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a b s t r a c t

We analyze the sensitivity to values of material parameters, layer thickness and impact speed of the plate
deflection, the contact force between the impactor and the plate, the maximum length of a crack, and the
energy dissipated during the low velocity impact at normal incidence of a clamped rectangular laminate
by a rigid hemispherical-nosed cylinder. The laminate is comprised of layers of polymethylmethacrylate
(PMMA) and polycarbonate (PC) bonded by an adhesive, and its deformations are analyzed by the finite
element method. The mathematical and computational models of the system have been described in our
previous work, and their predictions compared with test data (Composite Structures, 116, 193-210, 2014).
The thermo-elasto-viscoplastic materials of the PMMA and the PC and the viscoelastic material of the
adhesive involve a large number of material parameters whose precise values are unknown. Here we
consider values of eleven material parameters e five for the PMMA, five for the PC and one for the
adhesive. It is found that values of Young's moduli and Poisson's ratios of the PMMA and the PC, and the
shear modulus of the adhesive strongly influence the plate deflection and the crack length. Values of
material parameters of the PC that noticeably affect its plastic deformations also determine the energy
dissipation whose correlation with the second peak in the contact force between the impactor and the
laminate is exhibited. The PMMA layer thickness is found to influence the crack length and the PC layer
thickness the energy dissipated.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Mathematical models of engineering structures generally
involve a system of either ordinary or partial differential equations
whose coefficients depend upon values of numerous material pa-
rameters. For a fixed set of initial and boundary conditions, the
structural response depends upon materials of structural compo-
nents. A goal of sensitivity analysis is to explore the effect on the
structural response of variability or uncertainty in the knowledge of
values of material and geometric parameters of the structure.

While studying the response of glass targets to hypervelocity
impact by small impactors, Anderson and Holmquist [1,2] analyzed
the sensitivity of the computed results to small variations in the
impact speed. They considered impact velocities of 2238,
2238.0001, 2238.0002, 2066 and 2066.0001 m/s, and found that a
small variation in the impact speed noticeably affected the propa-
gation of the penetration and failure fronts. In particular, the final
: þ1 540 231 4574.
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depth of the failure and the penetration fronts increased by about
20% and more than 10%, respectively, with a 0.0001 m/s or 5�10�5

% increase in the impact velocity, showing the high sensitivity of
their computational model upon the impact speed. Poteet and
Blosser [3] used sensitivity analysis to find the design factor with
the greatest effect in the hypervelocity impact resistance of a
bumper metallic protection system comprised of three metallic
layers with spacing between them. Taking the layer thickness and
the spacing between two adjacent layers as design variables, and
the damage to the substructure and the debris dispersion as mea-
sures of the structure performance, the parameters with the largest
effect on structure's integrity were found to be the thickness of the
first layer and the spacing between the layers.

Here we determine material and geometric parameters that
significantly affect the laminate deflection, the energy dissipated,
the contact force between the impactor and the laminate, and
lengths of cracks, if any, formed in a layer. The laminate comprised
of polymethylmethacrylate (PMMA)/adhesive/polycarbonate (PC)
is impacted at normal incidence by a low-velocity smooth
hemispherical-nosed rigid cylinder. The constitutive equations
used to model the thermoviscoplastic response of the PMMA and
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the PC involve 30 material parameters whose values cannot be
precisely determined. Here we first screen values of material pa-
rameters to find 5 material parameters each for the PMMA and the
PC that significantly affect the system response. Subsequently, we
use the sampling-based sensitivity method to ascertain the influ-
ence of these parameters on the system response by considering
either 10% or 30% variation in the values of these parameters. We
note that the uncertainty in the values of material parameters is a
priori unknown and requires data from numerous experiments
performed under controlled conditions. In the absence of this data,
the assumed 30% variability in the values of material parameters is
probably an upper limit.

The rest of the paper is organized as follows. We briefly describe
the impact problem studied in Section 2 and provide a comparison
of the computed and the test results. The screeningmethod and the
selection of five important material parameters for the PMMA and
the PC are discussed in Section 3. The details of the sensitivity
analysis for the impact problem are given in Section 4, and con-
clusions of the work are summarized in Section 5.

2. Problem description

2.1. Initial-boundary-value problem

We perform sensitivity analysis of the impact problem sche-
matically sketched in Fig. 1 and described in Antoine and Batra [4].
The smooth hemispherical nosed rigid impactor of mass 28.5 g and
6.9 J initial kinetic energy impacts at normal incidence a clamped
flat L1 � L2 � h (¼ h1 þ h2 þ h3) rectangular plate. We refer the
reader to [4] for details of the analysis of deformations of the
laminate by the finite element method (FEM) using the commercial
FE software, LS-DYNA, in which material models for the PC, the
Fig. 1. Schematic sketch of the
PMMA and the adhesive have been implemented as user defined
subroutines. The convergence of results with the refinement of the
FE mesh and other details of the computational work (e.g., energy
of hour-glass control algorithms) are described in Ref. [4]. In the
present analysis a fixed FE mesh comprised of 8-node brick ele-
ments has been employed, and deformations of only a quarter of
the laminate have been analyzed due to the symmetry of the
problem geometry, and initial and boundary conditions. This FE
mesh gave a converged solution of the impact problem, e.g., see Ref.
[4]. Results have been computed for L1 ¼ L2 ¼ 127 mm,
h1 ¼ h3 ¼ 1.5875 mm and h2 ¼ 0.635 mm.

2.2. Validation of the model

For the sake of completeness we describe below a few salient
features of the model and give some results.

Constitutive equations proposed by Mulliken and Boyce [5] and
modified by Varghese and Batra [6] used to model the PMMA and
the PC materials are given in the Appendix. Values of the material
parameters and methods to find them can be found in Refs. [5e7].
These references also show that the predicted and the experi-
mental stress-strain curves for the PMMA and the PC deformed in
uniaxial compression compare well with each other from at low
and high strain rates thereby establishing the appropriateness of
their values and the material model.

The failure criteria for the PMMA and the PC adopted from the
literature are given in Ref. [4]. The brittle failure of the PMMA is
modeled using a maximum threshold for the principal stresses
(Fleck et al. [8]), and its ductile failure is assumed to occur when the
accumulated equivalent plastic strain reaches 5% (Stickle and
Schultz [9]). The PC is assumed to have only ductile failure when
the maximum effective plastic strain at a point equals 3 (similar to
impact problem studied.



Fig. 2. Experimental and computed fracture patterns in the PMMA panels impacted at normal incidence by the rigid cylindrical impactor translating at 2.0 and 3.0 m/s; from [4].
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Richards et al. [10] who used 2 as plastic strain at failure). Failed
elements are deleted from the analysis domain.

For the test configurations employed by Zhang et al. [11] (i.e.,
clamped 6.35 mm thick and 76.2 mm diameter PMMA plates
impacted at about 3 m/s by a 6.95 kg cylindrical impactor with
hemispherical nose of 12.7mmdiameter) the experimental and the
computed fracture patterns are compared in Fig. 2 for two impact
velocities. It is clear that the two sets of results agree well, vali-
dating the mathematical model for the PMMA plates.

