326

Computational Mechanics 17 (1996) 326-334 © Springer-Verlag 1996

Development of shear bands during the perforation of a steel plate

R. C. Batra, Z. Peng

Abstract We have analysed the development of shear bands
during the perforation of a steel plate by a masstve rigid punch.
The contact surfaces are modeled as smooth and the steel is
modeled as a thermoviscoplastic material that hardens with an
increase in the plastic strain and plastic strain-rate but softens
due to the rise in its temperature. The effect of punch speed,
the clearance between the punch and the back supports, and
the radius of the periphery of the punch nose on the
development of bands is delineated.

1

Introduction

Even though Tresca (1878) reported the development of shear
bands during the hot forging of platinum more than a century
ago, the activity in this field picked up since the time Zener and
Hollomon (1944) observed 32 um wide shear bands during

the punching of a hole in a low carbon steel plate. Zener and
Hollomon also pointed out that during the punching process,
heat produced because of the intense plastic deformations of the

material soften it and once this softening equals the hardening
of the material due to strain and strain-rate effects, it becomes

unstable. The study of shear bands is important because

once these bands have developed, subsequent deformations of
the body are concentrated in these narrow regions and the
strength of the rest of the body is not fully utilized. Also, shear
bands precede shear fractures and are the primary mode of
failure in ductile materials under dynamic loading.
Subsequently Moss (1981) conducted tests similar to those of
Zener and Hollomon (1944) and reported that strain-rates of the
order of 10°/sec occur within the shear band. Chou et al. (1991)
have performed controlled penetration tests and have measured

the length of the band ahead of the punch surface.
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Duffy and co-workers (1984, 1988) have measured the
time-history of the temperaturerise and the plastic strain during
the development of a shear band in a thin-wall steel tube that
is dynamically twisted. Other types of test specimens and
loading conditions have been employed by Kalthoff (1987) and
Mason et al. (1994).

Several investigators have analysed the initiation and growth
of shear bands analytically and numerically; we refer the reader
to the proceedings of three symposia edited by Zbib et al. (1992),
Armstrong et al. (1994) and Batra and Zbib (1994) and
a book by Bai and Dodd (1992) for a list of references on the
subject. Here we use an adaptive mesh refinement technique
to analyse the formation of shear bands during the perforation
of a steel plate. It is found that the radius of the periphery
of the nose of the punch has a noticeable effect upon the
length of the band ahead of the punch surface. Also the
clearance between the punch and the back supports affects
significantly when a band initiates, and it determines the
profile of the mantle of the plug ejected out of the plate. We note

that there is no a priori defect introduced to initiate a shear
band.

2

Formulation of the problem _

We use a cylindrical coordinate system to analyse axisymmetric
deformations of a steel plate impacted at normal incidence by
a massive rigid cylindrical rod and assume that the contact
surfaces are smooth; a schematic sketch of the problem studied
is shown in Fig. 1 wherein dimensions of different parts are also
given. We use an updated Lagrangian description of motion.
Equations governing thermomechanical deformations of the
steel plate are

pov=DivT, | (2)
p,é = — DivQ + tr(TF"). (3)

Equations (1), (2) and (3) express, respectively, the balance of
mass, balance of linear momentum and the balance of internal
energy. In them p is the present mass density of a material
particle whose mass density in the reference configuration is
Py ] = detF, F = 0x(X, t)/0X is the deformation gradient, x (X, ¢)
gives the position of the material particle X at time ¢, v = x gives
the velocity of the material particle X, a superimposed dot
indicates the material time derivative, T is the ﬁrs{t
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Radial coordinate (mm)

Piola-Kirchhoff stress tensor, e is the specific internal energy,
and Q the heat flux measured per unit reference area. The
operator Div indicates the divergence operator with respect to
coordinates in the reference configuration. Equations (1)-(3)
are supplemented with the following constitutive relations.

