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We study delamination in a sandwich panel due to transient finite plane strain elastic
deformations caused by local water slamming loads and use the boundary element method
to analyze motion of water and the finite element method to determine deformations of the
panel. The cohesive zone model is used to study delamination initiation and propagation.
The fluid is assumed to be incompressible and inviscid, and undergo irrotational motion. A
layer-wise third order shear and normal deformable plate/shell theory is employed to
simulate deformations of the panel by considering all geometric nonlinearities (i.e., all non-
linear terms in strain–displacement relations) and taking the panel material to be St. Venant–
Kirchhoff (i.e., the second Piola–Kirchhoff stress tensor is a linear function of the Green–St.
Venant strain tensor). The Rayleigh damping is introduced to account for structural damping
that reduces oscillations in the pressure acting on the panel/water interface. Results have
been computed for water entry of (i) straight and circular sandwich panels made of Hookean
materials with and without consideration of delamination failure, and (ii) flat sandwich
panels made of the St. Venant–Kirchhoff materials. The face sheets and the core of sandwich
panels are made, respectively, of fiber reinforced composites and soft materials. It is found
that for the same entry speed (i) the peak pressure for a curved panel is less than that for a
straight panel, (ii) the consideration of geometric nonlinearities significantly increases the
peak hydrodynamic pressure, (iii) delamination occurs in mode-II, and (iv) the delamination
reduces the hydroelastic pressure acting on the panel surface and hence alters deformations
of the panel.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Local water slamming is characterized by large hydrodynamic loads of short duration which can cause significant
structural damage, e.g., see Faltinsen (1993). von Karman (1929) studied the water entry of a V-shape wedge of small dead
rise angle β by using the conservation of linear (or translational) momentum and the concept of added mass. Subsequently,
Wagner (1932) generalized von Kármán's work by including effects of water splash-up on a body with a small deadrise
angle β. Sedov (1934) extended Wagner's work to large deadrise angles. Correction factors to Wagner's solution to consider
3-D effects were proposed by Yu (1945). Bisplinghoff and Doherty (1952) conducted 2-D experiments and showed that
Wagner's solution overestimated effects of the piled-up water. Zhao et al. (1997) generalized Wagner's solution for arbitrary
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values of β and numerically solved the problem with the boundary integral method. Effects of jet flow were neglected and
computed results were found to agree well with the corresponding experimental findings.

Cointe (1989) used the method of asymptotic expansions and extended Wagner's theory to oblique impacts and initially
curved free surfaces. Howison et al. (1991) extended Cointe's work to axisymmetric and 3-D problems. Donguy et al. (2001)
used the finite element method (FEM) to analyze fluid–structure interaction (FSI) problems and found that Cointe's and
Howison et al.'s solutions over-predict the maximum pressure.

Shiffman and Spencer (1945, 1951) investigated the vertical impact of spheres and cones on water and developed an
analytical solution for a cone impacting water at normal incidence. A solution for the linearized problem involving the
impact on water of a body at an arbitrary angle was developed by Trilling (1950). Schnitzer and Hathaway (1953) presented
an approximate method for computing the water impact loads and pressure distributions on elliptic cylinders during
oblique impacts. Mei et al. (1999) analytically and numerically solved 2-D water impact problems for wedges and circular
cylinders including effects of jet flow. Korobkin and Khabakhpasheva (2006) have presented a semi-analytical method to
study the coupled fluid–structure problem for wedge impact. Miloh (1991a, 1991b) derived expressions of the slamming
force for water entry of rigid spheres and showed that results from these formulae agreed well with the available
experimental data.

Similarity solutions for water entry of a rigid wedge were developed by Dobrovol'Skaya (1969). Zhao and Faltinsen (1993)
validated their numerical solutions obtained with the boundary element method (BEM) by comparing them with the
similarity solutions for 41rβr811.

The fluid motion in water entry problems has been simulated numerically by using the FEM (Anghileri and Spizzica,
1995; Donguy et al., 2001; Das and Batra, 2011), the FEM with arbitrary Lagrange Euler (ALE) formulation (Stenius et al.,
2006), smoothed particle hydrodynamics (SPH) method (Oger et al., 2006), computational fluid dynamics (CFD) solver based
on the finite volume method (Piro and Maki, 2013), and the BEM (Battistin and Iafrati, 2003; Lin and Ho, 1994; Zhao and
Faltinsen, 1993). Wu et al. (2004) numerically and experimentally investigated the water entry of a freely falling rigid wedge,
and introduced an auxiliary function to decouple the hydrodynamic force due to rigid body acceleration. The water entry of
a freely falling rigid wedge and considering its rotations has been numerically simulated by Xu et al. (2010). Lin and Ho
(1994) used the BEM to study the influence of the water depth on the slamming pressure acting on a rigid wedge. They
found that the maximum impact pressure is higher for shallow water than that for deep water which agreed with their
experimental observations. Battistin and Iafrati (2003) used the BEM to simulate 2-D water entry problems of arbitrary
shaped bodies. Sun (2007) and Sun and Faltinsen (2006, 2009) numerically analyzed water slamming problems for arbitrary
geometries using the BEM for studying motion of the water that was modeled as non-viscous and incompressible, and the
modal analysis technique for deformations of the cylindrical shell. They considered effects of gravity and flow separation
from the solid surface. Piro and Maki (2013) investigated the water entry and exit of flexible bodies using the tightly coupled
FSI solver in which the fluid flow is simulated by a CFD solver based on the finite volume method and the structural
response by modal analysis.

Yettou et al. (2007) experimentally measured hydrodynamic pressures acting on rigid wedges during their free fall into
stationary water and analytically solved the problem. Nila et al. (2012) experimentally studied the water entry of rigid and
deformable bodies, and used the high speed Particle Image Velocimetry (PIV) technique to determine fluid flow around
immersed bodies. The experimentally found velocity field, except in the spray root region, was found to agree well with the
corresponding analytical and numerical results. Panciroli et al. (2012, 2013) experimentally and numerically analyzed the
water slamming of linear elastic wedges. The experimental results for different values of the panel thickness, deadrise angle
and entry velocity were compared with those obtained by using the SPH formulation in LSDYNA. As pointed out by Oger
et al. (2006), 20 million particles are needed to correctly predict the pressure on the wedge. Ray and Batra (2013)
investigated dynamic failure of a straight sandwich beam made of an anisotropic Hookean material due to slamming loads.

Review articles (Szebehely, 1959; Szebehely and Basin, 1954) suggest that efforts should be concentrated on non-linear
free surface boundary conditions and the hydroelastic aspects of the impact. Abrate (2011) has recently reviewed the
literature on water slamming. Seddon and Moatamedi (2006) reviewed the water entry problem with focus on the water
landing of spacecraft. Korobkin (2004) has summarized analytical models for water slamming problems and developed
mathematical models that included higher order terms in the Bernoulli equation to predict the hydrodynamic pressure
distribution. The reader is referred to these review articles for additional references on the water entry problem.

In practical water slamming problems, the panel is curved and deformable. Deformations of the panel affect the motion
of the fluid and the hydroelastic pressure acting on the fluid/panel interface. Stenius et al. (2011) used LSDYNA to study
hydroelastic effects for deformable panels considering different boundary conditions, impact velocities, deadrise angles,
membrane effects and panel materials. Lu et al. (2000) employed coupled BE and FE methods for studying hydroelastic
effects with the panel modeled as a Timoshenko beam.

The current interest seems to be in the water entry of sandwich panels because of their higher specific stiffness than that
of panels made of homogeneous materials. We note that a typical sandwich structure is composed of stiff face sheets and a
flexible core, and the slamming pressure acts on a small region. One should consider transverse normal and transverse shear
deformations especially when damage and failure of the composite panel are to be delineated. Experimental results for
the failure of deformable sandwich composite panels including core shear, delamination and damage of face sheets due to
water slamming have been reported by Charca and Shafiq (2010) and Charca et al. (2009). Water slamming problem for a
complex shaped composite hull has been analyzed by van Paepegem et al. (2011) both numerically using ABAQUS and



Z

X
V

Deformable panel

β Free surface

Truncation 
boundary

Axis of 
symmetry

Fig. 1. Schematic sketch of the water slamming problem studied.
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experimentally. Hu et al. (2011) approximated the slamming pressure by equivalent bending moment to study delamination
of a composite panel using the FE software ANSYS and the cohesive zone model (CZM). Xiao and Batra (2012) studied the
motion of the fluid by the BEM and focused on delineating how panel curvature affected the pressure distribution on curved
rigid panels. Qin and Batra (2009) studied the hydroelastic problem using the {3, 2}-order plate theory for a sandwich panel
of small deadrise angle β and modified Wagner's water impact theory to consider the FSI during slamming. The plate theory
incorporates the transverse shear and the transverse normal deformations of the core, but not of the face sheets which were
modeled as Kirchhoff plates. Das (2009) and Das and Batra (2011) studied the water slamming of deformable sandwich
panels using the commercial FE software LSDYNA with the ALE formulation. They considered all geometric nonlinearities
when studying deformations of the panel, assumed the fluid to be compressible, accounted for inertia effects in the fluid and
the solid, and examined delamination between the core and the face sheets. They pointed out that boundary conditions at
the fluid/panel interface were not well satisfied since the fluid penetrated into the rigid panel. The pressure distribution on
the wetted panel surface was found to be oscillatory. Aureli et al. (2010) have exploited deformations of the structure due to
FSI to harvest energy.

Here we study delamination of a sandwich panel due to water slamming loads and use coupled BE and FE methods. The
BEM is used to analyze motions of the fluid that is modeled as incompressible and inviscid, and whose motions are assumed
to be irrotational. This aspect of our work closely follows the work of Lu et al. (2000), Wu (1998), Wu et al. (2004), Wu and
Taylor (1996, 2003) and Xu et al. (2010). The coupled BE and FE methods used in the present work are similar to iterative
methods discussed by Lu et al. (2000). However, the hydrodynamic pressure evaluation, the jet cut and the FSI methods are
different. Furthermore, we use the third order shear and normal deformable plate/shell theory and simulate delamination
between the face sheets and the core whereas the Timoshenko theory for a monolithic beam was used by Lu et al. (2000).

We analyze finite transient deformations of a curved sandwich panel by the FEM, employ a third order shear and normal
deformable plate/shell theory (TSNDT), account for all geometric nonlinearities, and consider the panel material to be St.
Venant–Kirchhoff. Deformations of the panel and the water are coupled by requiring the continuity of the pressure and the
normal component of velocity at the water/panel interface. The Rayleigh damping is used to account for damping of the
structure that reduces oscillations in the hydrodynamic pressure acting on the water/panel interface. The CZM is
incorporated in the TSNDT to study delamination initiation and growth due to water slamming. Thus significant
contributions of the work include studying finite deformations of curved sandwich panels, using the TSNDT, and simulating
effects of delamination on the hydroelastic response of the panel.