For the impact tests on clamped square PC plates of 254 cm edge
length but of varying thickness impacted by 104 g hemispherical
nosed 12.7 cm diameter steel cylinders conducted by Gunnarsson
et al. [12] at impact velocities between 10 m/s and 50 m/s, we have
compared in Table 1 the maximum deflection measured at the
center of the rear face of the PC plates. The maximum difference in
the two sets of values of 10.3% validates the mathematical and the
Table 1
Comparison of the experimental and the computed maximum deflections (measured at

Panel thickness [mm] Impact velocity [m/s]

10 20

Experimental (computed) maximum deflection

3.00 13.2 (13.0)
error: �1.5%

16.1 (17.1)
error: þ6.2%

4.45 9.4 (9.0)
error: �4.3%

12.9 (13.1)
error: þ1.6%

5.85 6.5 (7.1)
error: þ9.2%

10.9 (10.2)
error: �6.4%

9.27

12.32
computational model for the impact of the PC plate, at least for
finding the maximum deflections.

The DFA4700 adhesive is modeled as a nearly incompressible
nonlinear viscoelastic material with the quasi-static elastic
response given by Ogden's [13] strain energy density and the
strain-rate dependent response by Prony series (Christensen [14]).
Experimental stress-strain curves for uniaxial tensile tests of
DFA4700 deformed at different engineering strain rates are
compared to their model predictions in Fig. 3. Note that the
maximum logarithmic strain of 0.69 corresponds to 100% engi-
neering strain. There is less than 10% average deviation between
the experimental and numerical stress-strain curves. Details of
determining values of material parameters from the test data are
given in Ref. [22].

Delamination at interfaces between two materials is simulated
by using a traction-separation law implemented in LSDYNA. Values
the center of the back face of the plate) of the clamped circular PC panels; from [4].

30 40 50

[mm]

15.2 (14.8)
error: �2.6%

19.2 (19.0)
error: �1.0%

22.0 (22.7)
error: þ3.2%

10.2 (10.4)
error: þ2.0%

11.3 (12.1)
error: þ7.1%

14.0 (14.8)
error: þ5.7%

6.9 (7.3)
error: þ5.8%

8.7 (9.6)
error: þ10.3%

10.7 (11.3)
error: þ5.6%



Fig. 3. Experimental and numerical results for the uniaxial tensile deformations of DFA4700 at different engineering strain rates; from [4].
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of the critical energy release rates and of the separations at failure
for modes I and II are given in Ref. [4].

Simulation results for impacts at 12 m/s and 22 m/s of clamped
PMMA/DFA4700/PC laminates are comparedwith the experimental
findings of Stenzler [15,16] in Fig. 4, Fig. 5 and Table 2. It is obvious
that the two sets of results are close to each other, which implies
that the mathematical model and its implementation in LS-DYNA
capture well the response of the laminate. A possible explanation
for the large difference in the computed and experimental values of
the first peak in the reaction force is given in Ref. [22].

3. Screening of variables

3.1. Purpose of screening

The constitutive equations for the PMMA and the PC have 15
material parameters each giving a total of 30 parameters. To reduce
the number of variables for the sensitivity analysis it is expedient to
identify a small subset of material parameters that are likely to have
a large influence on the mechanical response of the materials, and
hence on the impact response of the laminate. This can be
accomplished by a screening analysis that gives qualitative in-
dicators to rank the input parameters (e.g., values of the material
parameters) in order of their importance for the variability of the
output (here the stress-strain response of the material). The
method used to identify the subset of important parameters is
presented in the next paragraph. Then it is applied to find param-
eters for the PMMA and the PC that significantly affect their
response to mechanical deformations.

3.2. Description of the method

We use the global one-factor-at-a-time (OAT) screening method
proposed by Morris [17], and illustrate it by considering a scalar-
valued (response) function y of k input variables x1 through xk
that have been normalized to take real values between 0 and 1. For
the screening analysis we require the input factors to take values in
the set {0,1/(p�1),…,1} where p is an integer. With the definition
D¼p/(2(p�1)) the elementary effect of the ith factor at the point
x¼(x1,…,xk) is

diðxÞ ¼
1
D
½yðx1;/; xi�1; xi þ D; xiþ1;/; xkÞ � yðx1;/; xkÞ� (1)

The number di(x) measures the sensitivity of the response
function with respect to the ith input factor at the point x, and can
be interpreted as an approximation to the partial derivative of y
with respect to xi. Following Saltelli et al. [18], we choose an even
integer p and then use the following procedure to compute
elementary effects of all input factors. In Morris's method the
impact of each input factor is evaluated in turn.

First, a base vector x* is chosen whose components are
randomly taken from the setf0;1=ðp� 1Þ;/;1� Dg. A subset c of
the set f1;2;/; kg is then randomly chosen, and the vector

xð1Þ ¼
�
xð1Þ1 ;/; xð1Þk

�
is formed according to the following rule:

xð1Þi ¼
�
x*i þ D if i2c;

x*i otherwise:
(2)

The successive vectors xð1Þ;/; xðkþ1Þ are computed as follows.
Assuming that the vector xðnÞðn � kÞ is known, an index i such that
the ith component of the input has not been changed yet (i.e.,
cm � n; xðmÞ

i ¼ xð1Þi ) is randomly selected and the vector xðnþ1Þ is
defined as

xðnþ1Þ
i ¼

(
xðnÞi � D if i2c;

xðnÞi þ D otherwise:
(3)

The estimated elementary effect, ~di, of the factor i for the base
vector x* is then given by

~di ¼

8>><>>:
1
D
½yðxðnÞÞ � yðxðnþ1ÞÞ� if i2c;

1
D
½yðxðnþ1ÞÞ � yðxðnÞÞ� otherwise:

(4)

A compact way towrite and implement the procedure described
above is the following. Define the orientation matrix B* as the
matrix whose rows are the xðnÞ's, 1 � n � kþ 1. That is,

B* ¼
�
Jkþ1;1x

* þ D

2
½ð2Tkþ1;k � Jkþ1;kÞD* þ Jkþ1;k�

�
P* (5)

where Jkþ1;1 is the (kþ1)� kmatrix whose entries are all equal to 1,
x* is the 1 � k row base vector, Tkþ1;k is the (kþ1) � k strictly lower
triangular matrix of 1's, D* is a diagonal matrix with elements
randomly chosen from the set f�1;þ1g, and P* is a random k � k
permutation matrix. The response function y is evaluated by taking
the rows of B* as successive input points, and the elementary fac-
tors are calculated.