6= —p(p)1+2uD, p(p)=K(p/py,—1) (4)
_ Oy m l// " r ~nT
2 = (1 + bI) (1—-—v9)(1+-——), 2I* = tr(DD7),
\/31 '1[10
' (5)
.p=4u12/(1+¢£)nao, D =D —itr(D)1, (6)
0
T=Jo(F 1), Q=Jq(F "), q= —kgradb, (7)
poé = poct + pplp’. (8)

Here o is the Cauchy stress tensor, K the bulk modulus, g, the
yield stress in a quasistatic simple tension or compression test,
W an internal variable that describes the hardening of the
material, k the thermal conductivity, ¢ the specific heat and 6 the
rise in the temperature of a material particle. From (4), and (5),
it follows that

Y )

Vo

That is the material obeys the von Mises yield criterion and the
yield stress depends upon the strain-rate, temperature and the
work-hardening parameter . The constitutive relation (4), with
u given by (5), was first proposed by Batra (1988). In 1t, o,

b, m, v, ¥, and n are material parameters; b and m describe the
strain-rate hardening of the material, v its thermal softening
and i/, and n its work-hardening. Once (1 — v6) equals zero,
the material behaves like an ideal fluid. We note that in our work
the volumetric deformations are considered to be elastic, the
distortional or shear deformations are taken to be plastic, there
is no unloading considered, and a material point is assumed

(9)

(3tr(ss”))"* = (1 +bI)"(1 —v@)‘(l %
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10 Fig. 1. A schematic sketch of the problem studied
and initial discretization of the plate

to deform plastically at all times; however, the plastic strain-rate
is extremely small for low values of the effective deviatoric
stress. Also, there is no failure or fracture criterion considered.

The plate is taken to be initially stress free, at rest, at
a uniform temperature and the initial work-hardening is set
equal to zero. The rigid penetrator or the punch is assumed to
be moving at a uniform speed V,, and is taken to be huge so that
its speed can be assumed to be uniform during the perforation
process.

Here we assume that all of the plastic working is converted
into heating or equivalently have taken the Taylor-Quinney
parameter equal to 1. Batra and Adulla (1994) have shown that
a lower value of the Taylor-Quinney parameter deiays the
initiation of a shear band but has no effect on the qualitative
nature of results.

For the boundary conditions we take v=0and q-n =0 at
the plate particles abutting the rigid supports, and (v-n)n =
V,n, q-n = 0 at the smooth target/penetrator interface where
n is a unit normal at a point on the interface. Thus the plate is
assumed to be glued to the rigid stationary back supports and
there is no interpenetration of the plate material into the
punch. Should a gap develop between the plate and punch
surfaces, the plate particles there are assumed to be traction
free and thermally insulated. Because of the rather very short
time duration of the punching process, the assumption of no
heat transfer from the target into either the supports or the
penetrator is a reasonable one.

The above-stated problem is highly nonlinear and too
difficult to solve analytically; therefore, we seek its approximate
solution by the finite element method.

3
Computation and discussion of results

In order to compute numerical results, we assigned foliowing
values to various parameters for the steel.

g, =792 MPa, K=157GPa, b =10000sec,

v=10.66 x 107%/°C, m=0.01, n=0.09, k=50W/m°C,

0, =7840Kg/m’, 0,=25°C, ¥,=0.017, c=477]/Kg°C
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In the computer code used to

analyse the problem, the

lumped mass matrix obtained by the row-sum technique is used.
The element load vectors are evaluated by using the three-point
quadrature rule. The coupled nonlinear ordinary differential

equations obtained by using the

Galerkin approximation are

integrated by the forward-difference method which for linear
problems is explicit and only conditionally stable. Because only

volumetric elastic deformations

are considered, the bulk wave

speed is used to compute the time step size. Also, this time
step size is checked against the critical time step size for the
heat equation and the smaller of the two values is selected. After
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every time increment, the coordinates of nodes are updated and
elements are checked for excessive distortion. If any interior
angle of an element becomes less than 15°, the mesh is refined
and the values of solution variables at the newly created nodes
are interpolated from those at the nodes of the previous mesh.
The mesh refinement subroutine of Batra and Ko (1992) is
employed with the modification that the generated mesh is
suitably graded. We recall that the goal of refining the mesh

