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ABSTRACT: We use the correspondence principle of linear viscoelasticity and the Mori—
Tanaka averaging method to determine the effective electroviscoelastic moduli of a
piezocomposite made of piezoceramic (PZT) inclusions and a viscoelastic matrix whose
dielectric constants also vary with time r. For elliptic cylindrical PZT inclusions, closed
form expressions for the electroviscoelastic moduli are derived. It 1s found that for the
1-3 piezocomposite, the relaxation of the dielectric constants of the matnx affects only
the dielectric moduli and the shear components of the piezoelectric and the viscoelastic
moduli of the piezocomposite. However, the wviscoelasticity of the matrix influences
every effective electroelastic modulus of the piezocomposite. The relaxation times of any
two effective moduli are different, and the piezocomposite is an orthotropic material. For
time-harmonic loading of the piezocomposite studied, only frequencies in the range of 107*-
10° Hz strongly influence the effective storage and the effective loss moduli. Whereas thin PZT
ribbons provide the most mechanical strength to the piezocomposite, they give the least

Y

piezoclectric effect.

1 INTRODUCTION

OLYMERS usually exhibit viscoelastic (Ferry, 1970)

and dielectric relaxation (Hedvig, 1977; Lovinger,
1983; Dias and Das-Gupta, 1996) phenomena. The
effective properties of a composite made of elastic
inclusions and a viscoelastic matrix have been derived by
L1 and Weng (1994), Alberola and Benzart: (1998), and
Aboudi1 (2000). Whereas effective electroelastic proper-
ties of piezocomposites with piezoelectric (PZT) inclu-
sions and an elastic matrix have been widely studied
(e.g., see Chan and Unsworth, 1989; Dunn and Taya,
1993; Avellaneda and Swart, 1998; Agbossou et al.,
1999; Jiang et al., 1999a; Hornsby and Das-Gupta,
2000), those of a piezocomposite with a viscoelastic
matrix seem not to have been scrutinized. Jiang et al.
(1999b, 2000) have derived effective moduli of spherical
PZT inclusions embedded in a viscoelastic and dielec-
trically relaxing matrix without accounting for the
interaction among the inclusions, and they did not
give closed form expressions for the effective electro-
elastic moduli of the piezocomposite.

Here we use the correspondence principle of linear
viscoelasticity, account for the interaction among PZT
inclusions, and give closed form cxpressions for the
effective electroviscoelastic moduli of a -3 piezocom-
posite consisting of paralicl PZT cylinders of elliptic

*Author to whom correspondence should be addressed,

cross section embedded 1n a viscoelastic matrix. The
relaxation of the dielectric moduli of the matrix is found
to affect only the dielectric moduli and shear compo-
nents of the piezoelectric and elastic moduli of the
piezocomposite. However, viscous effects in the matrix
influence all of the moduli of the piezocomposite. These
moduli also strongly depend upon the shape of the cross
section of the cylindrical PZT inclusions.

The paper 1s organized as follows. The problem 1s
formulated i1n Section 2, and expressions for the
constraint strain and the constraint electric field for a
single cylindrical PZT inclusion embedded in an infinite
viscoelastic matrix are deduced. The effective electro-
elastic moduli of a piezocomposite with several parallel
cylindrical PZT inclusions 1n a dielectrically relaxing
viscoelastic matrix are derived in Section 3. In Section 4,
we compare computed values of the effective piezo-
electric moduli with experimental results for an elastic
matrix. We also compare the computed values of the
effective moduli for elastic cylindrical inclusions 1n a
viscoelastic matrix with both the experimental results
and with the predictions from Li and Weng’s (1994)
model. Predictions from the present model for numer-
ous values of material parameters of the dielectrically
relaxing viscoelastic matrix and aspect ratios of the cross
section of the PZT inclusions are exhibited and
discussed in Section 3. Section 6 summarizes the work.
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2 FORMULATION OF THE PROBLEM