This provides one value of ~di since each input factor is changed
once. Repeating the procedure r times (r is an integer) with r
random values for the base vector x* and randomly selecting each
time a new c provides r independent measures of ~di. Since these
values are independent one can compute their mean and standard
deviation. The large mean values indicate factors that significantly
affect the output. Thus mean values of ~di rank the input factors



Fig. 4. Experimental (dark curves) and computed (red curves) reaction force time histories for the PMMA/DFA4700/PC plate impacted at 12 m/s (solid curves) and 22 m/s (dashed
curves); from [4]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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according to their importance in the output variability. High values
for the standard deviations indicate factors that have strong in-
teractions with other inputs.
3.3. Results

The material parameters,xi's, for the PMMA and the PC are _gp
0;a,

DGa, a
p
a , ha, tssa , _gp0;b, DGb, a

p
b , hb, t

ss
b , CR, Nl, c, n, E (see Appendix I (or

Mulliken and Boyce [5] and Varghese and Batra [6]) for their defi-
nitions). The components of the input vector x are values of the
normalized material parameters bxi defined as

bxi ¼ xi
x0i
� amin

amax � amin
(6)

For normalizing the xi's we use their nominal values x0i (given in
Appendix I, [5] and [6]), and assume thatamin ¼ 0.7, amax ¼ 1.3. The
normalized parameters bxi are allowed to vary between 0 and 1,
corresponding to ±30% variation of the input factors about their
respective nominal values. This implies that the assumed range of
uncertainty in values of material parameters is 30%. As noted
earlier, this is probably an upper limit on the variability of values of
material parameters.

We use as response function y the stress-strain curve of the
PMMA and the PC for uniaxial compression deformation at strain
rate of 5000/s up to �0.2 true axial strain. Since this is not a scalar-
valued function, we replace yðxðnþ1ÞÞ � yðxðnÞÞ in Eq. (4) by
Fig. 5. Details of the experimental [15] (left) and the computed (right) fracture pattern on t
speed of 22 m/s; from [4].
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 0:2

ε¼0
ðsðxðnþ1Þ;�εÞ � sðxðnÞ;�εÞÞ2dε

s
where sðx; εÞ is the true axial

stress for true axial strain ε and values of material parameters
corresponding to point x.

For the present study we set r ¼ 8 and compare results obtained
with p ¼ 4 and p ¼ 12. Therefore 128 stress-strain curves are
necessary for each value of p and each material for a total of 512
simulations. The mean and the standard deviations of the
elementary effects, ~di, are depicted in Fig. 6.

We have indicated in Fig. 6 the variables whose elementary
effects are clearly separated from the group of points with low
mean and low standard deviations. We notice that results obtained
with p¼ 4 and 12 are qualitatively similar, and in particular the five
material parameters with the highest mean effects are E, n, DGa, a

p
b ,

tssb for the PMMA and E, n, DGa, tssa , DGb for the PC. We conduct the
sensitivity analysis of the impact problem described in Section 2
with respect to these material parameters.
4. Sensitivity analysis of the impact problem

4.1. Method

4.1.1. Input factors for material parameters
Because of the presence of more than one shear modulus in the

constitutive relation for the adhesive, for the sensitivity analysis we
assume that all shear moduli, mn and Gm, aremultiplied by the same
he back surface of the PMMA plate of the PMMA/DFA4700/PC laminate for the impact



Table 2
Comparison of the experimental and the computed fracture patterns on the back
surface of the PMMA plate for the PMMA/DFA4700/PC laminate; from [4].

Impact
velocity
[m/s]

Experimental Computed

12 No damaged material at
the impact site
5 cracks, length 4e7 mm

No damaged material at
the impact site
4 cracks, length 10e11 mm

22 Diameter of damaged zone
at the impact site ¼ 5 mm
7 cracks, length 11e12 mm

Diameter of damaged zone
at the impact site ¼ 6 mm
8e9 cracks, length 10e11 mm

Table 3
Material parameters included for the sensitivity study of the impact problem.

Material Parameters selected for the sensitivity study

PMMA E, n, DGa , a
p
b , t

ss
b

PC E, n, DGa , tssa , DGb

Adhesive
G0

 
¼PN

n¼1
1
2mnan þPM

m¼1Gm

!
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scaling factor while exponents, an, of the stretches in the expres-
sion for the Ogden strain energy density and the decay constants bm
(inverse of relaxation times) of the Prony series are left unchanged.
Consequently the instantaneous shear modulus G0 of the modified
material is different from that of the original material. The initial
Poisson's ratio of the adhesive is set to 0.498 and is unchanged
during the sensitivity study. With 5 material parameters for the
PMMA, 5 for the PC and 1 for the DFA4700 listed in Table 3, there
are 11 material parameters (or input factors) for the sensitivity
study.

The material parameters are normalized with respect to their
nominal values (see Eq. (6)) either with amin ¼ 0.7, amax ¼ 1.3 or
with amin ¼ 0.9, amax ¼ 1.1. The normalized variables vary between
0 and 1 leading to either 30% or 10% variation about their nominal
values.

4.1.2. Input factors for the geometric parameters and the impact
velocity

The input factors are the thicknesses h1, h2 and h3, of the three
layers and the impact velocity v0. The manufacturer of the PMMA
and the PC layers gives ±0.0762 mm uncertainty in the layer
thickness. Assuming that the uncertainty in the adhesive layer
Fig. 6. The standard deviation vs. the mean elementary effect for the uniaxial
compression of PMMA and PC at 5000/s true strain rate.
thickness is also ±0.0762 mm the three thicknesses are allowed
±0.0762 mm variation with uniform probability. In the list of
impact velocities reported by Stenzler [15] the experimental v0
ranges between 21 m/s and 23 m/s, therefore 1 m/s uncertainty
with uniform probability in the impact velocity about the nominal
value 22 m/s is assumed.
4.1.3. Description of the method
To investigate the effect of uncertainty in the inputs (e.g., the

material parameters) on the output (the plate response) we use a
sampling-based method, which has been shown to be robust with
relatively small samples (~200) [19,20]. It estimates the uncertainty
in the output generated by uncertainty in the inputs, and assesses
the importance of the individual input factors on the uncertainty in
the results. More specifically, results considered are the post-
impact length of cracks formed in the PMMA layer, the total en-
ergy dissipated in the laminate, the history of the contact force
between the impactor and the laminate, and the deflection of the
laminate.

We use the Latin-hypercube sampling method to generate
different inputs. The normalized input bxk, given by Eq. (6), varies
between 0 and 1 with an assumed uniform distribution. The cor-
responding cumulative probability is f ðbxÞ ¼ bx if 0 � bx � 1.
Assuming that the input factors are not correlated, the Latin-
hypercube sampling method can be performed in a simple way.
First, the number of samples is chosen. We use here 300 samples,
which is large enough to limit the correlation of the 11 input var-
iables and small enough to be computationally reasonable since
only 300 impact simulations are required. Then, the interval [0, 1]
is partitioned into 300 segments ½aj�1; aj�, aj ¼ ðj� 1Þ=300,
j ¼ 1;/;300 of equal size. The values bj ¼ f�1ðajÞ are then deter-
mined and a random value bxðjÞk is selected in each of the ½bj�1; bj�
intervals for the kth normalized input factor bxk. The procedure is
repeated independently for each of the 11 input variables, giving a
list of 300 values for each input. The values are then randomly
paired to form 300 samples, i.e., a set of 300 vectors of length
11. The impact problem is then analyzed for each of the 300 sets
of values for the material parameters with 10%
(amin ¼ 0:9; amax ¼ 1:1) and 30% (amin ¼ 0:7; amax ¼ 1:3) uncer-
tainty in the values of material parameters. Since it is easier to
determine values of the elastic parameters for the PMMA and the
PC than those of the remaining material parameters both studies
described above are also carried out with Young's moduli and
Poisson's ratios of the PMMA and the PC set to their nominal values.
In the latter cases the 7 remaining inputs are varied. Thus four
studies (comprising 300 simulations each) are performed for a total
of 1200 simulations. The sensitivity study with respect to the layer
thickness and the impact velocity is carried out with 100 additional
simulations.
4.2. Results

4.2.1. Distribution of the results for variations in values of material
parameters

The distribution of results is shown in the box plots of Fig. 7
wherein the convention used for the box plots is also given.



