials, peak values of ep at 
y~,,g = 0.02, 0.04, and 0.06 were found to be 0.049, 0.217, and 0.684, respectively. The corresponding values 
for diploar materials with l = 0.01 equalled 0.046, 0.164, and 0.436, respectively. At Y~vg = 0.06, the contour 
of % = 0.3 has traversed all along the main diagonal for nonpolar materials, but for dipolar materials 
with l = 0.05 the contour of % = 0.3 has not even initiated. This verifies the assertion made above 
that, at the same value of the average strain, the elements along the main diagonal are deformed less 
severely for dipolar materials as compared to that for nonpolar materials. 

At an average strain of 0.06, we have plotted in Fig. 8 contours of the temperature rise 0 in the present 
configuration for nonpolar and diploar materials with l = 0.01. Also depicted are contours of 0 when 
Y~vg = 0.15 and the material is dipolar with l = 0.05. For nonpolar materials, the contour of 0 = 0.4 
has propagated along the main diagonal. But for dipolar materials with l = 0.01 it has moved away from 
the corners only a little bit. When l = 0.05, the contour of 0 = 0.4 propagates inwards from the centroid 
and the top right corner but has not moved all along the main diagonal even when Y,vg = 0.15. This is 
to be expected since elements along the main diagonal are deformed more intensely for nonpolar materials 
than for dipolar materials. The distribution of v1 and v 2 within the domain at y,vg = 0.06 for l = 0 and 
0.01, and at 7avg = 0.15 for l = 0.05 plotted in Fig. 9, wherein the distribution of only v 2 is shown, 
indicates that the deforming region is divided into two parts essentially separated along the diagonal 
passing through the block center. Each region is moving as a rigid body with all of the deformations 
concentrated in the narrow region separating the two parts. The plotted velocity field supports the assertion 
made by Massey (1921) that the tangential velocity field is discontinuous across the shear band. In 
our computations, the velocity field is assumed to be continuous. However, the sharp jumps in the values 
of v I and v2 across the narrow region lend credence to Massey's proposal. 
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Figure lO depicts the contours of the effective dipolar stress L, defined as 

2__,- c T'e - -  ijk 7~ijk 

at an average strain of 0.12 for a 144 element mesh and for l = 0.05 and 0.10. These contours 
evince that the maximum value of ze occurs not at the band center, but at points far away from it. The 
magnitude of the peak valUe of L and its location depend upon the value of I. These results are in qualitative 
agreement with those computed by Batra (1987) and by Batra and Kim (1988) for the one-dimensional 
problem. 

From contours of the maximumprincipal logarithmic strain and the teml~erature rise, one can estimate 
the centerline EF of the shear band. In Fig. 11 we have shown how the effective strain-rate and the 
temperature rise vary along EF for nonpolar and dipolar materials with l = 0.01 at 7,v~ = 0.06 and for 
dipolar materials with l = 0.05 at V~vg = 0.15. Each quantity has been normalized with respect to its peak 
value on line EF. Both for nonpolar and dipolar materials the temperature rise is essentially concentrated 
near the block center and the top right corner. In these regions, material points are deforming more 
severely than those on the remainder of line EF. The effective stress varies more smoothly along 
the centerline EF for dipolar materials as compared to that for nonpolar materials. Figure 12, depicts 
the variation of the effective stress, effective strain-rate, and temperature rise on two lines AB and CD 
perpendicular to EF; the location of these lines is also shown in the figure. The various quantities have been 
normalized with respect to their maximum values on AB and ED. The plots of the distribution of the 
effective strain-rate and the temperature rise suggest that wider bands form for dipolar materials 
as compared to that for nonpolar materials. The difference between the bandwidth for nonpolar and 
diplar materials increases with an increase in the value of the material characteristic length I. Batra and Kim 
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(1988) studied the one-dimensional shear band problem and also concluded that the band width increased 
with an increase in the value of the material characteristic length I. 

5 
Conclusions 
We have studied the initiation and growth of a shear band in a dipolar thermally softening viscoplastic 
body deformed in plane strain compression at a nominal strain-rate of 5000 sec- 1. Simple constitutive 
relations have been proposed for dipolar stresses. The proposed theory generalizes to three-dimensions 
the one-dimensional theory of Wright and Batra (1987) for dipolar materials, and the three-dimensional 
theory of Green et al. (1968) for rate-independent perfectly plastic materials to rate-dependent strain 
hardening but thermally softening dipolar materials. A finite element code capable of solving an initial- 
boundary-value problem involving plane strain deformations of these materials has been developed. It is 
shown that a shear band initiates from the block center where an initial temperature perturbation is 
introduced and propagates along the main diagonal. The consideration of dipolar effects has 
a stiffening effect in the sense that the initiation of the band is delayed and the rate of growth of the 
temperature and effective strain-rate at the band center is lower than that for nonpolar materials. These 
effects are enhanced by an increase in the value of the material characteristic length for the material. 
Also, the band is wider for dipolar materials as compared to that for nonpotar materials. 
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