We use rectangular Cartesian coordinates to describe
infinitesimal deformations of a composite made of a
viscoelastic matrix and PZT inclusions; all of the PZT
inclusions are cyilndrical, have the same cross section
and are aligned parallel to each other. In the absence of
body forces and free charges, deformations of the matrix
and the inclusions are governed by

g;;i=0, D;;=0, (2.1)
where o 1s the stress tensor, D the electric displacement,
a comma followed by the index ;j indicates partial
differentiation with respect to the position x; of a
material particle, and a repeated index unless otherwme
noted implies summation over the range of the index.
The constitutive relations for the viscoelastic matrix are

O’”(X f) = C”“(O)EH(X, {) -I-f ”“(‘L’)E;\/(X [ — r)dr

Di(x. 1) = ki (0)Ej(x. r)+fAM(r)E (x, 1 — 1)dT,

0
(2.2)
and those for the PZT inclusions are
0;i(x, 1) = CLen(x, 1) — el E/(x, 1),
j ikl lij (2.3)

Di(x,t) = e”,\e,;\(x t) + k Ei(x, 1),
where
Ei(x. 1) = —¢ 2 2650, 1) = (X, 1) + (%, 1) ;. (2.4)

Here C, k and e are respectively the elastic, the dielectric
and the piezoelectric moduli, superscripts M and [
denote their values for the matrix and the PZT
inclusions respectively, a superimposed dot indicates
partial derivative with respect to time ¢, u is the
mechanical displacement, E the electric field and ¢ the
clectric potential.

[t 1s assumed that the matrix and the inclusions are
perfectly bonded together so that at their common
intcrfaces

u] =0, [ein=0, [¢]=0, [D]-n=0, (2.5)
where, [f1=/" — f! denotes the jump in the value of fin
going from the inclusion to the matrix across their
common interface, and n 1s a unit outward normal to the
interface.

We consider a representative volume element (RVE)
of the piezocomposite that is large enough so that its
effective moduli are invariant with respect to its rigid
translations in the body. The spatial distributions of the
similarly aligned PZT inclusions are such that the RVE

can be regarded as homogeneous. Boundary conditions
imposcd on the surfaces of the RVE correspond to fields

of uniform strain €;: and uniform electric field E"? within
the RVE. Thus

wi(x, 1) = g(0)x;,  $(x, 1) = —E(n)x;. (2.6)

Taking the Laplace transform of Equations (2.1)-
(2.6) we obtain analogous equations in the transtormed
quantities except for the two equations derived from
(2.2), and (2.2),. The transformed versions of Equations
(2.2), and (2.2), are

D, i(x,s) = Sk (S)E (X, 5),
(2.7)

oii(X, §) = SC”“(S)EM(X 5),

where a superimposed " indicates the Laplace transform
of the quantity. The set of transformed equations 1s
identical to the set of equations for an elastic matrix and
PZT inclusions with the elastic and the dielectric moduli

of the elastic matrix replaced respectively by sC" and
~ M
sk . It thus follows that the Laplace transformed

displacements u and the electric potential ¢ can be
obtained from the solution of the corresponding
problem for an elastic matrix.

For an ellipsoidal PZT inclusion embedded 1n an
infinite non-electromechanically coupled elastic matnix,
Jiang et al. (1999a) derived expressions for the
constraint strain &/ and the constraint electric field E’
in terms of the applied uniform fields €® and E°. With
the pdrdmeter replacing, the transformed constraint
strain &' and the transformed constraint electric field E/
for an ellipsoidal PZT inclusion embedded in an infinite
viscoelastic matrix are given by

= Al &+ By B, El = A3 + HYED, (2.8)

!

where

”~, ”~,

”~, l ” %

H ikl — X ff””i'A”"H'\'f ? H itk X mﬂnann:poA
"o (2.9)
Yr'mBnqh

F 8 F o

T4
H;;M — ;';nﬁnmpA”mk, H!'f —

are the transformed electroelastic Eshelby tensors. In
Equations (2.9)

| —1
UU - [IUU + Sr;nm(scnmpq) Cﬂfﬂ\"] ’
—1
H — [3'! + Sﬁir(‘Sﬁ‘rirr: ?!f] ¥
fﬂ-:! — (]fjkf + aijmﬁmk!)_