The rest of the paper is organized as follows. In Section 2 we formulate the problem by considering all geometric
nonlinearities (i.e., all nonlinear terms in the strain–displacement gradient relations) and coupling between motion of the
fluid and deformations of the panel. Numerical methods used to solve the hydroelastic problem are summarized in Section
3. Results for several water slamming problems of deformable sandwich panels and delamination in a sandwich panel are
described in Section 4. Conclusions of this work are summarized in Section 5.

2. Formulation of the problem

A schematic sketch of the problem studied is shown in Fig. 1. At time t¼0, the keel of the ship hull (hereafter referred to
as panel) impacts at normal incidence with vertically downward velocity V stationary water occupying the semi-infinite
domain Zr0 when rectangular Cartesian coordinates (X, Y, Z) fixed to the earth are used to describe motion of the fluid. The
positive Z-axis points upwards (i.e., out of water), and the positive Y-axis into the plane of paper. We use curvilinear material
coordinates attached to the panel to identify its particles, and simplify the problem by assuming that the panel dimension in
the Y-direction is much greater than those in the X- and Z-directions so that a plane strain state of deformation in the
XZ-plane can be assumed and the problem can be solved as 2-D. Thus deformations of the panel and the motion of the fluid



Fig. 2. Schematic sketches of curved beam (a) and of cohesive interface Γℂ (b). X2-, x2-, y2- and y2-axis pointing into the plane of the paper are not shown
in the figure.
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are assumed to be independent of the Y-coordinate. Furthermore, we assume that the panel geometry is symmetric about
the plane X¼0 and it initially impacts water along the line X¼Z¼0. Thus motion of water in the region XZ0 and Zr0 and
deformations of the right-half of the panel are analyzed.

We note that the hydrodynamic load deforming the panel is highly localized. Thus the slamming problem is idealized as
that of a deformable sandwich wedge entering water with a uniform vertically downward velocity (see Fig. 1). We derive
equations governing finite deformations of the panel and motion of the water from balance (or conservation) laws of mass,
linear (or translational) momentum and moment of momentum (or angular momentum), the strain–displacement relations
that include all non-linear terms appropriate for finite deformations, and the relevant constitutive relations. Additional
sources of nonlinearity include the a priori unknown length of the wetted surface which is a nonlinear function of
deformations of the panel, and the deformed shape of the free surface of water. These are to be determined as a part of the
solution of the problem.

2.1. Equations governing motion of the fluid

For a 1-m long panel entering stationary water at 10 m/s, Reynolds number equals about 107, and viscous effects can be
neglected (Batchelor, 1967). Here we also ignore gravitational effects. Furthermore, we assume the water to be
incompressible and the motion of water to be irrotational. The assumption of null vorticity implies that there exists a
velocity potential φ such that velocity v¼ �∇φ, where ∇ is the spatial gradient operator in the XZ-plane. The conservation of
mass requires that φ satisfy the Laplace equation:

∂2φ
∂Z2 þ ∂2φ

∂X2 ¼ 0 in the water domain: ð1Þ

In the absence of gravitational force, the balance of linear (translational) momentum for an inviscid fluid requires that

ρ
Dv
Dt

¼ �∇p; ð2Þ

where ρ is the mass density of water, D/Dt the total time derivative, and the hydrostatic pressure p is determined by solving
Eq. (2) under the following boundary conditions:

p¼ pa;
DX
Dt

¼ � ∂φ
∂X

;
DZ
Dt

¼ � ∂φ
∂Z

;
Dφ
Dt

¼ � 1
2

∇φj2 on the free surface of water;
�� ð3aÞ
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jvj-0 as ðX2þZ2Þ1=2-1 for X40 and Zr0; ð3bÞ

∂φ
∂X

¼ 0 on X ¼ 0: ð3cÞ

Here pa is the atmospheric pressure. In writing boundary condition (3a) we have tacitly neglected the surface tension
effect. These equations imply that the velocity of a point on the free surface equals that of the fluid particle instantaneously
occupying it. Eq. (3a)4 following from Eq. (3.a)1 and the Bernoulli Eq. (5) given below is used to update the function on the
free surface after every time step. Ideally one should specify in Eq. (3b) the rate of decay of the speed of water at infinity.
However, we do not do so since the domain occupied by the fluid will be truncated to a finite one when numerically solving
the problem. The boundary condition (3c) follows from the assumption that the motion is symmetric about the plane X¼0.
At the fluid/panel interface the non-inter-penetration condition is satisfied if

∂φ
∂n

¼ � _U Un: ð4Þ

Here U and _U equal, respectively, the displacement and the velocity of a particle of the panel, and n is a unit vector
normal to the fluid/panel interface and pointing into the panel.

Recalling that v¼ �∇φ, Eq. (2) is integrated to give the following Bernoulli equation:

p�pa ¼ �ρ � ∂φ
∂t

þ 1
2
j∇φj2

�
:

�
ð5Þ

2.2. Equations governing deformations of sandwich panel

2.2.1. Strain–displacement gradients relations
Because of the assumption of plane strain deformations we model the panel as a 2-D curved beam schematically shown

in Fig. 2. In the reference configuration, we describe the position of a material point p by using orthogonal curvilinear
coordinate axes y1, y2, y3 with the y1-axis along the tangent to the mid-surface of the beam, the y2-axis pointing into the
plane of the paper, and the y3-axis pointing along the local thickness direction. The coordinate axes y1, y2, y3 move with the
downward instantaneous velocity V (rigid translation, no rotation). Let position vectors, with respect to fixed rectangular
Cartesian coordinate axes, of point p in the current and the reference configurations be x and X, respectively. The y2-axis is
parallel to the x2- (or the y-) and X2- (or the Y-) axes. The displacement U of point p is given by

U ¼ uþu0 ¼ x�X; ð6Þ
where u' is the displacement of the origin of the curvilinear coordinate axes y1, y2, y3 and is only a function of time t, and u is
the displacement relative to the coordinate axes y1, y2, y3. The displacement, the velocity and the acceleration of point p
relative to axes y1, y2, y3 are hereafter called relative or the vibrational displacement, velocity and acceleration, respectively.
The translational velocity and acceleration of the origin of the curvilinear coordinate axes y1, y2, y3 are V and _V ; respectively.

Components, Gij, of the metric tensor in the reference configuration are given by

Gij ¼ Ai UAj; Ai ¼
∂X
∂yi

: ð7Þ

For orthogonal curvilinear coordinate axes Gij is non-zero only when i¼ j. We set

H1 ¼
ffiffiffiffiffiffiffiffi
G11

p
; H2 ¼

ffiffiffiffiffiffiffiffi
G22

p
¼ 1; H3 ¼

ffiffiffiffiffiffiffiffi
G33

p
¼ 1; ~ei ¼

Ai

H ið Þ
ðno sum on iÞ: ð8Þ

The ordered set ð ~e1; ~e2; ~e3Þ form orthonormal base vectors for the curvilinear coordinate axes in the reference
configuration. We note that

H1 ¼ 1þ y3
R

� �
;

∂ ~e1
∂y1

¼ � ~e3
R
;

∂ ~e3
∂y1

¼ ~e1
R
; ð9Þ

where R is the radius of curvature of the point (y1, y2, 0) on the mid-surface of the beam.
Physical components of the deformation gradient, F , are given by

F½ � ¼
1þ 1

H1

∂u1
∂y1

þ u3
R

� �
0 ∂u1

∂y3

0 1 0
1
H1

∂u3
∂y1

� u1
R

� �
0 1þ ∂u3

∂y3

26664
37775: ð10Þ

The Green–St. Venant strain tensor, E, defined by

E¼ 1
2
ðFTF�1Þ; ð11Þ
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where 1 is the identity tensor, has the following non-zero physical components:

E11 ¼
1
H1

∂u1

∂y1
þ u3

R

� �
þ 1

2H1
2

∂u1

∂y1
þ u3

R

� �2

þ ∂u3

∂y1
� u1

R

� �2
" #

;

E33 ¼
∂u3

∂y3
þ 1

2
∂u1

∂y3

� �2

þ ∂u3

∂y3

� �2
" #

;

2E13 ¼
1
H1

∂u3

∂y1
� u1

R

� �
þ ∂u1

∂y3
þ 1

H1

∂u3

∂y3
∂u3

∂y1
� u1

R

� �
þ ∂u1

∂y3
∂u1

∂y1
þ u3

R

� �� 	
: ð12Þ

We note that E incorporates all nonlinearities including the von Karman nonlinearity, and is valid for finite (or large)
deformations of the beam.

2.2.2. Equations of motion
The in-plane displacements (u1, u3) of a point are governed by the following equations expressing the balance of linear

(or translational) momentumwritten in the Lagrangian description of motion using physical components T11; T13; T31; T33;

of the first Piola–Kirchhoff stress tensor T (Saada, 1993).