Fig. 7. Box plots of the energy dissipation and the post-impact crack length for 10 and 30% variations in values of input parameters with and without varying Young's moduli and
Poisson's ratios of the PMMA and the PC.
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Table 4
Differences between the min and the max values of the L2-norms of the reaction
force and the maximum laminate deflection for 10% and 30% uncertainties in values
of the input variables (taking the mean force/deflection as the reference).

Reaction force Deflection

Difference
between
min and
mean

Difference
between
max and
mean

Difference
between
min and
mean

Difference
between
max and
mean

±10% variation in
all inputs

15.1% 13.9% 10.4% 7.33%

±30% variation in
all inputs

30.2% 32.8% 33.1% 24.1%

±10% variation,
constant E and n

for PMMA and PC

9.06% 8.64% 5.89% 4.58%

±30% variation,
constant E and n

for PMMA and PC

14.4% 14.6% 11.9% 10.4%

G.O. Antoine, R.C. Batra / International Journal of Impact Engineering 78 (2015) 64e80 71
The distribution shown in the box plots is consistent with the
expectation that the scatter in the data is more important when the
material parameters are varied over a larger range. In particular we
note that when the elastic properties of the PMMA and the PC are
fixed and 10% variation in values of the remaining four material
parameters is allowed the scatter in the crack length is small (10.2
vs. 11.8 mm) while it is large when values of all parameters are
allowed to vary by 30% (7.3 vs. 26.4 mm) since there is a factor of 3.6
between the largest and the smallest observations in the latter case.
For the energy dissipation the scatter is considerable evenwith 10%
variation in values of all parameters except for E and n of the PMMA
and the PC (0.69 vs. 1.19 J, ratio ¼ 1.7). It is not surprising that with
fixed values of E and n for the PMMA and the PC the variability in
the crack length is much smaller than that in the energy dissipa-
tion. The brittle failure of the PMMA is mostly affected by its
Young's modulus while the main source of energy dissipation is
plastic deformations of the PC which are affected by values of three
parameters DGa, tssa and DGb.

In Fig. 8 we have displayed time histories of the min, 10th, 50th
(median), 90th percentiles, the max and the mean values of the
contact force. These values are determined as follows: for each
value of time the reaction forces obtained from different samples
are collected and their percentiles and means are determined. Thus
the curve corresponding to, for example, the minimum value of the
contact force does not necessarily correspond to the contact force of
the same sample throughout the entire impact duration.

In order to quantify the scatter in the contact force, the L2-norm
of the contact force is computed for each set of input values. The
computed difference between the mean and the max values of the
L2-norm, and that between the mean and the min values of the L2-
norm are listed in Table 4. Similar results for the deflection of the
centroid of the bottom surface of the laminate are presented in
Fig. 9 and Table 4.
Fig. 8. Time histories of the minimum, 10th, 50th and 9
For the 10% (30%) uncertainty in the input variables, the mean
differs from the min and the max values of the deflection by
about 10% (33%). For the reaction force the corresponding values
are 15% (33%). However, when E and n for the PMMA and the PC
are not varied, then the maximum difference between the mean
and the min/max values of the deflection and the reaction force
are less than 15%. Thus the uncertainty in the values of the re-
action force and the maximum deflection is about the same as
that in the values of the input variables considered. It may be
interpreted as follows: the output of these two variables
continuously depends upon the input values of the material
parameters.
0th percentiles and the mean of the contact force.



Fig. 9. Time histories of the minimum, 10th, 50th and 90th percentiles, and the mean of the deflection of the centroid of the bottom surface of the laminate.
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It can be concluded from results presented in Table 4 that the
experimentally measurable outputs such as the crack length, the
reaction force, and the laminate deflection show less scatter than
the energy dissipation which cannot be measured in physical tests.
Therefore it is possible that the computed energy dissipation is far
from the actual one even when the mathematical model has been
validated by ensuring that the experimentally measurable outputs
agree well with the computed ones. We also note that for the re-
action force time history there is more scatter in values of the sec-
ond peak than that in values of the first peak and of the “valley”
defined as the value of the local minimumoccurring at about 0.7ms.
Fig. 10. Box plots of the energy dissipation and the post-impac
4.2.2. Distribution of results for variations in values of geometric
parameters and impact velocity

The distribution of results of the impact simulations for varia-
tions in values of geometric parameters and impact velocity are
shown in the box plots of Fig. 10.

Fig. 11 displays the min, the 10th, the 50th (median), the 90th
percentiles, the max and themean of the values of the contact force
and the deflection as a function of time.

In order to quantify the scatter in the contact forces the average
deviations (L2-norm) between the mean and the max values, and
those between the mean and the min values are given in Table 5.
t crack length for variations in the geometric parameters.



Table 5
Average L2-norm deviations between the mean contact force and the minimum and
the maximum forces (taking the mean force as reference) for variations in values of
the plate thickness.

Reaction force Deflection

Deviation between
min and mean

Deviation between
max and mean

Deviation between
min and mean

Deviation between
max and mean

13.8% 13.7% 7.28% 7.06%
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4.2.3. Sensitivity analysis and correlation
Correlation is an important measure of characterizing the effect

of input factors (i.e., material parameters) on the outputs (i.e.,
simulation results). The correlation r between two variables x1 and
x2 is defined as

r ¼

Pn
i¼1

�
x
ðiÞ
1 � x1

��
x
ðiÞ
2 � x2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
x
ðiÞ
1 � x1

�2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
x
ðiÞ
2 � x2

�2s (7)

where n is the total number of observations, xðiÞ1 and x
ðiÞ
2 are values

of variables corresponding to the ith observation, and x1 and x2 are
mean values of variables x1 and x2 over the n observations,
respectively. Because of the inner product inequality, the value of r
is in the interval [�1, 1] and describes simultaneous variations of
the variables. For instance r is positive when x1 and x2 vary “in the
same manner” [21]. Eq. (7) can be used to compute the correlation
between the inputs and the outputs, and correlations among the
input factors. In the present work, since the inputs are assumed to
be independent of each other, it is important that their correlations
be small, since otherwise output results will have no significance.
The computed maximummagnitudes of the correlation among the
inputs of 0.089 for variations of the material parameters and 0.05
for the other study (e.g., see Tables given in the Appendix) are
indeed small.