A H M
ik = -'H””Srnnpq {’C;:rqn) An"’

N "M
ﬁ tjk = B i mn(S]“ np) p,n( >

Lity = (8l +8u83)/2, C=C' —sC* K =k' - sk,
(2.10)

a a — |
— (55;' + ﬁinmamuf) )
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§;;1s the Kronecker delta, and S* and S? are respectively
the transformed Eshelby tensors for the perfect elastic
and dielectric inclusion whose shape and orientation arc
the same as those of the PZT inclusion under
consideration. The transformed Eshelby tensors can bc
obtained by parameter replacing.

3 EFFECTIVE CONSTITUTIVE RELATIONS
FOR THE PIEZOCOMPOSITE

The transformed constitutive relations of the piezo-
composite in terms of the effective modul C, k and e can
be written as

. ”~
o~

~{0 ~ ~0 = 0 ~0 = A0 (
JU — Cﬁk!t’?;{g —= (:’kijk; D:‘ = €kt + k,jE - (31)

Taking the inverse Laplace transform of (3.1) we obtain
the constitutive relations for the piezocomposite as

882 (X, T)

f
0 = .
0;(X, 1) = [_m Ciri(t — 1) ™ dt

f dE ¢
- [ eri(t — 1) *(x 0)dr,
— 00

| - aqu (3.2)
D (X,1) = [ €gk;(2‘ — T) —a—“"—(x, 7)dT

-1—[ k,j(r— T)

The transformed effective moduli, obtained from the
solution of the corresponding problem of the elastic
matrix by the parameter replacement, are

oF "
j(,x 1)dT.

o ~

C ki =S erk! +f Sym[Cyan mnkl — énrfjp mk!]:
;‘? — Sk{; ‘I'fsym[emmNnuy + Krm Qny]
é — zf[Krm nyk =

L)

Cjkﬂ?ﬂ N mni T Q:menyk + Cimn nmjk]:
(3.3)

where Sym[FyM] — Q(FUH + Fk!y) Sym(Ju) — l(JIj + J;r)
and f is the volume fraction of the PZT inclusions.
Moreover, tensors M N P and Q reflect the relations

between the transformed constraint fields, &/, E’, of the

piezoelectric inclusion, and the transformed appled
fields, £° and E°, i.e.,

8. = Mg, + N E}, E!l =Py +O4E]. (3.4)
Note that Equation (2.8) are for a single ellipsoidal PZT
inclusion embedded in an infinite viscoclastic matrix,
but Equations (3.4) account for the interaction among
neighboring inclusions. Two approximatc techniques of
finding M, N, P and Q are discussed below.

iy o Midgfecevidy ﬁiﬁa’

L1 Dilute Solutions

1 the volume Tractions ol the P21 inchisione arg
small so that the interaction atmong the mchusions van b
neglected, then the constrant strnn and the constiamd
electric {iclds inside the mclusions are approxmmated by
the strain and the electric fields that would occur n an
isolated PZT inclusion embedded 1n an inliite non-
piezoelectromechanically coupled matrix. Theretore,

o~ F N

M=-H N=H), P=H), Q=H (.5

where tensors H', H? etc. are given by (2.9).
3.2 Dense Solutions

We use the Mori—-Tanaka (1973) method to account
for the interaction among inclusions; they are assumed
to be embedded in an infinite non-electromechanically
coupled matrix and the RVE is subjected to the average
matrix strain and the average matrix electric field in the
composite rather than to the applied strain and the
applied electric field. Hence M, N, P and Q are given by

-~

MUA[ — HUPququ -+ H

’P‘!}'k !