ρ0 €u1 ¼
1
H1

∂T11

∂y1
þ 1

H1

∂ðH1T13Þ
∂y3

þ 1
H1R

T31þ f 1; ð13aÞ

ρ0 €u3 ¼
1
H1

∂T31

∂y1
þ 1

H1

∂ðH1T33Þ
∂y3

� 1
H1R

T11þ f 3; ð13bÞ

uiðy1; y3;0Þ ¼ u0
i ðy1; y3Þ; ð13cÞ

_uiðy1; y3;0Þ ¼ _u0
i ðy1; y3Þ; ð13dÞ

TijN
t
j ¼ t iðy1; y3; tÞ on Γt ; ð13eÞ

uiðy1; y3; tÞ ¼ uiðy1; y3; tÞ on Γu; ð13f Þ

TijN
ℂþ
j ¼ f

ℂþ
i ; TijN

ℂ�
j ¼ f

ℂ�
i on Γℂ; ð13gÞ

f
ℂ�
1 ¼ baðℝ11stþℝ31snÞ; f

ℂ�
3 ¼ baðℝ13stþℝ33snÞ; f

ℂþ
i ¼ � f

ℂ�
i on Γℂ; ð13hÞ

½ℝ� ¼
cos θ 0 sin θ

0 1 0
� sin θ 0 cos θ

264
375: ð13iÞ

In Eq. (13) indices i and j equal 1 and 3, a repeated index implies summation over the range of the index, f1 and f3 are
components of the body force per unit reference volume along the y1-axis and the y3-axis, respectively, ρ0 the mass density
in the reference configuration, and €ui ¼ ∂2ui=∂t2. The initial displacement u0

i and the initial velocity _u0
i are known functions

of y1 and y3. N
t is a unit outward normal in the reference configuration at a point on the boundary Γt where surface

tractions are prescribed as t i. On boundary Γu, displacements are prescribed as ui. N
ℂ7 is the outward unit normal on the

corresponding interface Γ7
ℂ , ba equals the area into which a unit surface area in the reference configuration is deformed, ℝij

the rotation matrix, θ the angle between the y1-axis and the y1-axis, f
ℂ7

i the traction on the cohesive interface Γ7
ℂ , and st

and sn the tangential and the normal tractions, respectively, on the cohesive interface in the current configuration. Surface
tractions st and sn are related to jumps in displacements on the cohesive interface as discussed in Section 2.2.4. As unit
normals at corresponding points on the upper and the lower surfaces of a cohesive interface may not be parallel to each
other, we use a mean cohesive interface Γm

ℂ (see Fig. 2) to find surface tractions and jumps in the tangential and the normal
displacements on the cohesive interface. Accordingly, we introduce local coordinate axes y1 and y3, respectively, along the
tangent and the normal to the deformed mean cohesive interface Γm

ℂ . The unit outward normal n7
ℂ on Γ7

ℂ in the current
configuration is found from values of the deformation gradient on the corresponding interface. We assume that the rotation
angle θ of the mean cohesive interface Γm

ℂ equals the average of the rotation angles of unit normals n7
ℂ . The deformed areaba of the mean cohesive interface Γm

ℂ is taken equal to the average of areas into which unit areas on Γþ
ℂ and

Γ�
ℂ are deformed. We note that tractions on Γþ

ℂ and Γ�
ℂ are equal and opposite.

Using the transformation matrix ℝij, the jumps in displacements δt and δn, of corresponding points on Γþ
ℂ and Γ�

ℂ are
given by

δt ¼ℝ1jðuþ
j ðy1; y3; tÞ�u�

j ðy1; y3; tÞÞ on Γℂ; j¼ 1; 3; ð14aÞ

δn ¼ℝ3jðuþ
j ðy1; y3; tÞ�u�

j ðy1; y3; tÞÞ on Γℂ; j¼ 1; 3; ð14bÞ
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where uþ
i ðy1; y3; tÞ and u�

i ðy1; y3; tÞ represent, respectively, displacements of a point on Γþ
ℂ and Γ�

ℂ with respect to y1 and y3
coordinate axes, and δt and δn equal jumps in the tangential and the normal displacements of corresponding points on Γþ

ℂ

and Γ�
ℂ with respect to y1 and y3 coordinate axes on the mean cohesive interface Γm

ℂ .
Initially the panel is assumed to move with a uniform velocity V along the negative Z-axis and have null vibrational

displacement and velocity, i.e.,

_uðy1; y3;0Þ ¼ 0; uðy1; y3;0Þ ¼ 0: ð15Þ
We assume that the left and the right edges of the panel are undeformed during the water entry. Thus

uið0; y3; tÞ ¼ 0; uiðℒ; y3; tÞ ¼ 0; i¼ 1; 3; on the left and the right edges of the panel. On the bottom surface ΓtðtÞ (or
y3 ¼ y3b) of the panel that contacts water

TijNj ¼ p baniðy1; y3b;0Þ;
∂φ
∂n

¼ �ð _uþVÞUn; ð16a;bÞ

and

TijNj ¼ 0 on Γf ðtÞ: ð17Þ
Here Γf ðtÞ is the part of the bottom surface of the panel not contacting water and also the entire top surface of the panel,

and _u the vibrational velocity of the wetted panel surface. We note that in Eq. (16), Tij is computed from deformations of the
panel and p from motion of the water. Furthermore, N is a unit outward normal at a point on ΓtðtÞ of the panel in the
undeformed configuration, and ni is the component of the unit normal n to the panel surface in the deformed configuration.
We note that n and ba depend upon deformations of the panel. For an inviscid fluid the tangential surface traction vanishes.
Also, the tangential velocities of the fluid and the solid particles instantaneously contacting each other may be different. We
note that Eq. (16a,b) implies the continuity of surface tractions and the normal component of velocity on the interface ΓtðtÞ
between the panel and the water, and ΓtðtÞ is to be determined as a part of the solution of the problem. The continuity of
surface tractions on ΓtðtÞ enables one to solve the FSI problem if ΓtðtÞ were known. The continuity of the normal component
of velocity expressed by Eq. (16b) is needed to find ΓtðtÞ: Should the pressure p at a point on ΓtðtÞ become tensile, then the
fluid cannot be contacting the panel at that point. That is, the fluid separates from the panel at that point and the surfaces
become traction free. For problems studied herein, this situation did not arise.

2.2.3. Constitutive relations
We assume that the beam material is St. Venant–Kirchhoff for which the strain energy density, W, is given by

W ¼ 1
2
EijCijklEkl; Cijkl ¼ Cklij ¼ Cjikl: ð18Þ

Here C is the fourth-order elasticity tensor having 21 independent components for a general anisotropic material.
The strain energy density for the St. Venant–Kirchhoff material reduces to that of a Hookean material if the finite strain
tensor E is replaced in Eq. (18) by the strain tensor for infinitesimal deformations. The material with the strain energy
density given by Eq. (18) is often called neo-Hookean. Batra (2006) has compared the response of four elastic materials for
which a stress tensor is a linear function of an appropriate strain tensor (e.g., the Cauchy stress tensor is a linear function of
the Almansi–Hamel strain tensor).

For a nonlinear elastic material, physical components of the second Piola–Kirchhoff stress tensor S are related to E by

Sij ¼
∂W
∂Eij

¼ CijklEkl: ð19Þ

For plane strain deformations of an orthotropic material with the material principal axes coincident with the coordinate
axes (y1, y2, y3), Eq. (19) reduces to

S11
S33
S13

8><>:
9>=>;¼

C1111 C1133 0
C3311 C3333 0
0 0 C1313

264
375 E11

E33
2E13

8><>:
9>=>;; ð20aÞ

C1111 ¼
1�ν23ν32
E2E3D ; C3333 ¼

1�ν12ν21
E1E2D ; C1133 ¼ C3311 ¼

ν31þν21ν32
E2E3D ; C1313 ¼ G13; ð20bÞ

D¼ 1
E1E2E3

1 �ν21 �ν31

�ν12 1 �ν32

�ν13 �ν23 1

�������
�������: ð20cÞ

Here E1, E2 and E3 equal Young's moduli along the y1-, the y2- and the y3-axes, respectively, G13 is the shear modulus in
the y1y3-plane, υ12; υ13 and υ23 are Poisson's ratios. Usually these quantities are defined for infinitesimal deformations.

Recalling that

T ¼ FS; ð21Þ
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where T is the 1st Piola–Kirchhoff stress tensor, we get

T11 T13

T31 T33

" #
¼

F11S11þF13S13 F11S13þF13S33
F31S11þF33S13 F31S13þF33S33

" #
: ð22Þ

Substitution for F from Eq. (10) into Eq. (22), for E from Eq. (12) into Eq. (20) and the result into Eq. (22) gives expressions
for T in terms of gradients of displacements u1 and u3 and the four elastic constants C1111, C1133, C3333, and C1313. We note
that constitutive relations (19) and (21) are materially objective, i.e., are invariant under a rigid body motion superimposed
upon the present configuration.

The true stress or the Cauchy stress, r; is related to the 1st Piola–Kirchhoff stress by

r¼ 1
J
TFT ; ð23Þ

where J is the determinant of the deformation gradient F . Thus r is a more involved function of the displacement gradients
than either T or S.

We now substitute in Eq. (13) for the first Piola–Kirchhoff stress T , and solve the resulting nonlinear coupled partial
differential equations (PDEs) for u1 and u3 under the pertinent initial and boundary conditions. These PDEs involve 2nd
order derivatives of u1 and u3 with respect to y1, y3 and time t. Thus C0 basis functions can be used to numerically solve the
boundary value problem for the sandwich panel.

2.2.4. Cohesive zone model
2.2.4.1. Mode-I or mode-II deformations. We first describe the CZM for mode-I and mode-II deformations, and then for
mixed-mode deformations. We postulate the traction-separation relations depicted in Fig. 3a and b for mode-I and mode-II
deformations, respectively. For relative normal (tangential) displacement δn(δt) of adjoining points on the two sides of the
interface less than δ0n(δ

0
t ) corresponding to point A in Fig. 3a (Fig. 3b), the traction–separation relation represented by

straight line OA is completely reversible. For monotonically increasing values of δn(δt) greater than δ0n(δ
0
t ) the traction–

separation relation is given by straight line AB. For δn ¼ δfnðδt ¼ δft Þ there is complete separation (sliding) at the interface for
mode-I (mode-II) deformations. For mode-I deformations, the separated surfaces are traction free and for mode-II
deformations the sliding surfaces are assumed to be smooth or frictionless. Should the relative displacement δn(δt)
Fig. 3. Traction–separation relations at cohesive interface: (a) mode-I and (b) mode-II.
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exceeding δ0n(δ
0
t ) but less than δfn(δ

f
t ) begin to decrease, then the traction–separation relation follows the path CO for δn and

COD for δt . Upon reversal in the relative displacements, paths OCB and DOCB are followed for δn and δt , respectively. The area
of the triangle OAB equals the critical strain energy release rate (SERR) GIc (GIIc) for mode-I (mode-II) deformations. Values of
GIc (GIIc) and s0n (s0t ) characterize the interface. Here s0n (s0t ) equals the interface strength for mode-I (mode-II) deformations.
The slope, ks, of straight line OA is estimated. Then

si ¼ ksδi; i¼ t; n; ð24aÞ

δ0i ¼
s0i
ks

; i¼ t;n; ð24bÞ

and ks is called the initial stiffness of the interface.
Thus, the delamination initiates when sn ¼ s0n (st ¼ s0t ), and complete separation (sliding) occurs when

δfn ¼
2GΙc

s0n
; δft ¼

2GΙΙc

s0t
; ð25Þ

for pure mode-I (mode-II) deformations.
The interface stiffness ks should be such that it does not make the system of simultaneous equations to be solved ill-

conditioned and effectively prevents interpenetration between two contacting layers when compressive normal traction
acts on the interface. For a beam of thickness H we use the relation

ks ¼
H
K max s0n; s

0
t


 �
; ð26Þ

to find ks, and set the nondimensional parameter K¼ 10�9.