The sensitivity coefficients quantify the effect of varying an
input factor on the output. In order to find thesewe assume that the
output y follows the relation

ymodel ¼ b0 þ
Xm
j¼1

bjbxj (8)

The output may not exactly follow relation (8), therefore, we
write the observations yðiÞ; i ¼ 1/n, as

yðiÞ ¼ b0 þ
Xm
j¼1

bjbxðiÞj þ ε
ðiÞ (9)

where εð1Þ/ε
ðnÞ are errors. Values of coefficients bminimizing kεk2

are called the sensitivity coefficients. The quantity, R2, defined by

R2 ¼
Pn

i¼1

�
yðiÞmodel � y

�2
Pn

i¼1
�
yðiÞ � y

	2 (10)
Fig. 11. Histories of the minimum, 10th percentile, 50th and 90t
indicates the proportion of the output variability accounted for by
themodel. Values of R2 close to 1.0 imply thatmost of the variability
of the output is accounted for by the model while smaller values
suggest that the model does not successfully capture variations of
the response.

To assess the importance of the input factor bxj0 we define the
new model

~ymodel; j0 ¼ b0 þ
Xm

j¼1;jsj0

bjbxj (11)

and find the set of optimal parameters f~bjgj¼1;/j0�1;j0þ1;/;m by
minimizing the error. The sum of squares (SS) associated with bxj0
and defined by

SSj0 ¼
Xn
i¼1

�
yðiÞmodel � y

�2 �Xn
i¼1

�
~yðiÞmodel;j0

� y
�2

(12)

measures the importance of the j0th input factor.
In order to determine whether coefficients b appear to be zero

or not we use Student's t-test with 5% threshold to reject the zero
hypothesis. That is, it is assumed that a term of b is significant/non-
zero if the hypothesis that its actual value be zero has less than 5%
probability. Even though the distributional assumptions that lead
to the p-values of Student's t-test are not satisfied in sampling-
based sensitivity studies these p-values still provide a useful cri-
terion for assessing the importance of a variable (Saltelli et al. [18]).

Results of the sensitivity analysis for the crack length are given
in Table 6 for 30% variation in values of all input factors. We have
listed in the Table only the significant input factors (less than 5%
chance of being zero). Detailed analyses of the variance are pro-
vided in the Appendix. Similar results were obtained for 10% vari-
ation in the values of the input variables (the five inputs with the
most effect are the same, with comparable relative weight and
normalized sensitivity coefficients). The sensitivity coefficients
were normalizedwith the largest magnitude of the coefficients that
h percentiles and mean of the contact force and deflection.



Table 7
Parameters with the most influence on the output variability of the energy dissi-
pation for the impact problem with 10% variation in all input factors R2 ¼ 0.63.

Material Parameter % Total SS Normalized sensitivity coefficient

PC E 31.4 �1.0
PMMA E 25.6 0.91
PC DGa 20.7 �0.81
PC tssa 10.7 �0.59
Adhesive G0 5.90 0.44
PC DGb 3.79 0.35
PMMA n 1.64 0.23
Total 99.7

Table 8
Parameters with the most influence on the output variability of the energy dissi-
pation for the study with 30% variation in all input factors, R2 ¼ 0.78.

Material Parameter % Total SS Normalized sensitivity coefficient

PC E 39.5 �1.0
PC DGa 21.3 �0.73
PC tssa 13.7 �0.59
PMMA E 12.6 0.57
Adhesive G0 9.24 0.49
PMMA n 2.18 0.24
PMMA DGa 1.05 �0.16
Total 99.6

Table 9
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preserves their signs. Thus a positive value of the coefficient in-
dicates that an increase in the input factors induces an increase in
the output while it is the opposite for a negative value of the co-
efficient. We can conclude from results listed in Table 6 that the
cumulated SS corresponding to the five elastic moduli of the plate
materials accounts for more than 99% of the variability of the
output. The factor with the largest coefficient is Young's modulus E
for the PMMA. The coefficient is positive meaning that an increase
of E induces an increase of the crack length. This is because the
threshold stress for the brittle failure was kept constant in the
study, meaning that with an increase of E the strain at failure de-
creases. We also note that the sensitivity coefficient of G0 is nega-
tive, meaning that a softer interlayer will result in longer cracks in
the PMMA. This agrees with the experimental results of Stenzler
[15] for the softer IM800A interlayer andwith the results computed
by Antoine and Batra [4] for this interlayer material.

A similar investigation has been carried out for the total energy
dissipation and results for 10% and 30% variation of the input factors
are summarized in Table 7 and Table 8 where only significant fac-
tors are listed. The main source of energy dissipation is plastic
deformations of the PC. Thus it is not surprising to find three ma-
terial parameters of the PC among the five most important pa-
rameters for 10% and 30% variation in values of input parameters. In
particular two of these parameters are related to its plastic de-
formations. The three parameters of the PC are Young's modulus,
the activation energy of phase a, DGa (plastic yielding), and the
softening parameter tssa (plastic softening). The two remaining pa-
rameters among the five most important ones are Young's modulus
of the PMMA and the shear modulus of the interlayer. The signs of
the sensitivity coefficients of these five parameters are the same for
the two amplitudes of variation, however, Young's modulus of the
PMMA is at the second place for the 10% variation study and at the
fourth place for the 30% variation study while the remaining pa-
rameters have the same relative rankings. In both cases the
cumulated SS of these five parameters represents more than 94% of
the total SS. Finally we note that the R2 of the fits of the energy
dissipation is smaller than that of the crack length. This may be due
to the fact that for the crack length one parameter (E of the PMMA)
is clearly dominant while for the energy dissipation many param-
eters have similar SS, which indicates that more interactions (not
accounted for by the linear model of Eq. (8)) are present.

The correlation between the energy dissipation and the crack
length cannot be established when the elastic moduli of the PMMA
and the PC are fixed since regression analyses yield their correlation
to be insignificant. However, when all parameters vary a significant
correlation exists. Thus the crack length and the dissipation seem to
be correlated via the elastic moduli of the PMMA and the PC.

In order to investigate the reaction force time history we
introduce scalar quantities which characterize it. Three noticeable
features of the reaction force time history are the first peak, the
subsequent minimum value of the force (called “valley” in the
following), and the second peak of the force (see Fig. 8). We define
Table 6
Summary of the six parameters with the most influence on the variability of the
crack length in the PMMA for the impact of the laminatewith 30% variation in values
of all input factors. R2 ¼ 0.83.

Material Parameter % Total SS Normalized
sensitivity coefficient

PMMA E 70.9 1.0
PC E 12.2 �0.41
Adhesive G0 9.45 �0.37
PC n 3.57 �0.23
PMMA n 2.91 0.20
PC DGb 0.66 �0.096
Total 99.7
the first peak of the reaction force as its local maximum between
0.0 and 0.65 ms, the second peak as its local maximum between
0.75 and 1.6 ms, and the valley value as its local minimum between
times 0.5 and 0.9 ms.

Linear models of the form of Eq. (8) including all input factors
could be fitted to accurately capture the 1st peak and the valley of
the reaction forces (R 2 > 0.95, see values in the left column of
Table 9). Thus the magnitudes of the 1st peak and the valley in the
reaction force can be expressed as linear functions of the material
parameters. Moreover, when the elastic moduli of the PC and the
PMMA are varied, E and n of the PMMA and the PC and G0 of the
adhesive account for more than 85% of the variability of the model
(their cumulated partial SS is larger than 85% of the total SS) for the
1st peak and the valley.