ip

ot

T2
N ik — :ﬂmrN mnk T H, ijm th (3 6)
P ijk = H nmrM”"U’\ + H ,”.,.ijk,
Q =H ;,”;Mmy + H I Qnya
where
pi
Muk! - [Hykl o Hym(Hnm) Hml[] 4
Nﬂ\ - MU’””Hmﬁp(H A)_
fﬂ\ — #(Hrm) HmquPka? (3 7)

QU — (Hrnr) [ mj Hirqu’*ﬁ]

HUU — Akl _f(ffjkl UU) Hfﬂ\
= fH, M =8;—f(8;—

fHUkj

ij

3.3 Effective Electroelastic Properties

We now give closed-form expresstons for the effective

* electroelastic properties of a piezocomposite made of

elliptic cylindrical PZT inclusions and an isotropic
homogeneous viscoelastic matrix. The PZT inclusions
are assumed to be transversely isotropic about the x3-
axis which is also the axis of polarization. The nonzero
electroelastic moduli of the PZT inclusions are

/ /
C'llll — C2"2’” C3333‘5r C 1133 — C2233= C 1313 — C2323? C1122!

! / ! !

I212—(Cllll 1122)/2 €l3l = €332, €3]] = €322, €333;

ki) =k, ki;. (3.8)
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In order to simplify the problem, we assume that the
Poisson’s ratio. v, for the matrix is a real constant. Thus
the ratio of the shear and the bulk relaxation functions
must be a constant. In terms of the nondimensional
parameter

B = Pp = Cii22(1) _ Vv
Cnin(t) (1—v)’

(3.9)

the elastic and the dielectric moduli of the matrix are
given by

uu(’) = (1 + pee”“)podisdrs + (1
ki M) = (1 + o S,

— po)lijkils
po) k] (3.10)

where ¢, k, p. and p; are time-independent material
constants of the matrix, and 7, >0 and r;, > 0 are
respectively, reciprocals of the elastic and the dielectric
relaxation times of the matrix. The Laplace transforms
of Equations (3.10) give

~M E:EE’ + (l + ﬁ{')S]

sC7 [P0diidkr + (1 — podlimil,
" (5 + 7) j BRERT)
]EM K[Td + (l + px)S]
i S+ T %
d

Jiang and Batra (2001) have given closed form
expressions for the effective electroelastic modul of a
piezocomposite with po.=p,=0. By using the corre-
spondence principle, we obtain closed form expressions
for the transformed electroelastic moduli of the piezo-
composite being studied here. By taking their inverse
transform, the effective electroelastic moduli of the
piezocomposite are computed. The nonzero effective
moduli of the piezocomposite are '

Ciiits Con, Ci3zz, Crizz, Crisz, C2233, Ciaz, Coas,
Ci212, €311, €322, €333, €131, €232, K11, k2o and ki3
(3.12)

with the following symmetry relations among them

Cimt = Cime = Criijy  €jjik = Cikj- (3.13)
Thus the piezocomposite is orthotropic.

The relaxation times of the piezocomposite are related
to a; and b;; expressions for a; and b, are given in the
Appendix. The subscript L in ay, by and w; equals A for
Ci313, €131 and kyp; 1t equals B for Cr123, €21 and k. it
equals C for the remaining moduli except for ()32, and
it equals D for Ci21». Note that a; and b, arc not
components of a vector and in the expressions given
below for the effective piezoelectric modub there s