2.2.4.2. Mixed mode deformations. For mixed-mode deformations, δn40 and δta0. We follow Camanho and Dávila's (2002)
approach, and postulate that the delamination at a point on the interface initiates when

sn
s0n

� �2

þ st
s0t

� �2

¼ 1; ð27Þ

and complete separation occurs when

GI

GIc

� �2

þ GII

GIIc

� �2

¼ 1: ð28Þ

Here sn and st are the normal and the tangential tractions on the interface under mixed-mode deformations. Similarly, GI

(GII) is the SERR for mode-I (mode-II) deformations for mixed-mode loading.
We define the equivalent mixed-mode relative displacement δe by

δe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδtÞ2þðδnÞ2

q
¼ δt

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2

p
¼ δn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2

p
; ð29Þ

where μδn ¼ δt ; and note that m¼0 for mode-I, and μ-1 for mode-ІІ deformations.
Assuming that under mixed-mode loading, the interface stiffness for the tangential and the normal traction-separation

modes also equals ks, then substituting for sn and st in terms of δt and δn into Eq. (27), the separation will initiate when

δn
s0n

� �2

þ δt
s0t

� �2

¼ 1
ðksÞ2

; ð30Þ

or equivalently,

δ0e ¼ δ0t δ
0
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2

ðδ0t Þ2þðμδ0nÞ2

s
; ð31Þ

where δ0t and δ0n are given by Eq. (24b). We evaluate the mode-mixity ratio μ at every point on the interface and note that it
can vary from point to point. However, at a point μ is assumed to stay fixed from separation initiation to separation
completion.

In order to find the value δfe of δe at complete separation, we assume that the effective traction–effective separation
relation under mixed-mode loading is also triangular, i.e., is similar to that for mode-I and mode-II loadings. Thus values of
GI and GII at complete separation are given by

GIð1þμ2Þ ¼ ksδ0eδ
f
e

2
; GII ¼ μ2GI: ð32Þ



Fig. 4. Cross-section of a 3-layer beam: (a) before delamination and (b) after separation.
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Substitution from Eq. (32) into Eq. (28) gives

δfe ¼
2ð1þμ2Þ
ksδ0e

1
GΙc

� �2

þ μ2

GΙΙc

� �2" #�1=2

: ð33Þ

Because of the assumption of μ staying constant at a point, should unloading occur for δ0e oδeoδfe, the unloading curve
follows a path similar to the straight line CO in Fig. 3a for mode-I deformations.
2.2.5. Displacement field for the TSNDT
For 2-D problems being studied here, we model the panel as a sandwich beam having three layers and denote

displacements of a point in the top, the central, and the bottom layers by superscripts t, c and b, respectively. With the origin
of the curvilinear coordinate axes located at the geometric centroid of the rectangular cross-section (e.g., see Fig. 4), we
assume the following displacement field in the beam:

uc
αðy1; y3; tÞ ¼ ∑

3

i ¼ 0
ðy3Þiuc

αiðy1; tÞ; α¼ 1; 3; jy3jrhc; ð34aÞ

ut
αðy1; y3; tÞ ¼ uc

αðy1;hc; tÞþut
α0þ ∑

3

i ¼ 1
ðy3Þi�ðhcÞi

� �
ut
αiðy1; tÞ;

α¼ 1; 3; hcry3rhcþht ; ð34bÞ

ub
αðy1; y3; tÞ ¼ uc

αðy1; �hc; tÞ�ub
α0þ ∑

3

i ¼ 1
ðy3Þi�ð�hcÞi

� �
ub
αiðy1; tÞ;

α¼ 1; 3; �ðhbþhcÞry3r�hc: ð34cÞ

Here uc
10 and uc

30 are, respectively, the axial and the transverse displacements of a point on the beam mid-surface, uc
αi; u

t
αi

and ub
αi ðα¼ 1; 3; i¼ 1;2;3Þmay be interpreted as generalized axial and transverse displacements of a point, and ut

α0 and ub
α0

ðα¼ 1; 3Þ represent jumps in displacements between adjoining points on the top and the bottom interfaces, respectively,
when there is delamination. The top (bottom) interface is between the core and the top (bottom) face sheet. Displacements
δn and δt at the interface between the top layer and the core appearing in Eq. (24a) are related to the displacement field
uαðy1; y3; tÞ by substituting from Eq. (34) into Eq. (14). Thus

δt ¼ℝ1αut
α0; δn ¼ℝ3αut

α0; α¼ 1;3; summed on α: ð35Þ

We are unable to analytically solve the above formulated nonlinear problem. Thus we analyze it numerically.
3. Numerical solution of the problem

3.1. Analysis of motion of the fluid by the boundary element method (BEM)

We use the BEM to solve Laplace Eq. (1) and truncate the domain occupied by the fluid to lengths L1 and L2 in the X- and
the Z-directions, respectively, as shown in Fig. 1. Values of L1 and L2 are determined iteratively till the solution near the
panel/water interface has converged within the prescribed tolerance.
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Using Green's second identity, the velocity potential at point j in the fluid (either in the interior or on the boundary) can
be written as (París and Cañas, 1997)

cðjÞφðjÞ ¼
Z
∂D
Gðξ; jÞ ∂φðξÞ

∂n
dsðξÞ�

Z
∂D
φðξÞ ∂Gðξ; jÞ

∂n
dsðξÞ; ð36Þ

where ðξ; jÞ ¼ ln rðξ; jÞ, rðξ; jÞ is the distance between source point ξ on the fluid boundary and point j, cðjÞ is a constant, and D
equals the region occupied by the fluid. We note that c, φ, D and n vary with time t; this dependence is not exhibited to
simplify the notation. Noting that Eq. (36) holds for a constant velocity potential, we get

cðjÞ ¼ �
Z
∂D

∂Gðξ; jÞ
∂n

dsðξÞ: ð37Þ

The boundary of the fluid domain is discretized by using 2-node 1-D elements. Integrals in Eq. (36) are numerically
evaluated over each element by using 6 Gauss points in each element. Thus Eq. (36) can be written as the following system
of coupled simultaneous linear algebraic equations:

H½ �
φF

φB

φTþ S

8>><>>:
9>>=>>;¼ G½ �

∂φ
∂n

F

∂φ
∂n

B

∂φ
∂n

TþS

8>>>><>>>>:

9>>>>=>>>>;: ð38Þ

In Eq. (38) elements of matrices [H] and [G] depend upon coordinates of nodes, and superscripts F, B, T and S on a
quantity represent, respectively, its value at a node on the free surface, the panel, the truncation boundaries and the axis of
symmetry.

Recalling that at time t we know at every point on the fluid boundary either φ or ∂φ=∂n we can solve for the other
variable at that point. Transforming unknowns in Eq. (38) to the left hand side, we rewrite it as

A½ �

∂φ
∂n

F

φB

φTþ S

8>><>>:
9>>=>>;¼ B½ �

φF

∂φ
∂n

B

∂φ
∂n

TþS

8>>><>>>:
9>>>=>>>;: ð39Þ

In writing Eq. (39) we have used boundary condition (4) and taken the velocity of the particles on the panel to be known.
After Eq. (39) has been solved we know φ and ∂φ=∂n at every point on the fluid boundary at time t. Thus the tangential

derivative ∂φ=∂s of φ at points on the boundary ∂D can be computed; here s is the arc length along ∂D. The potential function
is smoothened, if needed, and the finite difference method is used to evaluate ∂φ=∂s. Combining ∂φ=∂s with the computed
∂φ=∂n on ∂D, the vector ∇φ at points on the panel/water interface and on the free surface of water is determined. The free
surface profile and values of φ at points on the free surface are updated using Eq. (3a). Eq. (36) is used to determine the
velocity potential φ at any point in the fluid domain.

The term ∂φ=∂t needed to determine the pressure field in the fluid domain from Eq. (5) is found by introducing a new
variable Ψ defined by

Ψ ¼ ∂φ
∂t

þV U∇φ: ð40Þ

Recalling that V is a function of time only and φ satisfies Laplace Eq. (1), we conclude that (e.g., see Greco, 2001) Ψ also
satisfies the 2-D Laplace equation

∂2Ψ
∂X2 þ ∂2Ψ

∂Z2 ¼ 0: ð41Þ

Following Wu (1998) and Sun (2007), boundary conditions for Ψ are

Ψ ¼ V U∇φþ1
2

∇φj2 on the free surface;
�� ð42aÞ

∂Ψ
∂n

¼ �nU _V�nU €u�V U∇ðnU _uÞ on the fluid=panel interface; ð42bÞ

∂Ψ
∂n

¼ 0 on the axis of symmetry and on truncation boundaries: ð42cÞ

Here _V is the acceleration of the rigid body motion, and €u the vibrational acceleration of particles on the panel surface.
Substitution for ∂φ=∂t from Eq. (5) into Eq. (40) gives Eq. (42a). Eq. (42c) follows from Eqs. (3c) and (40) because n¼(1,0,0)
on the axis of symmetry X¼0, and stays unchanged on truncation boundaries. In deriving Eq. (42b) from Eqs. (4) and (40)
we assume that during each infinitesimal time step, Δt, ðð∂=∂tÞþV U∇Þn ¼0. That is, the convective derivative of the unit
normal to the panel/water interface in the direction of the rigid translational motion of the panel equals zero. Because of
very small time step size used and the iterative procedure adopted to check for convergence of the solution within each time
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step, the error introduced by this assumption can be controlled within a prescribed tolerance. We note that the unit normal
n is updated after every time step Δt. For panels made of rubberlike materials, one will need very small time steps to obtain
a converged solution.

At every time t, the boundary value problem defined by Eqs. (41) and (42) is numerically solved by the BEM.
The algebraic equation for the determination of Ψ and ∂Ψ=∂n at boundary points is

A½ �
∂Ψ
∂n

F

ΨB

Ψ Tþ S

8>><>>:
9>>=>>;¼ B½ �

Ψ F

∂Ψ
∂n

B

∂Ψ
∂n

TþS

8>><>>:
9>>=>>;; ð43Þ

where matrices [A] and [B] are the same as those in Eq. (39). Knowing Ψ and φ, from Eq. (39), ∂φ=∂t can be evaluated at all
points on the fluid boundary including those on the fluid/panel interface. This approach avoids finding ∂φ=∂t by the
backward difference method at the expense of solving Eq. (43). Recall that the value of φ at any point in the fluid domain is
found from Eqs. (36) and (37).