A satisfactory linear model giving the amplitude of the 2nd peak
as an affine function of the input factors cannot be found since R2-
values of 0.62 and 0.59 were obtained for 10% and 30% variations of
the inputs, respectively (see Table 9, left column). Upon studying
the correlation Tables given in the Appendix we notice that the 2nd
peak of the reaction force time history is strongly correlated with
the energy dissipated. In order to investigate this correlation, a
simple model expressing the 1st peak, the valley and the 2nd peak
as linear functions of the energy dissipation only are fitted to the
numerical results. The corresponding R2-values are listed in Table 9.

The correlation between the 2nd peak in the reaction force time
history and the energy dissipation is clear since expressing the
Values of R2 for the reaction force as a function of either the material parameters or
the energy dissipation alone.

Case Variables as function of all
material parameters

Variables as function
of the dissipation only

1st peak valley 2nd peak 1st peak valley 2nd peak

All inputs ±10% 0.986 0.990 0.624 0.019 0.088 0.756
All inputs ±30% 0.957 0.983 0.593 0.107 0.081 0.686
Fixed E and n for

PMMA and PC,
other inputs ±10%

0.955 0.934 0.529 0.042 0.014 0.511

Fixed E and n for
PMMA and PC,
-other inputs ±30%

0.873 0.943 0.640 0.345 0.239 0.627



Table 10
Regression coefficients of energy dissipated for the 2nd peak of the reaction force as
an affine function of the energy dissipated.

Regression
coefficient (kN/J)

All inputs ±10% �0.490
All inputs ±30% �0.380
Fixed E and n for PMMA and PC, other inputs ±10% �0.335
Fixed E and n for PMMA and PC, other inputs ±30% �0.396

Table 11
Summary of the dissipation variability, R2 ¼ 0.88.

Parameter % Total SS Sensitivity coefficient
Thickness of PMMA 34.4 �2.17 J/mm
Thickness of adhesive 13.3 �1.35 J/mm
Thickness of PC 0.54 �0.271 J/mm
Impact velocity 51.8 0.203 J/(m/s)
Total 100

Table 12
Summary of the crack length variability, R2 ¼ 0.71.

Parameter % Total SS Sensitivity coefficient
Thickness of PMMA 0.00 �0.039 mm/mm
Thickness of adhesive 1.37 0.785 mm/mm
Thickness of PC 36.2 �4.03 mm/mm
Impact velocity 62.43 0.403 mm/(m/s)
Total 100.0
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value of the 2nd peak as an affine function of the energy dissipated
gives R2¼ ~ 0.7 in the first two cases as compared to R2 between 0.5
and 0.6 with fixed values of E for the PMMA and the PC. To visualize
this correlation the 2nd peak of the contact force is plotted as a
function of the energy dissipated in Fig. 12.

The affine fits in Fig. 12 have negative slopes meaning that the
energy dissipated and the 2nd peak of the contact force have
opposite variations. This implies that when the plate dissipates
more energy it has less elastic energy to bounce back. Thus the
contact force corresponding to the rebound of the impactor (2nd
peak of the reaction force, see Ref. [4]) has smaller magnitude.

One could argue that since the energy dissipation and the elastic
properties of the PMMA and the PC are correlated, a correlation
between the 2nd peak in the reaction force time history and the
energy dissipated may simply mean that the 2nd peak is correlated
with the elastic properties of these materials. This can be refuted by
observing that the correlation between the dissipation and the 2nd
peak of the reaction force still holds when the elastic properties of
the PMMA and the PC materials are fixed at their nominal values
(see the two last rows of Table 9).

The slopes of the affine fits of Fig. 12 are given in Table 10. We
note that the coefficients are similar for all cases suggesting that the
underlying mechanisms that correlate the 2nd peak of the reaction
force and the energy dissipated are identical whether or not the
elastic properties of the PMMA and the PC are varied.

For variations in values of the geometric parameters and the
impact speed, results of the sensitivity study of the dissipation and of
the crack length are summarized inTables 11 and 12, respectively. For
the dissipation all parameters except the thickness of the PC are
significant (with 95% confidence). For the crack length the thickness
of the PC plate and the impact speed are significant but the thickness
of the PMMA plate and of the adhesive have negligible effect.
5. Conclusions

For the polymethylmethacrylate (PMMA) and the polycarbonate
(PC) we have identified material parameters that significantly affect
their stress-strain response in uniaxial compression. Those and other
parameters have been used to perform sensitivity analyses of the low
velocity impact by a rigid impactor of a laminated PMMA/DFA4700
adhesive/PC plate. The variations in the shear modulus of the
DFA4700 interlayerhavealsobeenconsidered in the sensitivity study.

The effect of uncertainties in values of material parameters on
variations in the response of the laminated plate has been inves-
tigated. It has been found that the elastic properties of the
Fig. 12. Value of the 2nd peak of the reaction force as a function
constituents of the plate dominantly affect the plate response,
which is good since they can be easily measured experimentally.
However, the energy dissipated is mostly affected by parameters
that affect the plastic yielding and the plastic softening of the PC,
which is consistent with the previously reported result that the
energy dissipated is mostly due to plastic deformations of the PC.
Thus even when the experimentally measurable quantities such as
the plate deflection, the crack length and the reaction force agree
with their corresponding experimental values and have very little
variability due to the uncertainly in the values of material param-
eters, the scatter in the energy dissipation may be considerable.
This indicates that even if a mathematical model has been validated
by establishing a close agreement between its predictions of plate
deflections etc. with the experimental results the computed energy
dissipated may be far from that actually dissipated in the plate.
Interactions among different material parameters could explain
this larger scatter in the energy dissipated.

We found that the 1st peak and the valley but not the 2nd peak
in the reaction force time history can be accurately expressed as
of the energy dissipation and affine fit for all cases studied.
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functions of material parameters of the constituents of the plate.
The 2nd peak in the reaction force time history is correlated with
the energy dissipated in the plate. It suggests that capturing the
amplitude of the 2nd peak of the reaction force history requires
that the mathematical model of the problem accurately predict the
energy dissipated during the impact event.
Acknowledgments

This research was sponsored by the US Army Research Labora-
tory and was accomplished under Cooperative Agreement Number
W911NF-06-2-0014. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.
Appendix

A1. Variations in the material parameters

Correlation of the inputs and the outputs



Table 13
Correlations between the inputs and the outputs. (a) ±10% variation for all variables, (b) ±30% variation for all variables, (c) ±10% variation for all variables except for E and n of
PMMA and PC, (d) ±30% variation for all variables except for E and n of PMMA and PC.
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Table 15
ANOVA for the dissipation for ±10% variation of all input factors.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