no summation implied on the repeated indices i, Jj, k, /
and L.
If b, > 0,

Ciki = _ Cu Wit — Piitt | _ar
1 C”;\!‘l’C”AIE’ ‘rf.f /] i I] e (a;. \/E)f

¢ 2\/— l (GL - '\/E)
| Wik — Pt | —(a+vFox
(GL+VbL)
(3.14)
'I
ik | Wik — Piik | _a,—vEix
ik = i + 2./bL l:(“L — «/b_[)}
Wik — Pik | ~ar+Fo)
(HL + +/b1)
(3.15)
.2
ki = kU kl ~tal kff__ Wi~ ) e~ (@b
o 2«/5—1, (a — +/bL)
qu_':_d)f! C_,—(m_+m)f -
(CIL +- VbL)
(3.16)
]f bL — 0,
C,“ - ey (] -+ aLr)(bf'kf —ay
; _C”A](? e +CU;‘,[r\pﬁk!—-ﬂT J ]E’ _f,
(3.17)
_ _ _ l —Fa DD —q
ik = € i +f—’:!jk["1’ﬁk ( —H;) -"-’-‘-}6’ “, (3.18)
__g_ — ,EO + E!‘e—r,,;r 4 ]'{'2 _{_q_f’_y o (] ‘1‘ aLt)q)-ff el
p i T if Wy
(3.19)
If b, <0,
érU = T C:H .
; Cgu*'cgué’ ra" \/_i L [WW SIH(I\/—bL)

(I)UH . ._]‘\[—bL —apt
msm (t\/ b; +tan O )]e ,  (3.20)

_0
H’\ — £u!\ +

JEA ™ I\D,_,& sin (t\/—bL)

D . av=bi\] -a
- “_15111 (I\/ b; +tan - )]E’ Lt (3.21)

I _ () :l —T,ff -
— =k + ke \/_ L{lll,jsm(t\/ bL)
| (I) ‘\/_bL -1 I
— — — at 22
/—H,len( \/ bL+tan o )]e (3.22)
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For Cyy3,bp # 7,. If bp = Ig,go% defined by Equation
(A6), in the Appendix will be zero which i1s impossible
because po, m; and m, are positive and 0<f<I.
Therefore,

Ciay 1 ps Te Pe Te iy
=—(1 — 1 42 11 te
C 2( Po)[ i prb,o_l_p'[ +wa(bD“Te)]€
f 2p5 TE—bD‘f"PC 1+ p(‘bD e_bﬂ;
wp | bD bD_'Te

(3.23)

Parameters appearing in Equation (3.14)-(3.23) are
defined in the Appendix.

For the 1-3 piezocomposite being studied, the relaxa-
tion of the dielectric moduli of the matrix influences
values of kg, 61313, 63323, E|3[ and é232. HOW@VGI‘, the
relaxation of the elastic moduli of the matrix affects
values of all nonzero components of C, e and k.

When p, = p, = 0, it 1s seen from Equations (3.14)-
(3.23) and those given in the Appendix that the effective
electroelastic moduli of the piezocomposite reduce to
those obtained earlier by Jiang and Batra (2001) for a
composite made of an elastic matrix and PZT inclusions.
Also, if /=0 or 1, the effective electroelastic moduli of
the piezocomposite equal those of the viscoelastic matrix
or the PZT respectively. As f — 1,a4 + vb4and ag +
Vbg — ta/(1 + p), and a4 —+/byand ap ~ bp —
t./(1 + p.) and ac — t./(1 + p.). Thus with an increase
in the volume fraction of the PZT inclusions, the etfect

of the material properties and the shapes of the PZT

inclusions on the effective relaxation times of the
piezocomposite decreases. When a; — 0o, we have
m — 1 and my — oo. In this case, ag+ /b — 14/
(14+p.) and ap—+/bp— 1./(1+p;). Although
Poisson’s ratio of the viscoelastic matrix has been
taken to be a constant, that of the piezocomposite 1s a
function of time, ¢.

It is clear from expressions (3.14)—(3.23) and Equation
(A1) of the Appendix that the relaxation time of the
piezocomposite is determined by a; and b;. Values of a;
and b; are related to the material properties of the
matrix and the PZT inclusions, and also to the volume
fraction and the shapes of the inclusions. Different
components of the effective moduli of the piezocompo-
site have different relaxation times. Even for the case of
0. = p. and t; =1,, different effective electroelastic
moduli do not relax at the same rate.