3.2. Analysis of the motion of free surface of water

The thickness of the water layer between the free surface and the panel near the terminus of the wetted length of the
panel becomes very small and necessitates using extremely small time steps for analyzing subsequent motion of the water
in the FSI problem. As explained in Xiao and Batra (2012) for a rigid panel, we cut the thin jet, smoothen the free surface,
re-mesh it and derive values of variables at the newly generated nodes by interpolating and extrapolating from those at
nodes on the previous mesh. We numerically integrate Eq. (3a) to find the motion of free surface of water.

3.3. Analysis of deformations of the panel by the finite element method

We refer the reader to Batra and Xiao (2013a) for derivation of the governing equations, boundary conditions for the
TSNDT, and a weak formulation of the initial-boundary-value problem (IBVP). By introducing the stiffness proportional
Rayleigh damping to account for structural damping that reduces high frequency vibrations of the panel, we get the
following system of coupled nonlinear ordinary differential equations (ODEs) for finding deformations of the panel:

M €dþC _dþKðdÞd¼ FextþFc; ð44aÞ

Fext ¼
Z ℓ

0
Φ y1; �hb�hc
� �h iT �F31

F11

( )
ðp�paÞH1 dy1þFrig ; ð44bÞ

Frig ¼ �
Z hb þhc

�hb �hc

Z ℒ

0
½Φ�T

_V1
_V3

( )
ρ0H1 dy1 dy3; ð44cÞ

Fc ¼
Z ℒ

0
Φ y1;h

c�
 �� � Φ y1;h
cþ
 �� 
 �T f

ℂ�
1

f
ℂ�
3

8<:
9=;H1 dy1

þ
Z ℒ

0
Φ y1; �hc�

 �� � Φ y1; �hcþ


 �� 
 �T f
ℂ�
1

f
ℂ�
3

8<:
9=;H1 dy1; ð44dÞ

C ¼ αKðdð0ÞÞ: ð44eÞ
Here M is the mass matrix, C the damping matrix defined by Eq. (44e), α the Rayleigh coefficient, KðdÞ the stiffness matrix,

d the vector of generalized displacements of nodes on the centroidal axis of the panel, and ℓ the arc length of the fluid/panel
interface in the reference configuration and ℒ the total are length of the panel. Furthermore, F31 and F11 are components of
the deformation gradient, ½Φ� defined in Eq. (42) of Batra and Xiao (2013a) is the matrix of the FE basis functions, Fext is force
vector defined by Eq. (44b) in which the pressure exerted by the fluid on the panel is denoted by p, and pa is the atmospheric
pressure. The integration in Eq. (44b) extends over the fluid/panel interface, and Frig is the inertia force vector due to rigid
body acceleration of the panel. The force vector Fc represents tractions on the cohesive interface, and hc7 equals the value of
y3 on Γ7

ℂ . We note that the damping matrix C is assumed to be proportional to the value of the stiffness matrix at time t¼0.
We first discuss how to find the rigid body motion of the panel, and then vibrational displacements of panel particles.

Assuming VðtÞ is the component of V along the Z-direction and _VðtÞ is the corresponding acceleration, the rigid body
acceleration of the panel in the Z-direction can be calculated from

Mn _VðtÞ ¼ FZ�Mng; ð45aÞ

FZ ¼ �Mn

a
_VþF 0Z : ð45bÞ
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Here Mn is the total mass of the panel, g the acceleration due to gravity, and FZ the total upward force due to the
hydrodynamic pressure acting on the panel. We note that FZ is an implicit function of the acceleration of fluid particles
contacting the panel. We decompose it into two parts: the upward force FZ' without considering acceleration of fluid
particles and Mn

a
_V that depends upon the acceleration of fluid particles abutting the panel. The quantity Mn

a , given by
Eq. (51) below, is called the added mass.

The numerical solution may diverge when the added mass Mn

a is greater than the total mass of the body as discussed by
Causin et al. (2005). Recall that the water slamming pressure is a function of the acceleration of solid particles on the fluid/
panel interface. Wu and Taylor (1996, 2003) and Xu et al. (2010) decoupled the inter-dependence of rigid body acceleration
and the fluid force by introducing two auxiliary functions. Young (2007) analyzed the hydroelastic problem for propellers by
coupled BE and FE methods and obtained the added mass matrix from the solution of the motion of the fluid by the BEM.
We separate the pressure term (e.g, see Eq. (49a)) due to acceleration and calculate the added mass effect for rigid body
motion and vibration of the solid body. We used this approach to simulate the free drop into stationary water of a light
weight rigid wedge and a rigid ship bow section in Xiao and Batra (2012), and adopt it here to analyze the FSI of deformable
panels.

Substituting for ∂Ψ=∂n

 �B from Eqs. (42b) and (42c) into Eq. (43) we get

A½ �
∂Ψ
∂n

F

ΨB

Ψ TþS

8>><>>:
9>>=>>;¼ B½ �

Ψ F

�nU €u�nU _V�nU∇ðnU _uÞ
0

8><>:
9>=>;: ð46Þ

With the notation

½ℚ� ¼
ℚ11 ℚ12 ℚ13

ℚ21 ℚ22 ℚ23

ℚ31 ℚ32 ℚ33

264
375¼ ½A��1½B�;

we write

fΨBg ¼ ℚ21 ℚ22 ℚ23
�  Ψ F

�nU €u�nU _V�nU∇ðnU _uÞ
0

8><>:
9>=>;;

¼ ΨB
1

� �þ ΨB
2

� �þ ΨB
3

� �
; ð47Þ

where

fΨB
1g ¼ �½ℚ22�fnU €ug; fΨB

2g ¼ �½ℚ22�fnU _Vg;

fΨB
3g ¼ ℚ21 ℚ22 ℚ23

�  Ψ F

�nU∇ðnU _uÞ
0

8><>:
9>=>;: ð48Þ

The coefficient matrix ½ℚ� is derived from matrices A and B appearing in the BE formulation of the fluid problem.
By combining Eqs. (40), (5) and (48), we get following equations for the pressure acting on the panel/fluid interface:

p�pa ¼ �ρ �ΨBþV U∇φþ 1
2
j∇φj2

�
¼ p1þp2þp3;

�
ð49aÞ

p1 ¼ ρΨB
1 ¼ �ρ ℚ22

� fnU €ug ¼ �ρ ℚ22
� ½ℂ� €d; ð49bÞ

p2 ¼ ρΨB
2 ¼ �ρ ℚ22

� fnZg _V ; ð49cÞ

p3 ¼ �ρ �ΨB
3þV U∇φþ 1

2
j∇φj2

�
;

�
ð49dÞ

ℚ22ðjÞ ¼ℚ22ði; jÞ
siþ1�s
siþ1�si

� �
þℚ22ðiþ1; jÞ s�si

siþ1�si

� �
; j¼ 1;2;…; N : ð49eÞ

Here p1 is the pressure due to vibrational acceleration of the deformable panel, p2 the pressure due to rigid body
acceleration of the panel, p3 the pressure without considering acceleration due to rigid body motion and vibration of the
panel, and fnZg the component of the unit normal to the fluid/panel interface along the Z-axis with the unit normal pointing
out of the fluid. The coefficient matrix ℚ22 for point p between nodes i and iþ1 is evaluated by using Eq. (49e) in which s, si
and siþ1 are, respectively, the arc length of point p, node i and node iþ1, and N equals the number of nodes of the fluid part
of the fluid/panel interface. The matrix ½ℂ� transforms the acceleration €d in curvilinear coordinates to fnU €ug. We note that
nodes for the BE and the FE meshes in the fluid and the solid domains on the fluid/panel interface need not coincide with
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each other, and we find values of a quantity at the desired location by either interpolating or extrapolating from values at
points where they are known.

Integrating component of the pressure in the Z-direction over the fluid/panel interface gives the total Z-force acting on
the panel. Thus using Eq. (45b) we get

FZ ¼
Z ℓ

0
ðp1þp2þp3ÞnZH1 dy1 ¼ �Mn

a
_VþF 0Z ; ð50Þ

where

Mn

a ¼
Z ℓ

0
ρnZ ℚ22

� fnZgH1 dy1; F 0Z ¼
Z ℓ

0
ðp1þp3ÞnZH1 dy1: ð51Þ

Substitution from Eq. (50) into Eq. (45a) gives

ðMnþMn

aÞ _VðtÞ ¼ FZ' �Mng: ð52Þ
Eq. (52) is numerically integrated by using the following algorithm:

ðMnþMn

aÞ _V
nþ1 ¼ F 0Zðtnþ1Þ�Mng; ð53aÞ

Vnþ1 ¼ Vnþ1
2

_V
nþ1þ _V

n
� �

δt; ð53bÞ

ξnþ1 ¼ ξnþVnδtþ1
2
_V
n
δt2; ð53cÞ

where

Vnþ1 ¼ Vðtnþ1Þ; ξnþ1 ¼ ξðtnþ1Þ: ð54Þ
Here ξ is the submergence, shown in Fig. 1, of the panel apex with respect to the undisturbed water surface. The velocity

and acceleration of the panel apex are assumed to be equal to the rigid body motion velocity and acceleration respectively
since the edge at the apex is assumed not to deform. The acceleration of the rigid body motion can be evaluated from Eq.
(52), and the rigid body displacement and velocity are updated by using, respectively, the forward and the central difference
methods; e.g., see Eqs. (53b) and (53c).

Using Eq. (49a), we write the force vector in Eq. (44) as

Fext ¼
Z ℓ

0
Φ y1; �hb�hc
� �h iT �F31

F11

( )
ðp1þp2þp3ÞH1 dy1þ Frig ¼ �Ma

€dþFpreþFrig ; ð55Þ

where we have substituted for p1 from Eq. (49b), and

Fpre ¼
Z ℓ

0
Φ y1; �hb�hc
� �h iT �F31

F11

( )
ðp2þp3ÞH1 dy1; ð56aÞ

Ma ¼
Z ℓ

0
Φ y1; �hb�hc
� �h iT �F31

F11

( )
ρ½ℚ22� ½ℂ�H1 dy1: ð56bÞ

Here Ma is called the added mass matrix due to vibrational motion of the panel and Fpre is the external force vector due
to the hydrodynamic pressure without considering vibrational acceleration. We note that Qin and Batra (2009) used a semi-
analytical approach for studying motion of the fluid and found an expression for the added mass matrix.