PC E 0.972 31.36 1 0.972 148.2
PMMA E 0.795 25.64 1 0.795 121.2
PC DGa 0.641 20.68 1 0.641 97.75
PC tssa 0.332 10.7 1 0.332 50.59
Adhesive G0 0.183 5.9 1 0.183 27.90
PC DGb 0.117 3.79 1 0.117 17.91
PMMA n 0.051 1.64 1 0.051 7.75
PMMA DGa 0.004 0.11 1 0.004
PMMA a

p
b 0.003 0.11 1 0.003

PMMA tssb 0.001 0.03 1 0.001
PC n 0.001 0.02 1 0.001
Total 3.099 100

Table 16
ANOVA for the crack length for ±10% variation of all input factors.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

PMMA E 137.4 73.51 1 137.4 683.9
PC E 20.87 11.16 1 20.87 103.9
Adhesive G0 20.46 10.94 1 20.46 101.8
PC n 3.233 1.73 1 3.233 16.08
PMMA n 1.799 0.96 1 1.799 8.95
PC DGa 1.324 0.71 1 1.324 6.59
PC tssa 0.685 0.37 1 0.685
PC DGb 0.613 0.33 1 0.613
PMMA a

p
b 0.417 0.22 1 0.417

PMMA DGa 0.131 0.07 1 0.131
PMMA tssb 0.001 0 1 0.001
Total 187.0 100
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Analysis of variance (ANOVA) and sensitivity factors
Table 14
Normalized sensitivity coefficients, p- and R2 values for ±10% variation of all input factor

Input factor Dissipation

Normalized sensitivity coefficient

PMMA E 0.91
n 0.23
DGa 0.061
a
p
b 0.060

tssb �0.033
PC E �1.00

n 0.024
DGa �0.81
tssa �0.59
DGb 0.35

Adhesive G0 0.44
R2 0.63
s.

Crack length

p-value Normalized sensitivity coefficient p-value

<0.0001 1.00 <0.0001
0.0057 0.114 0.003
0.46 0.031 0.42
0.47 0.055 0.15
0.69 �0.003 0.94
<0.0001 �0.388 <0.0001
0.77 �0.153 <0.0001
<0.0001 �0.098 0.011
<0.0001 �0.071 0.066
<0.0001 �0.067 0.082
<0.0001 �0.387 <0.0001

0.76



Table 17
Normalized sensitivity coefficients, p- and R2 values for ±30% variation of all input
factors.

Input factor Dissipation Crack length

Normalized
sensitivity
coefficient

p-value Normalized
sensitivity
coefficient

p-value

PMMA E 0.565 <0.0001 1.00 <0.0001
n 0.235 <0.0001 0.202 <0.0001
DGa �0.164 0.001 �0.022 0.487
a
p
b �0.057 0.264 0.006 0.837

tssb �0.055 0.274 �0.014 0.651
PC E �1.00 <0.0001 �0.413 <0.0001

n �0.041 0.412 �0.225 <0.0001
DGa �0.733 <0.0001 �0.028 0.374
tssa �0.592 <0.0001 �0.058 0.062
DGb �0.058 0.245 �0.096 0.0022

Adhesive G0 0.486 <0.0001 �0.366 <0.0001
R2 0.778 0.831

Table 21
ANOVA for the dissipation for ±10% variation of all input factors except the elastic
moduli of PMMA and PC.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

Table 20
Normalized sensitivity coefficients, p- and R2 values for ±10% variation of all input
factors except for Young's moduli and Poisson's ratios of PMMA and PC.

Input factor Dissipation Crack length

Normalized
sensitivity
coefficient

p-value Normalized
sensitivity
coefficient

p-value

PMMA E N/A N/A
n

DGa 0.549 <0.0001 0.616 <0.0001
a
p
b 0.040 0.615 0.063 0.482

tssb 0.013 0.867 �0.026 0.769
PC E N/A N/A

n

DGa �1.0 <0.0001 �0.235 0.009
tssa �0.628 <0.0001 �0.016 0.861
DGb 0.300 0.0002 0.014 0.880

Adhesive G0 0.475 <0.0001 �1.00 <0.0001
R2 0.52 0.38
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Table 18
ANOVA for the dissipation for ±30% variation of all input factors.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

PC E 6.005 39.52 1 6.005 397.1
PC DGa 3.239 21.32 1 3.239 214.2
PC tssa 2.082 13.7 1 2.082 137.7
PMMA E 1.907 12.55 1 1.907 126.1
Adhesive G0 1.403 9.24 1 1.403 92.8
PMMA n 0.332 2.18 1 0.332 21.93
PMMA DGa 0.159 1.05 1 0.159 10.51
PC DGb 0.021 0.13 1 0.021
PMMA a

p
b 0.019 0.12 1 0.019

PMMA tssb 0.018 0.12 1 0.018
PC n 0.01 0.07 1 0.01
Total 15.19 100

PC DGa 0.572 49.98 1 0.572 157.36
PC tssa 0.222 19.43 1 0.222 61.17
PMMA DGa 0.171 14.91 1 0.171 46.94
Adhesive G0 0.127 11.12 1 0.127 35.00
PC DGb 0.051 4.48 1 0.051 14.11
PMMA a

p
b 0.001 0.08 1 0.001

PMMA tssb 0.0001 0.01 1 0.0001
Total 1.145 100

Table 22
ANOVA for the crack length for ±10% variation of all input factors except for the
elastic moduli of PMMA and PC.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

Adhesive G0 5.569 69.35 1 5.569 124.77
PMMA DGa 2.122 26.42 1 2.122 47.53
PC DGa 0.311 3.88 1 0.311 6.97
PMMA a

p
b 0.022 0.28 1 0.022

PMMA tssb 0.004 0.05 1 0.004
PC tssa 0.001 0.02 1 0.001
PC DGb 0.001 0.01 1 0.001
Total 8.03 100
Table 19
ANOVA for the crack length for ±30% variation of all input factors.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

PMMA E 2251. 70.89 1 2251. 1034.
PC E 386.7 12.17 1 386.7 177.5
Adhesive G0 300.3 9.45 1 300.3 137.9
PC n 113.5 3.57 1 113.5 52.12
PMMA n 92.38 2.91 1 92.38 42.41
PC DGb 20.83 0.66 1 20.83 9.56
PC tssa 7.650 0.24 1 7.650
PC DGa 1.726 0.05 1 1.726
PMMA DGa 1.054 0.03 1 1.054
PMMA tssb 0.446 0.01 1 0.446
PMMA a

p
b 0.093 0 1 0.093

Total 3176.3 100

Table 23
Normalized sensitivity coefficients, p- and R2 values for ±30% variation of all input
factors except for Young's moduli and Poisson's ratios of PMMA and PC.

Input factor Dissipation Crack length

Normalized
sensitivity
coefficient

p-value Normalized
sensitivity
coefficient

p-value

PMMA E N/A N/A
n

DGa 0.343 <0.0001 0.132 0.001
a
p
b �0.015 0.725 �0.037 0.328

tssb �0.022 0.606 �0.022 0.558
PC E N/A N/A

n

DGa �1.0 <0.0001 �0.112 0.003
tssa �0.702 <0.0001 �0.104 0.006
DGb �0.083 0.051 �0.228 <0.0001

Adhesive G0 0.511 <0.0001 �1.0 <0.0001
R2 0.784 0.732



Table 24
ANOVA for the dissipation for ±30% variation of all input factors except for the elastic
moduli of PMMA and PC.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

PC DGa 4.203 53.53 1 4.203 565.79
PC tssa 2.041 26 1 2.041 274.73
Adhesive G0 1.084 13.81 1 1.084 145.97
PMMA DGa 0.491 6.26 1 0.491 66.15
PC DGb 0.028 0.36 1 0.028
PMMA tssb 0.002 0.03 1 0.002
PMMA a

p
b 0.001 0.01 1 0.001

Total 7.85 100

Table 25
ANOVA for the crack length for ±30% variation of all input factors except for the
elastic moduli of PMMA and PC.