4 COMPARISON OF RESULTS WITH
EXPERIMENTAL FINDINGS AND
PREDICTIONS FROM OTHER MODELS

We are not aware of any experimental data for the
1-3 piezocomposite with a viscoclastic matrix  and

19 1 C,,(10GPa)
2 G, (10GPa)
10 3 ey (C/m)
4 ey (C/m)
8 5 kyA25kg

Moduli of the piezocomposite

0 0.25 0.5 0.75 1
Volume fraction of the PZT

Figure 1. Comparison of computed electroelastic moduli with the
experimental values of Chan and Unsworth. Solid curves are
the computed values and symbols denote those observed in
experiments. |

cylindrical PZT inclusions with their axes aligned
along the x;-axis. Therefore, we first compare computed
values of some of the effective moduli of an 1-3
niezocomposite whose matrix is elastic with test values
of Chan and Unsworth (1989). Subsequently, wce
compare results for a composite comprised ol
viscoelastic matrix and elastic elliptic cylindrical inclu-
sions with those of Li and Weng (1994).

Figure 1 depicts the presently computed values of
the effective electroelastic moduli Ci133, Ciiiz, 0311,
ey33 and k33 for the 1-3 piezocomposite made of
PZT7A cylindrical wires embedded along the x3-axis
in an isotropic elastic Araldite D matnx; the
material properties are given in Chan and Unsworth’s
(1989) paper. The PZT7A is modeled as transversely
isotropic with the axis of polarization along the X3-axis,
and viscous effects in the matrix are eliminated by
setting p. = p. =0. The solid curves denote the
computed values and the symbols test values; 1t 1s
clear that the two sets of results agree well with each

other.
Li and Weng (1994) have found the effective moduh

of a composite made of glass fibers or ribbons
embedded in an ED-6 resin. The glass fiber i1s modeled
as an isotropic elastic matrix with Cy; = 77.23GPa
and C 122 = 20.53 GPa. The creep properties of an ED-6
resin tested at 20° and axial stresses of 63.97 and
14.80 MPa are given by Skudra and Auzukalns (1970).
Li and Weng (1994) used a 4-parameter rheological
model comprised of Maxwell and Voigt elements
connected in series to simulate the test data. Here, we
evaluate the three parameters ¢, p. and 7, appearing 1n
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529 MPa

0.012 441MPa

0.011 Present

— e —  Experiment

0.01}

337MPa

0.009 | oomomuman e

0.008 3 200 800 1200

Time (Hours)

Figure 2. Comparison between the experimental and the computed
creep curves for three uniaxial creep tests performed on a

viscoelastic matrix containing glass fibers aligned in the loading
clirection.

Fquation (3.10), from the test values at time r=0, 500
and 2000 h with the following result:

¢c=1.71GPa, p.=25. 1.=5.04x10"/h.

Poisson’s ratio of the ED-6 resin is taken to be 0.38.
Figure 2 compares the computed time history of £33 with
the experimental one of Skudra and Auzukalns (1970)
for 54% fiber content and three creep tests conducted at
axial stress levels of 337, 441 and 529 MPa. Whereas
computed curves match well with the experimental ones
for large values of time, they differ for short times. The
viscoelastic relation (3.10); with one relaxation time
does not capture well the creep of the material at short
times. However, the viscoelastic material model with
two relaxation times used by Li and Weng (1994)
captured well this effect. We could not use more terms 1n
Equation (3.10), because of the increased complexity of
the resulting algebraic work.

In Figures 3(a) and 3(b), we compare the presently
computed time histories of the comphiance coeflicients
M3 and M1y, for the composite with 20% volume
fraction of the elastic fibers and the composite loaded
axially in the xj-direction with those of L1 and Weng
(1994). Here M = C~!, and R = a»/a, equals the aspect
ratio of the fibers; R=1 corresponds to circular
cylindrical fibers and R=0 to long thin fibers. L1 and
Weng noted that the compliance cocllicient Mgy is
independent of the aspect ratio of the inclusions. Owr
results for Ms333 show a very slight dependence on the
aspect ratio and are close to those of Liund Wenp. The

e
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Fiqure 3. For different values of the aSpect ratio, R, of the 20%
elastic fibers embedded along the xs-axis in a viscoelastic matrix,
comparison between the presently computed time histories of the

compliance coefficients (a) Mazaz and (b) Mao22 and those computed
by Li and Weng.