Thus equation of motion (44a) of the panel becomes

ðMþMaÞ €dþC _dþKðdÞd¼ FpreþFrigþFc: ð57Þ
Eq. (57) is used to update the vibrational acceleration, velocity and deformations of the solid body. It is integrated by

using the following conditionally stable central-difference method:

dnþ1 ¼ dnþδt _d
nþ δt2

2
€d
n
; ð58aÞ

MþMaþ δt
2
C

� �
€d
nþ1 ¼ Frigðtnþ1ÞþFpreðtnþ1ÞþFcðtnþ1Þ�K dnþ1

� �
dnþ1�C _d

nþ δt
2
€d
n

� �
; ð58aÞ

_d
nþ1 ¼ _d

nþ δt
2

€d
nþ1þ €d

n
� �

; ð58cÞ
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where

dnþ1 ¼ dðtnþ1Þ: ð59Þ

The flow chart for iteratively solving the FSI problem is given in Fig. 5. Using the known solution at time tn, €d
nþ1

, _d
nþ1

,
_V
nþ1

and Vnþ1 can be evaluated by using Eqs. (58) and (53). These quantities are used to update φ and Ψ for the next
iteration. The iterative process is terminated when the normalized difference of computed total pressure between two
successive iterations is less than the prescribed tolerance of 10�4. The normalized difference of pressure between iterations
Iþ1 and I is defined as

R ℓ
0 jpIþ1

4 �pI4jds=
R ℓ
0 jpIþ1

4 jds where pI4 ¼ p�pa is the total pressure on the wedge at iteration I. The
procedure discussed above to analyze the FSI problem is called the added mass method.

The critical time step size δts to compute a stable solution for the structure part is determined by finding the maximum
frequency, ωmax, of free vibrations and taking δtsrδtcrit , Δtcrit ¼ 2=ωmax. Ideally, ωmax should be found after every time step
since frequencies of a structure change as it is deformed. The accuracy of the solution can be improved by taking δts⪡δtcrit
but at the cost of increasing the computational time.
Fig. 5. Flow chart for the analysis of the FSI problem by the coupled BE–FE method.
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Results presented in Section 4 have been computed with a consistent mass matrix and δts ¼ 0:9δtcrit for linear problems
but δts ¼ 0:5δtcrit for nonlinear problems. For the nonlinear problems, ωmax found from analyzing frequencies of the
undeformed beam is used to determine δtcrit . Ma is not considered when evaluating ωmax.

As mentioned by Xiao and Batra (2012) the time step δtf for integrating, with respect to time, Eq. (3) for motion of the
fluid is given by

δtf ¼
hmin2 tan β

Vπγt
; ð60Þ

where hmin is the minimum element length near the jet tip, γt is assigned values between 2 and 20, and we use γt¼5. For the
water slamming of a curved panel shown in Fig. 14, we choose β as the minimum of the local deadrise angles at nodes on the
panel/fluid interface, slope of the free water surface at nodes on it, and the local angle at the jet tip.

The time step δt for the FSI analysis equals the smaller of δtf and δts.
3.4. Verification of the code

The verification of the FE software for analyzing deformations of the panel is described in Batra and Xiao (2013b) and the
verification of the FE software for delamination analysis is discussed in Batra and Xiao (2013a). The developed BE software
has been verified in Xiao and Batra (2012) by using the method of manufactured solutions (e.g., see the material just
preceding and following Eq. (20) of Batra and Liang (1997)). The coupling between the two software is verified by analyzing
problems for rigid panels and comparing computed results with those available in the literature, e.g., see Xiao and Batra
(2012).
4. Example problems

We discretize the fluid domain boundary into two-node elements with nodes at the end points of the element, and with
node numbers starting from point C in Fig. 6 and going counter-clockwise ðCDℰAℬCÞ, and denote the length of element j
with nodes j and jþ1 by hj. Non-uniform meshes are used to discretize the free surface of water near the jet tip A, the fluid
boundary Aℬ on the panel and the fluid boundary ℬC on the axis of symmetry. In Fig. 6 the free surface of water near the
panel edge is exhibited in which points A and ℬ are, respectively, points of intersection between the free surface and the
panel, and the panel and the axis of symmetry. The length, hj, of element j on the free surface boundary ℰA for mesh 1 is
chosen according to the following empirical criteria:

hj ¼

d34; NA�100r joNA;

min d33; 1:05
NA �100� jd34

� �
; joNA�100 and ζAjr1:0ℒ;

d32; 1:0ℒoζAjr2:0ℒ
d31; ζAj42:0ℒ

8>>>>><>>>>>:
ð61Þ

d31 ¼ L1=40, d32 ¼ 1=75, d33 ¼ d32=5, d34 ¼ d32=br .
Here br is the mesh refinement parameter whose value depends upon the deadrise angle, ℒ equals the arc

length of the panel; ζAjis the arc length between points A and j, and NA is the node number of point A.
Fig. 6. Discretization of the boundary of the fluid domain into elements.



Table 1
Values of material parameters of the sandwich panel.

C1111 (GPa) C1133 (GPa) C3333 (GPa) C1313 (GPa) Mass density (kg/m3)

Face sheet 140.3 3.77 9.62 7.10 31,400
Core 3.77 1.62 3.77 1.08 150
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A non-uniform mesh with element size hj given by Eq. (61) is used to discretize the water surface Aℬ contacting the
panel with smaller elements near points A and ℬ than those elsewhere.

hj ¼
d34; NAr jrNAþ100;

min d32; 1:05
j�ðNA þ100Þd34

� �
; j4NAþ100 and ζAjrζAℬ�0:1ℒ;

0:5d32 ; j4NAþ100 and ζAj4ζAℬ�0:1ℒ:

8>>><>>>: ð62Þ

This scheme generates finer meshes near points A and ℬ. The length hj of element j on the axis of symmetry ℬC is taken
to be given by

hj ¼ minðd31; 1:2j�NℬhNℬ �1Þ: ð63Þ

Here Nℬ is the node number of pointℬ. The element length on the truncation boundaries CD and Dℰ equals d31. Lengths
of elements for mesh 2 are the same as those for mesh 1 except that d31 ¼ L1=80 and d32 ¼ 1=150. Thus the element length
for mesh 2 is one-half of that for mesh 1 in most of the region on the boundary. Unless otherwise specified, results
presented below have been computed with mesh 2 and br ¼ 20.

4.1. Water slamming of linear elastic straight sandwich panel

We now analyze deformations of a clamped–clamped linear elastic straight sandwich panel of length ℒ¼ 1 m, thickness
of each face sheet hb ¼ ht ¼ 1:2 cm; core thickness 2hc ¼ 3:0 cm; and downward impact velocity¼10 m/s. Effects of gravity
have been neglected. Values of material parameters are listed in Table 1. The mass density assigned to face sheets includes
the dead weight of the ship. The sandwich panel is divided into 60 uniform 2-node elements along the y1-axis, the fluid
domain is discretized using mesh 2 with br¼40, and L1 and L2 are set equal to 15 m. As shown through numerical
experiments in Das and Batra (2011) these values of br, L1 and L2 give converged results. The time steps used to compute
results found by using the criterion discussed in Section 3.3 equaled 0.19 μs, 0.37 μs, 0.53 μs for deadrise angle, β¼51, 101,
and 141, respectively.

The hydroelastic effects are influenced by the stiffness of the structure, deadrise angle of the panel and the downward
velocity. Stenius et al. (2011) have proposed that for panels modeled as Euler–Bernoulli beams the hydroelastic effects can
be characterized by the factor R defined as

R¼ 4
μNP
π

� �2 tan β

V

ffiffiffiffiffiffiffiffiffiffi
D

πρL3

s
; ð64Þ

where

D¼ 1
3

Et hcþhb
� �3

� hc

 �3� �

þ2Ec hc

 �3þEb hcþhb

� �3
� hc

 �3� �� 	

: ð65Þ

Here μNP is a boundary condition parameter (μNP ¼ 4:73 for clamped–clamped edges), D is effective bending stiffness of
the sandwich panel based on the Euler Bernoulli beam theory, Et , Ec and Eb are Young's moduli in the axial-direction for the
top, the core and the bottom layers, respectively, of the sandwich beam. In Stenius et al. (2011) hydroelastic deformations of
a homogeneous material beam were studied, D and R equaled, respectively, the bending stiffness of the panel and the ratio
of twice the loading period to the fundamental frequency of the panel modeled as Euler–Bernoulli beam. The
appropriateness of using R for a sandwich beam requires detailed analyses of different combinations of materials and
thicknesses for the core and the face sheets, as well as computing results for rigid panels. This exercise is left for a future
study. It is shown in Stenius et al. (2011) that for R44 hydroelastic effects are negligible in the sense that the pressure
determined from the assumption of the panel being rigid will result in the same deflection profile of the panel as that from
the analysis of the coupled hydroelastic problem. For the sandwich panel, other factors such as delamination between face
sheets and the core will influence deflections of the panel. For the problem being studied, R equals 1.7, 3.5 and 4.9 for β¼51,
101, and 141, respectively.

For the panel of initial deadrise angle β¼51 we set the Rayleigh damping coefficient α¼5�10�6. As should be clear from
the time history of the pressure at y1¼0.35 m plotted in Fig. 7, oscillations in the pressure have been significantly
diminished, and the difference in results computed with α¼5�10�6 and 5�10�7 is miniscule. The pressure computed
without using the added mass method exhibits oscillations at t¼4 ms whereas that with the added mass method does not.
Results presented below have been computed with the added mass method.



Fig. 7. For initial downward impact speed¼10 m/s and deadrise angle¼51, time histories of the pressure on the panel at y1¼0.35 m for two values of the
damping ratio, and with and without adding mass due to acceleration of particles on the panel surface. The three curves overlap each other.

Fig. 8. For initial impact speed¼10 m/s, time histories of the panel centroid deflection for initial deadrise angle¼51, 101 and 141. Black, blue and red curves
represent, respectively, results from Qin and Batra (2009), Das and Batra (2011), and the present work. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. For initial deadrise angle¼141 and initial impact speed¼10 m/s, time histories of the deflection of the centroid of the panel found by using different
meshes. Results from FE meshes 1 and 2 are indistinguishable from each other in the plots. Curves marked LSDYNA denote results from Das and Batra
(2011).
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In Fig. 8 the presently computed time histories of the deflection of the panel centroid for three different values of the
initial deadrise angle are compared with those found by Das and Batra (2011) who used LSDYNA and by Qin and Batra
(2009) who employed a semi-analytical approach. Solutions from the three methods are close to each other for initial
deadrise angles of 51 and 101, but differences among them are large for initial deadrise angle of 141. Results obtained by
using the three meshes for the panel of initial deadrise angle 141 plotted in Fig. 9 suggest that they are essentially
unchanged and are closer to the results from the coarse rather than the fine mesh employed by Das and Batra (2011). We
note that Qin and Batra (2009) used simplifications valid for small values of the initial deadrise angle of the panel. The
deformed shapes at t¼5.47 ms of the mid-surface of the panel of initial deadrise angle¼51 computed by the three methods
plotted in Fig. 10 are close to each other, with percentage difference, 100

Rℒ
0 ju3�upre

3 jds= Rℒ
0 jupre

3 jds, equal to 10% and 6.2%,



Fig. 10. At t¼5.471 ms after impact, deformed shapes of the mid-surface of the panel computed by the three methods.