Material Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

Adhesive G0 159.1 91.31 1 159.1 713.27
PC DGb 8.345 4.79 1 8.345 37.42
PMMA DGa 2.762 1.59 1 2.762 12.38
PC DGa 2.007 1.15 1 2.007 9
PC tssa 1.728 0.99 1 1.728 7.75
PMMA a

p
b 0.214 0.12 1 0.214

PMMA tssb 0.077 0.04 1 0.077
Total 174.2 100

Table 27
ANOVA for the crack length for variations in the layer thicknesses and in the impact
velocity.

Parameter Sum of
Squares (SS)

% total SS DOF Mean SS F

Impact velocity 5.404 62.43 1 5.404 143.87
Thickness of PC 3.133 36.2 1 3.133 83.42
Thickness of adhesive 0.118 1.37 1 0.118
Thickness of PMMA 0.00 0.00 1 0.00
Total 8.655 100
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A2. Variations in the layer thicknesses and in the impact velocity

Correlation of the inputs and the outputs
Fig. 13. Histories of minimum, 10th percentile, 50th and 90th percentiles and mean of the contact force and deflection.
ANOVA.
Table 26
ANOVA for the dissipation for variations in the layer thicknesses and in the impact
velocity.

Parameter Sum of
squares (SS)

% Total SS DOF Mean SS F

Impact velocity 1.367 51.78 1 1.367 338.66
Thickness of PMMA 0.908 34.4 1 0.908 224.99
Thickness of adhesive 0.351 13.29 1 0.351 86.9
Thickness of PC 0.014 0.54 1 0.014
Total 2.64 100
A3. Material model for the transparent material

The material models for the PMMA and the PC differ only in the
values of material parameters. We thus briefly describe material
model for the PC, and refer the reader toMulliken and Boyce [5] and
Varghese and Batra [6] for details. We assume that the total Cauchy
stress tensor s at a material point equals the sum of contributions
from three phases, namely B, a and b, i.e., s ¼ sB þ sa þ sb. The
three phases coexist at a material point and have the same value of
the deformation gradient F. The phase B behaves like a non-linear
elastic Langevin spring for which

sB ¼ CR
3

ffiffiffiffiffi
Nl

p
lp

L�1

 
lpffiffiffiffiffi
Nl

p !
B
0
B (13)

Here sB is the Cauchy stress tensor, B
0
B the deviatoric part of

BB ¼ ðJÞ�2=3FFT, lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBBÞ=3

q
a measure of stretch, tr() the trace

operator, F the deformation gradient, J the determinant of F, L�1 the
inverse of the Langevin function defined by LðbÞ≡coth b� 1=b, Nl
the limiting stretch, CR≡nRkq the rubbery modulus, q the temper-
ature in Kelvin, k Boltzmann's constant, and nR a material
parameter.

The other two phases, a and b, are modeled with the same
constitutive equation but with different values of material param-
eters. For each phase the deformation gradient F is decomposed
into elastic and plastic parts, F ¼ FeaF

p
a ¼ FebF

p
b . The rate of the plastic

deformation gradient, _F
p
a , in phases a and b is given by



Table 28
Nominal values of material parameters for the PC.

Phase a Phase b Phase B Common

ni 0.38 0.38
_gp0i [/s] 2.94 � 1016 3.39 � 105

DGi [J] 3.744 � 10�19 3.769 � 10�20

a
p
i 0.168 0.245

hi [MPa] 125 400
tssi 0.33 2.00
CR at 300 K [MPa] 35.0
Nl 12.25
r [g/cm3] 1.20
E [GPa] at 300 K, 5000/s 1.678 0.344
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_F
p
a ¼ Fe

�1

a
~D
p
aF; _F

p
b ¼ Fe

�1

b
~D
p
bF (14)

where ~D
p
i is the plastic strain rate tensor in phase i (i ¼ a, b), and it

has been assumed that the plastic spin tensors in phases a and b

identically vanish.
The Hencky elastic strain tensors of phases a and b are defined

as

ε
e
a ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
FeaF

eT
a

q �
; ε

e
b ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffi
FebF

eT
b

q �
(15)

and the corresponding Cauchy stress tensors are given by

sa ¼ 1
J
½2maεea þ latrðεeaÞd�; sb ¼ 1

J



2mbε

e
b þ lbtrðεebÞd

�
(16)

where Young's moduli of phases a and b of the PC and consequently
Lame's constants, l and m, are temperature and strain-rate depen-
dent. We note that Eq. (16) is valid for finite deformations and ac-
counts for all geometric nonlinearities.

The plastic strain rates, ~D
p
a , are assumed to be coaxial with the

deviatoric Cauchy stress tensors in their respective phases, that is

~D
p
a ¼ _gpa

s0
a

js0
aj
; ~D

p
b ¼ _g

p
b

s0
b

js0
bj

(17)

where s0
i (i ¼ a, b) is the deviatoric part of the Cauchy stress in

phase i, js0
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðs0

is
0
iÞ

q
is the magnitude of s0

i , and _gp
i is the

effective plastic strain rate in phase i. This equation implies that

trð~Dp
i Þ ¼ 0.
The effective plastic strain rates in a and b phases are given by

_g
p
i ¼ _g

p
0i exp

"
� DGi

kq

 
1� ti

tibsi þ a
p
i p

!#
; i ¼ a;b (18)

where _gp
0i (i ¼ a, b) is the pre-exponential factor, DGi the activation

energy, p ¼ �trðsÞ=3 the pressure, ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5trðs0

is
0
iÞ

q
the effective

stress, api the pressure coefficient, bsi ¼ 0:077mi=ð1� niÞ the athe-
rmal shear strength, ni Poisson's ratio, k Boltzmann's constant, and
ti an internal variable that evolves with plastic deformations. The
evolution of internal variable ti in phases a and b is given by

_ti ¼
hibs0i
 
1� ti

tssi

!
_g
p
i ; i ¼ a; b (19)

where tssi and hi are softening parameters, and bs0i is the reference
value of bsi given by the reference values of mi and ni.

We postulate that the energy dissipated during plastic de-
formations in the a and b phases is converted into heat, that is

_Q ¼ J
�
sa : ~D

p
a þ sb : ~D

p
b

�
(20)

where _Q is the heat generated per unit volume in the reference
configuration.

We refer the reader to Mulliken's thesis [7], Mulliken and Boyce
[5] and Varghese and Batra [6] for the determination of values of
the 16 material parameters from the test data for the PC that are
given in Table 28, and for the comparison of the computed and
experimental axial stress vs. axial strain curves.
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