time histories of M>», for four different values of R,
depicted in Figure 3(b), agree qualitatively with but
differ quantitatively from those of Li and Weng. The
difference between the two sets of results 1s least for
R=1 and most for R=0. For R# 1, these differences
are mainly due to the assumption of randomly
distributed inclusions in Li and Weng’s work and
likewise oriented inclusions in the present work, and,
to a lesser extent, the slightly different viscoelastic
relations for the polymeric matrix. For R=0 and I,
the effective moduli of the composite differ because of
the different constitutive relations employed for the
matrix.
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5 RELAXATION BEHAVIOR OF THE
PIEZOCOMPOSITE WITH CYLINDRICAL
PZT INCLUSIONS

We study the effect of varying values of p,, p., T, and
the volume fraction, f, of the PZT inclusions on the
relaxation behavior of 63333, 5333, e) = 53_;5 and k33 for
the piezocomposite made of the viscoelastic matrix and
circular cylindrical (i.e., R=1) PZT inclusions aligned
along the xs-axis. Results presented in Section 3 show
that the relaxation of the dielectric constants of the
matrix affects only values of k; and the shear
components of Cyy (i.e., components for which i #
and k # j)and é;; (i.e., components for which j # k).
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C'3131, Oy and o, and of ., 5y, 1 sl fe \
For a prezocompanite with nondielocirnally. peasiy
viscochiastic  matnia,

seven combinations of values of g, 1, and [ whik
listed in Figure 4(a). Also piven theremn are the vahues of
the resulting relaxation time of the prezocompuosile
obtained by fitting expressions  of  the  type
Ciyizz = ¢ (1 + pee’)y to the values of Cy it thmes
t =0,1, and 200 h. The relaxation tmes ol the nutnix
used in these calculations are considerably smaller than
that of the ED-6 resin. It is clear that the addition of the
hard PZT inclusions increases the value of Cij3; but
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Figure 4. For seven different combinations of the values of pc. 1o and f time histories of the effective moduli (a) Caaas, (b) eazs, (¢) e, and (d) K3
for a piezocomposite comprised of cylindrical PZT inclusions in a nondielectrically relaxing viscoelastic matrix.

Figutes  4ia) () ealilet G
histories of the evolution of iy, £, iﬂﬂiﬁ Lo




N B. JIANG AND R.C. BATRA

does not chanee mnch the effeetive relaxation time of
the piczocomposite 1 or cach one ot the six cases studied
m  which the matiiy s viscoclastic, the  effective
relaxation time ol the prezocomposite 1s essentially the
same as that ol the matnx. When either p. =2 or
£ =0.2, the value of ¢ mereases mitially, albeit by a
very small amount, and then relaxes gradually to ats
equilibrium value. The difference between the maximum
and the minimum valuecs of ¢33 1s less than 0.3% so that
for all practical purposes, ¢z can be regarded as a
constant. Whercas values of iy approach their
equilibrium values from above as the time 7 approaches
infinity, those of ¢, approach their equilibrium values
from below. The largest difference in the maximum and
the minimum values of ¢; is about 10% signifying that
the difference in the initial and the equilibrium values of
(¢311 + €322) is more than that in the corresponding
values of ¢333. Like e33z, values of ki3 approach therr
equilibrium values from below, but the total change in
the initial and the equilibrium values of k13 1s only about
0.2%. We note that the effective piezoelectric moduli
and the dielectric constants of the piezocomposite are
strongly influenced by the viscoelastic moduh of the
matrix. Also, viscoelasticity of the matrix increases
the initial values (i.e., at time 1 = 0) of ¢333, but decreases
the 1nitial values of kas.