Fig. 11. Time histories of the pressure at three locations of the panel of initial deadrise angle 51. Black, blue and red curves represent, respectively, results
from Qin and Batra (2009), Das and Batra (2011), and the present method. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 12. Pressure distribution on the panel of initial deadrise angle¼51 at t¼2.72, 4.79 and 5.75 ms. Black, blue and red curves represent results computed,
respectively, by Qin and Batra (2009), Das and Batra (2011), and the present method. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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respectively, for solutions of u3 given in Qin and Batra (2009) and Das and Batra (2011). Here, upre
3 is the presently computed

value of u3.
Fig. 11 exhibits time histories of the slamming pressure at locations y1¼0.24, 0.35 and 0.57 m of the panel of initial

deadrise angle¼51, and Fig. 12 shows the pressure variations on the panel at time t¼2.72, 4.79 and 5.75 ms. The peak
pressure predicted by the present method is very high and qualitatively resembles that given by Qin and Batra's (2009)
semi-analytical approach, and it is much higher than that found by Das and Batra (2011) using LSDYNA. We note that in the



Fig. 13. Variation of the strain energy density in the face sheets and the core along the panel span when t¼2.74 ms and 6.02 ms (initial deadrise angle¼51).
(a) At t = 2.74 ms, the spatial variation of the strain energy density in the face sheets, (b) At t = 2.74 ms, the spatial variation of the strain energy density due
to the transverse shear strain in the core, (c) At t = 6.02 ms, the variation of total strain energy density in the two face sheets along the panel span, (d) At t =
6.02 ms, the variation along the panel span of the strain energy density in the core due to the transverse shear strain, and (e) At t = 6.02 ms, variation along
the panel span of the strain energy density in the core due to different strain components. The curve for the axial strain coincides with that for the
transverse shear strain.

Table 2
Comparison of LSDYNA and coupled BE–FE approaches for the water slamming problem.

LSDYNA BE–FE methods

Fluid penetrates into solid Yes No
Oscillations in pressure on the panel Yes No
Results depend on contact algorithm Yes No
Computation of water jet Difficult Easy
Assumptions for fluid motions Compressible Incompressible and irrotational
Evaluation of motion at a point in the fluid domain Easy Difficult
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modified Wagner's theory employed in Qin and Batra (2009) the pressure field is singular and its peak value is
approximated. Except for the peak pressure, the three methods give results that are close to each other.

The strain energy density is computed by using Eq. (18). Contributions to the strain energy density due to the transverse
shear strain, the axial strain and the transverse normal strain equal, respectively, C1313E13

2, 12 C1111E
2
11 and 1

2 C3333E
2
33. Taking
Fig. 14. Sketch of the undeformed circular panel, and of the local deadrise angle at the point of impact.

Fig. 15. Time histories of the deflection of the mid-span of the panel.

Fig. 16. Pressure distribution on the deformable and rigid panels at different times. Solid (dashed) curves represent pressure distribution on the circular
(straight) panel of R¼5 m (infinity). Black, red and blue curves represent results at t¼2.72, 4.79 and 5.75 ms, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the panel dimension in the y2-direction as 1 m, strain energy densities stored in the core and the two face sheets at
t¼2.74 ms and 6.02 ms are plotted in Fig. 13 along with those from Das and Batra (2011). The core of the sandwich panel
absorbs significant amount of energy due to transverse shear deformations which agrees with that reported by Qin and
Batra (2009) and Das and Batra (2011). Deformations of the panel were assumed to be infinitesimal in Qin and Batra (2009)
but all geometric nonlinearities were considered in Das and Batra (2011). We have listed in Table 2 salient features of
solutions of the water entry problem using the FE software LSDYNA and the present coupled BE–FE approach.

4.2. Water entry of linear elastic circular sandwich panel

Sun and Faltinsen (2006) have considered hydroelastic effects in analyzing deformations of circular shells made of
steel and aluminum. They studied motion of the fluid by the BEM and deformations of shells by the modal analysis.
Here we analyze transient plane strain deformations of a circular sandwich panel with the mid-surface radius equal to R,
deadrise angle β¼51at the initial point of impact (e.g., see Fig. 14), both edges rigidly clamped, and values of material parameters
the same as those of the straight sandwich panel studied above. The length ℒ equals the arc length of the curved beam.
Fig. 17. For different radii of the circular panel and t¼6.02 ms, variation along the panel span of: (a) the total strain energy density in the face sheets, and
(b) the strain energy density due to transverse shear strain in the core.

Fig. 18. Time histories of the panel centroid deflection.



J. Xiao, R.C. Batra / Journal of Fluids and Structures 48 (2014) 122–155144
From time histories of the panel centroid deflection for different values of R displayed in Fig. 15, it is transparent that
with an increase in the value of R, the centroidal deflection approaches that of a straight panel as it should. Also, at a fixed
time, the deflection increases with an increase in R which could be due to the dependence upon R of the wetted length and
Fig. 19. Time histories of the hydroelastic pressure on the panel at three points with arc length in the deformed shape equal to 0.24 m, 0.35 m and 0.57 m.
Black, red and blue curves represent results for linear problem 1, linear problem 2 and nonlinear problem 2, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Distribution of the hydroelastic pressure on the panel at t¼2.72 and 8.01 ms. Black, red and blue curves represent results for linear problem 1,
linear problem 2, and nonlinear problem 2, respectively. At t¼2.72 ms, the red curve overlaps the blue curve as the geometric nonlinear effect is
insignificant when deformations are infinitesimal. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 21. Time histories of the maximum value of an element of the mass matrix M and of the added mass matrix Ma for linear problem 2.

Table 3
Values of material parameters of the sandwich panel.

C1111 (GPa) C1133 (GPa) C3333 (GPa) C1313 (GPa) Mass density (kg/m3)

Face sheet 13.4 2.40 5.92 1.92 1850
Core 0.307 1.62 0.0923 0.107 200



Fig. 23. Distribution of the hydroelastic pressure on the panel at two different times. Black and red curves represent results with and without considering
delamination, respectively. The red and black curves at t¼2.72 ms for problem 2 overlap as the beam has not been delaminated at this time.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Time histories of the deflection of the straight panel centroid with and without considering delamination.
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of the pressure distribution. We have exhibited in Fig. 16 the variation of the hydroelastic pressure on curved and straight
panels at t¼2.72, 4.79 and 5.75 ms. It is clear that the curvature of the panel noticeably affects the magnitude of the peak
pressure and the pressure distribution on the panel. The peak pressure on the circular panel is considerably less than that on
the flat panel. As deformations of the panel are infinitesimal the maximum difference in the hydrodynamic pressure on rigid
and deformable panels is small. Both for circular and flat panels, the pressure distribution on the panel can be viewed as a
traveling wave with the peak pressure acting at the just wetted point, the pressure rapidly decreasing in its wake, and
staying uniform over a significant part of the wetted length. We note that Henke (1994) studied deformations of a plate
under a traveling load to simulate deformations induced by water slamming loads.

At t¼6.02 ms and four values of R, variations of the strain energy density in the core and the face sheets along the panel
span plotted in Fig. 17 reveal that at a point on the panel the strain energy densities in the core and the face-sheets decrease
with a decrease in the value of R. When the entire panel has been wetted, the strain energy densities due to the transverse
shear stain in the core and the total strain energy in the face sheets at points near the right edge are significantly larger than
those at points near the left edge of the panel possibly due to the peak pressure acting near the right edge. Values of the
strain energy densities at a point decrease with a decrease in the value of R.
4.3. Water entry of straight sandwich panel made of St. Venant–Kirchhoff material

Two water entry problems have been simulated to delineate the influence on the hydrodynamic pressure acting on
a sandwich panel of geometric nonlinearities and panel stiffness. For problem 1 values of elastic constants are the same
as those for the panel studied in Section 4.1, and for problem 2, values of all elastic parameters have been reduced by a factor
of 10 and the mass density reduced to 2000 kg/m3. For problem 2 we set ht ¼ hb ¼ 6 mm , hc ¼ 7:5 mm, and ℒ¼ 1 m.
The fundamental frequency for the beam of problems 1 and 2 without considering added mass and deformations of
the beam are 110 and 101 Hz, respectively. The deadrise angle and the downward velocity of the panel for both problems
Fig. 24. Variation of the separation index ω with y1-coordinate and time, on the top and the bottom interfaces for problem 1.
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equal 101 and 10 m/s, respectively. The BE mesh 2 described at the beginning of Section 4 with the mesh refinement
number br¼20 have been used. Effects of geometric nonlinearities are considered only for problem 2. The time step used to
compute results equaled 0.75 μs for both problems. The hydroelastic factor R equals 3.5 and 0.39 for problems 1 and 2,
respectively.
Fig. 25. Variation of the separation index ω with y1-coordinate and time, on the top and the bottom interfaces for problem 2.

Fig. 26. Distribution of the transverse shear stress sxz on the top and the bottom interfaces at t¼6.3 ms for problem 2.
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Time histories of the panel centroid deflection are plotted in Fig. 18. For problem 2, the maximum percentage difference
100jwlin�wnonj=wlin between the panel centroid deflections with (wnonÞ and without (wlin) considering geometric nonlinearities
is 32.5%. The time histories of centroidal deflections for the two linear problems suggest that the panel of problem 1 is
considerably stiffer than that of problem 2 even though their fundamental frequencies are only 9% different. Recall that the
fundamental frequency also depends upon the mass density, the panel thickness and the elastic moduli. From results for the two
linear problems we deduce that the peak pressure on the stiffer panel that deflects less is nearly 80% more than that on the
flexible panel. At a fixed value of time the wetted length is larger for the stiffer panel than that for the flexible panel.