is to make |, Id€2 nearly the same for each element in the
mesh. Since this may generate a poorly graded mesh, the
generated elements are suitably modified to create a proper
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grading of the mesh. The condition of impenetrability between
the target and penetrator particles is satisfied by using the
slideline algorithm of Hallquist et al. (1985); the rigid penetrator
or punch surface is regarded as the master surface and the
adjoining surface of the deformable plate as the slave surface,
nodes on it and elements sharing at least one side with the
penetrator/plate interface are called slave nodes and slave
elements respectively. After each time increment, we find

the normal acceleration of each slave node relative to the
master surface. If this relative normal acceleration points
away from the master surface, the node is released and is
presumed not to be in contact with the master surface during
the next time step. However, if the relative normal acceleration
of a slave node is towards the master surface and its distance
from the master surface is less than a preassigned small
number, the slave node is taken to be on the master surface
during the subsequent computations. We note that our method
of accounting for the contact at the target/penetrator interface
is a slight modification of that employed by Chen and Batra
(1995).

Figures 2a, 2b and 2c depict the deformed shapes of the plate
and the adaptively refined meshes used during subsequent
computations when the penetration depth equals 1, 3 and
5 mm for an impact speed of 50 m/s. It is clear that significant
bending deformations of the plate occur. We add that
deformations of only one-half of the plate were analysed
even though sketches drawn are for the full plate. Around
the nose periphery, the target particles are separated from
the penetrator surface; this separation is a function of
the radius of the nose surface near its periphery. The plots of
the velocity distribution within the deforming plate region
indicate that at a penetration depth of 1 mm, the particles
move both in the axial and radial directions but at a
penetration depth of 5 mm and beyond, the target particles
ahead of the punch move axially with the speed of the punch.
As shown in Fig. 3, the axial velocity of particles decreases from
that of the punch to essentially zero over the distance between
the punch surface and the inner surface of the back rigid

1.0 ; e
1= N
& AN
CLY
& 0.8 1 "“'1
< Flat nose,V0=50m/s,clearance=2mm '11:‘
x .
S 06 [\
& Penetration depth {(mm)
3 10 Vil
& ' ')
Q 0.4 ————— 2.0 | \\'!'.‘
£ =i 3.0 it
g e - 4.0 \{
z 02 N
-‘-\1_‘
-
0 .
3.0 3.5 4.0 4.5 5.0 5.5

Radial Coordinate (mm)

Fig. 3. Distribution of the non-dimensional axial velocity of plate
particles that are 1 mm ahead of the punch nose surface when the
penetration depth equals 1, 3 and 5 mm; the speed is
non-dimensionalized with respect to that of the punch

supports. Thus for a clearance of 2 mm and a punch speed
of 50 m/s, the nominal strain-rate equals 25000/s and the
primary mode of deformation is shearing. Once all of plate
particles ahead of the punch surface move only axially, the
plug has formed and is subsequently extruded from the
plate. The temperature rise and deformed shapes of the
plate at penetration depths of 2, 4 and 5 mm are shown in
Figs. 4a, 4b and 4c respectively. These plots illustrate that
only narrow regions of the plate adjacent to the vertical
surface of the penetrator are heated up significantly. That these
regions are deformed severely becomes clear from the contours
of the work-hardening parameter y plotted in Fig. 5. We note
that values of ¥ are proportional to the effective plastic
strain. A reasonable hypothesis is that fracture will occur along
the surface of maximum effective plastic strain or equivalently
that of maximum temperature. Thus the mantle of the plug
ejected out of the plate will not have straight vertical surfaces.
Results illustrated in Fig. 6 indicate that the shape of the plug
depends noticeably upon the radius of the nose periphery;
for a blunt nosed penetrator the mantle of the plug is essentially
straight but has rather sharply inclined surface when the radius
of the nose periphery is increased. Also the temperature rise
for a penetration depth of 5 mm is maximum for the blunt-nosed
penetrator.

Even though plate particles adjacent to the inner surface
of the back support are also deformed severely, these do not
seem to propagate into the plate. However, those of plate
particles near the nose periphery of the punch propagate into
the plate.