Fig. 19 exhibits time histories of the hydrodynamic pressure on the panel at three different locations with arc length in the
deformed shape equal to 0.24, 0.35, 0.57 m and Fig. 20 shows the pressure variations on the panel at times t¼2.72 and 8.01 ms.
These results suggest that the consideration of geometric nonlinearities significantly increases the maximum hydroelastic
pressure acting on the panel. For example, at x¼0.57 m, the peak hydroelastic pressures at tffi9 ms for the nonlinear problem
equals 1.4 times that for the linear problem. It could be due to the fact that the stiffness of the panel considering geometrically
nonlinear deformations is more than that of the identical panel for which geometric nonlinearities are not considered. At
x¼0.57 m, the peak hydroelastic pressure occurs sooner for the nonlinear problem than that for the linear problem. The traveling
wave like behavior of the hydroelastic pressure is unaffected by the consideration of geometric nonlinearities.

Time histories of the maximum value of an element of the mass matrix M and the added mass matrix Ma for problem 2
considering infinitesimal deformations are exhibited in Fig. 21. It is clear that the added mass matrix increases significantly
with an increase in the area of the contact surface between the panel and water. We note that the added mass matrix is due
to the vibrational motion of the panel since its rigid body acceleration is null.
4.4. Delamination in linear elastic straight sandwich panel due to water slamming loads

We now analyze two problems involving delamination initiation and growth in a clamped–clamped linear elastic
straight sandwich panel of length ℒ¼ 1 m. The panel is divided into 81 uniform 2-node elements along the y1-axis. The
Fig. 27. Variation of the SERR GI with y1-coordinate and time, on the top and the bottom interfaces for problem 1.
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fluid domain is discretized using mesh 2 described at the beginning of Section 4 with the mesh refinement number br¼40
and 20, respectively, for problems 1 and 2. For problem 1, the geometric and material parameters, and the entry velocity are
the same as those for the panel studied in Section 4.1 and the deadrise angle β¼51. We assume that the interface strength
parameters have values s0t ¼ s0n ¼ 1 MPa, GΙc ¼ 625 J m�2, GΙIc ¼ 418 J m�2. Delamination in the panel of problem 1 has been
studied by Das and Batra (2011) using LSDYNA and the above listed values of parameters. For problem 2, we assume that the
thickness of each face sheet, hb ¼ ht ¼ 2 cm; core thickness, 2hc ¼ 6:0 cm; downward impact velocity¼10 m/s and deadrise
angle β¼101. The face sheets and the core are assumed to be made of GRP and PVC foam (H200), respectively, and the
interface parameters have values,s0t ¼ 3:5 MPa, s0n ¼ 7:1 MPa, GΙc ¼ 625 J m�2, GΙIc ¼ 418 J m�2. The material properties for
the face sheets and the experimental value of the critical interface SERR for mode II delamination are taken from Zenkert
(1991). Values of the critical interface SERR for mode I delamination and the mass density of the GRP are not provided by
Zenkert (1991), and these have been taken from Berggreen et al. (2007) and 〈http://www.amiantit.com/media/pdf/
brochures/Glass_Fibre_Reinforced_Products/files/Glass_Fibre_Reinforced_Products.pdf 〉, respectively. Values of material
parameters for the core and the interface strength are taken from DIAB (2000). These values are listed in Table 3. The
time steps used to compute results for problems 1 and 2 equaled 0.19 μs and 0.75 μs, respectively.

For problem 1, we compare the presently computed results with those of Das and Batra (2011) obtained by using LSDYNA
and the stress criterion given by Eq. (27) to predict the delamination and failure of the interface. When using the stress
criterion the failure occurs instantaneously when the criterion is satisfied. Fig. 22 exhibits time histories of the deflection of
the panel centroid with and without considering delamination. It is clear that the presently computed results are close to
those of Das and Batra (2011), and the panel centroid deflection considering delamination is larger than that without
accounting for delamination. The stiffness of the sandwich panel decreases subsequent to the onset of delamination.

The variations of the hydroelastic pressure on the panel surface for two values of time are shown in Fig. 23. Consistent
with the results presented in Figs. 16 and 19 the hydroelastic pressure on a delaminated panel is less than that on the
corresponding in-tact panel because the panel stiffness is reduced due to delamination.
Fig. 28. Variation of the SERR GI with y1-coordinate and time, on the top and the bottom interfaces for problem 2.



Fig. 29. Time histories of the work done by external forces, strain energy stored in the panel, kinetic energy and energy dissipated during delamination.

Fig. 30. Time history of the percentage difference, 100ðWp�We�Wd�WkÞ=Wp .
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Fig. 31. Deformed shape of the sandwich panel when t¼6 and 12 ms, respectively, for problems 1 and 2.

Fig. 32. Deformed configurations of a line initially perpendicular to the centroidal axis at y1¼25.3 cm when t¼6 and 12 ms, respectively, for problems
1 and 2.
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Fig. 33. Time histories of the total energy in the face sheets and the core.

Fig. 34. Time histories of the total energy in the core due to different components of strain. The solid curves and dashed curves represent results with and
without considering delamination, respectively. Black, red and blue curves represent the energy due to axial strain, transverse normal strain, and shear
strain, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In order to determine from where and when delamination initiates first, we define the separation index, ω by

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GI

GIc

� �2

þ GII

GIIc

� �2
s

: ð66Þ

It equals 1 at a point when complete delamination has occurred there. In Figs. 24 and 25, we have plotted the variation of
ω versus time t and y1-coordinate on the two interfaces for problems 1 and 2, respectively. We note that ω equals the square
root of the left hand side of Eq. (28), GI ¼

R
sn dδn; GII ¼

R
st dδt and we have taken the panel width (dimension in the

y2-direction) equal to 1 m. It is clear that the complete delamination first occurs on both interfaces at points close to the left
edge or near y1¼0 at about t¼3.6 and 6.5 ms, respectively, for problems 1 and 2, and propagates to the right edge of the
beam on both interfaces. At t¼6 ms, there are some regions of the panel on both interfaces for problem 1 that have not
completely delaminated. However, for problem 2 the entire interfaces have been delaminated.

For problem 2, the two interfaces are delaminated at different rates with the top and the bottom interfaces completely
delaminated at approximately t¼9.1 and 10.5 ms, respectively. The delamination rate is higher for problem 2 than that for
problem 1 because there are large regions where the transverse shear stress nearly equals the critical shear stress of 3.5 MPa
as shown in Fig. 26. The delamination process is unstable for problem 2 as evidenced by the sharp increases followed by
arrests in the delamination lengths. Also, at t¼9 ms, a large portion of both interfaces near the right edge is delaminated
very rapidly.

In order to delineate the mode of delamination for problems 1 and 2, we have exhibited in Figs. 27 and 28 the
distribution of the SERRs, GI and GII, versus time t and the y1-coordinate on the two interfaces. For both problems, the value
of GI is negligible as compared to that of GII and the maximum values of GI/GII equal 0.07 and 0.19, respectively, for problems
1 and 2. It is evident that the SERR GII increases slowly after delamination initiation for problem 1. However, it increases
rapidly after the delamination initiation for problem 2.

Time histories of the strain energy We and the kinetic energy Wk of the panel, the external work Wp done by the water
slamming pressure and of the energy Wd dissipated during delamination are exhibited in Fig. 29. The energies We and Wk

are evaluated by integrating over the panel domain the elastic energy density W (cf. Eq. (18)) and the kinetic energy density,
respectively. The work Wp of water slamming pressure equals ∬ ðp�paÞH1dΔdy1, and the energy Wd of delamination equalsR
Γℂ
ðGIcþGIIcÞH1 dy1. Here Δ is the normal deflection of the panel, and Γℂ describes the two cohesive interfaces between the

face sheets and the core. The energy dissipated during the delamination process is a miniscule part of the total work done by
external forces. Discontinuities in the time histories of the elastic strain energy for problem 2 at about t¼6.5 and 9 ms are
due to the unstable growth of delamination. The time history of the percentage difference 100ðWp�We�Wd�WkÞ=Wp is
shown in Fig. 30. The percentage difference is large for small values of time due to the small value of Wp that appears in the
denominator, e.g., see Fig. 29. For problem 1, the percentage difference 100ðWp�We�Wd�WkÞ=Wp is about 1% for t42 ms
signifying that the balance of energy is well satisfied. For problem 2, the percentage difference 100ðWp�We�Wd�WkÞ=Wp

is about 30% after delamination has initiated. Oscillations in the error in the energy balance are due to the unstable
delamination process for problem 2 as shown in Fig. 25.

In Fig. 31 we have plotted the deformed shapes of the panel at t¼6 and 12 ms, respectively, for problems 1 and 2. The
deformed shapes are not symmetric about the mid-section because the hydroelastic pressure acting on the panel is non-
uniform. The corresponding deformed configurations of a line PQRS initially perpendicular to the centroidal axis are
exhibited in Fig. 32. Segments PQ, QR and RS in the bottom face sheet, the core and the top face sheet are deformed,
respectively, into P0Q0, Q″R″ and R0S0. Since the entire interfaces have been delaminated for problem 2, the panel is now
composed of three separate beams connected at the edges.

Time histories of the total strain energies of the face sheets and the core are plotted in Figs. 33 and 34. For problem 1, the
strain energy stored in the core is comparable to that required to deform the face sheets. For problem 2, the elastic strain
energy in the core is larger than that in the face sheets. The energy absorbed in the core decreases dramatically when
delamination is considered. Prior to the onset of delamination, the strain energy in the core is mainly due to transverse
shear strain. However, subsequent to delamination the strain energy of deformation is mainly due to the axial strain.

5. Conclusions

Water slamming of deformable straight and curved panels has been studied using coupled boundary and finite element
methods. The boundary element method (BEM) has been employed to analyze motions of the fluid, and the finite element
method (FEM) coupled with a third order shear and normal deformable plate/shell theory (TSNDT) has been used to study
hydroelastic problems for panels with and without considering all geometric nonlinearities, i.e., non-linear terms in the
strain–displacement relations. When studying effects of geometric nonlinearities the panel material is taken to be St.
Venant–Kirchhoff. The computed results for the deformable panel agree with those found by Das and Batra (2011) who used
the commercial FE software LSDYNA. These suggest that the assumptions of water being incompressible and its motions
being irrotational do not noticeably influence the hydroelastic effects. The consideration of geometric nonlinearities
significantly increases the maximum hydrodynamic pressure experienced by the panel. However, it does not affect the
traveling wave like behavior of the hydroelastic pressure acting on the panel. We have also analyzed delamination in two
linear elastic sandwich panels subjected to water slamming loads. In both problems the delamination occurred at the two



J. Xiao, R.C. Batra / Journal of Fluids and Structures 48 (2014) 122–155154
interfaces between the core and the face sheets due to mode-II deformations. Whereas in one problem, the delamination
propagated smoothly and stably, in the other problem the delamination growth was unstable. Factors which result in stable
and unstable mode-II delamination growth will be analyzed in a future study.
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