Batra and Zhang (1994) studied torsional deformations of
a thin tube and called the speed of propagation of the contour of
effective plastic strain of 2.0 as the speed of the shear band.
We note that in general, an exception being the torsionai
deformations studied by Batra and Zhang, the computed speed
is a function of the value of the effective plastic strain, e.g.
see Zhu and Batra (1991). For the material model used herein,
the internal variable y is a measure of the work-hardening
and hence plastic strain at a material point. We have plotted
in Fig. 7 plate regions wherein ¥ exceeds 1.5 when the
penetration depth equals 2.2 mm, 2.4 mm and 2.6 mm; from
these the average speed of propagation of the contour of y = 1.5
is found to be 71.4 m/s. As was done by Chou et al. (1991),
we define the distance of the tip of the contour of Y = 1.5
from the penetrator nose surface as the shear band length,
and plot it versus the penetration depth in Fig. 8a for three
different values of the radius of the nose periphery. Thus an
increase in the value of the edge radius delays the initiation of
the shear band. Since the horizontal axis is proportional
to the time elapsed from the instant the punch just touched
the plate, the slope of these curves is proportional to the
band speed. Thus the band speed increases with the penetration
depth and is nearly independent of the edge radius. Recalling
that the formation and ejection of the plug essentially involves
shearing of this material from the rest of the plate material
resting on the rigid supports, one will conjecture that
the development of the shear band depends noticeably upon
the distance between the penetrator and the inner surface of the
support or the clearance between the penetrator and the
supports. Results plotted in Fig. 8b support this and indicate
that at least for the flat nosed penetrator the shear bands inttiate
sooner and propagate faster as the clearance is reduced. The
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smallest value, 500 um, of the clearance considered herein is
approximately 10 times the width of the shear band observed
experimentally (e.g. see Moss (1981)) in steels. Figure 8c depicts
the length of the shear band ahead of a flat-nosed penetrator
as a function of the penetration depth for different values
of the penetrator speed. The effect of punch speed maniftests
itself through an increase in the nominal strain-rate and hence
affects the material response. From these curves it is hard to
quantify the dependence of the shear band length ahead
of the punch surface upon the penetration speed. These results
could not be compared with the test observations of Chou
et al. (1991) because of the lack of values for material
parameters. However, they agree qualitatively with those plotted
in their Fig. 2.

Even though we have used adaptively refined meshes to
compute results, it is possible that these depend upon the

Back support

10

Back support

Fig. 6a,b. Contours of the temperature
rise in °C in the deformed plate at

a penetration depth of 5 mm (a) radius of
10 the periphery of the nose of the punch
equal to 1 mm, (b) flat-nose penetrator

smallest element size specified during the mesh refinement;
this has not been explored. One way to get mesh independent
results is to use a thermoviscoplasticity theory that incorporates
a material characteristic length, e.g., see Wright and

Batra (1985), Batra (1987) and Aifantis (1984).

4

Conclusions

We have studied the dynamic axisymmetric thermomechanical
problem involving the perforation of a steel plate by a huge
punch whose speed can be regarded as constant during

the perforation process. The effects of inertia forces and heat
conduction are considered. It is found that after the punch
has traversed a certain distance into the plate, plate

particles ahead of the punch face essentially move as a rigid
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Fig. 7. Dark areas indicate regions wherein the value of the
work-hardening parameter ¥ equals at least 1.5

body and this region is sheared from the remaining plate
material resting on the flat rigid supports. Only a narrow
cylindrical region of the plate adjacent to the mantle of the
punch is severely deformed and the intensely deformed
region propagates ahead of the punch surface into the plate.
The clearance between the penetrator and the back supports
as well as the radius of the periphery of the punch nose affect
noticeably when a shear band initiates and the length of

the shear band ahead of the punch surface. The average
shear band speed, defined as the axial speed of the contour
of the work-hardening parameter equal to 1.5, is computed
to be 71 m/s; this speed depends upon, among other factors,
the depth of penetration and the clearance between the
penetrator and the supports. The maximum temperature rise
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Fig. 8a—c. Effect of (a) the radius of the nose periphery, (b) the
clearance between the punch and the supports, and (<) the punch
speed, upon the length of the shear band ahead of the punch nose

also depends upon these factors and for the flat nosed penetrator
equals 93% of the melting temperature of the steel.
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