Figure 5 exhibits the time history of the evolution of
the dielectric constant k33 when the matrix 1s elastic but
dielectrically relaxing. In this case, the creep behavior of
k13 is similar to that of (3333 discussed above for a

k}j/ K

445 |-

44

Curve# Px Td(lhr) f Td(1/hr)

OO0
by B ey N Ty ey By
By

Time (Hours)

Figure 5. For seven different combinations of the values of p,, 14
and f, time history of the effective dielectric relaxation modulus .. for
a piezocomposite made of cylindrical PZT inclusions and a
dielectrically relaxing elastic matrix.

viscoelastic matrix with nonrelaxing dielectric constants.
An increase in the volume fraction of the PZT inclusions
enhances the value of the effective k33. For each one of
the six cases studied, the relaxation time of the dieiectric
constant of the piezocomposite is the same as that of the
dielectric constant of the elastic matrix.

We have plotted in Figure 6 the time history of the
evolution of ki:for seven different combinations of the
values of p., pr, T, and 7,. Except for the case of a
viscoelastic matrix with nonrelaxing dielectric constant,
the values of k33 monotonically decrease {rom their
initial values and approach their equilibrium values 1n
about 6h. The relaxation time of the effective value of
k1: is essentially unchanged for the other six cases
studied herein.

5.1  Effect of the Shape of the PZT Inclusions on the
Relaxation Behavior of the Piezocomposite

Figures 7(a)—(d) evince the effect of the aspect ratio,
R, of the cross section of the elliptic cylindrical PZT
inclusions on the relaxation behavior of Ci333, eas3, ¢
and ki3 respectively for f=0.1, p.=p, and
1, = t; = 1/h.The PZT cylinders are circular for R=1
and thin ribbons for R=0; values for R=0 are
calculated by taking R=1.0 x 107'°. For R=1, 0.1,
0.01 and 0, the reciprocals of the effective relaxation
times of the piezocomposite computed from the relaxa-
tion behavior of (3333 equal 0.995, 0.988, 0.989 and
0.997 (1/h) respectively, and those obtained from the

ki /K
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“H 1.0 1.000
;.g 0.974
. 1.00]
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23 1.2 1.207
22.9
22.8
22.7
22.6
22.5
0 2 4 6 8 10

Time (Hours)

Figure 6. For seven different combinations of the values of
Ne. Pe, Te @and 1q, time history of the effective dielectric relaxation
modulus ks for a piezocomposite made of cylindrical PZT inclusions
and a viscoelastic matrix.
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Figure 7. For four different values of the aspect ratio, R, of the elliptic cylindrical PZT inclusions embedded in a viscoelastic matrix, time histories

of (a) C3333: (b) é333! (C) éh and (d) k33

relaxation curves of E33 are 1.001, 1.010, 1.011 and 1.000
(1/h) respectively. For each one of the four shapes of the
PZT inclusions, Ci333 and ki3 approach their equili-
brium values from above but ¢; from below. For R=1,
the relaxation behavior of €333 is similar to that of Cs3s3
in the sense that its values gradually decrease to its
equilibrium value. However, for R=0, 0.01 and 0.1,
values of é333 gradually rise to the corresponding
equilibrium values. Note that thin ribbons provide the
most reinforcing effect in the sense that, at any time 1/,
the effective value of Cs333 is the greatest out of the four
values computed with R=0, 0.01, 0.1 and 1.0. Also, the
initial and the final values of ¢, and ¢333 arc more
noticeably influenced by the aspcct ratio, R, of the PZT
inclusions than the initial and the equilibrium vilues of

Cs333 and 1\:,33. For any fixed value of time ¢, values
of 333, e, and k33 increase with an increase in the
value of R but those of Ci333 decrease. Thus thin PZT
ribbons provide the most mechanical strength but the
least piezoelectric effect in the piezocomposite. In

Figures 8(a) and (b) we have plotted the variation of

the relaxation times of Ciy33 and k33 with the volume
fraction of the PZT inclusions. For results included 1n
Figures 8(a) and (b), we have set p. =1, p. =0,
t. = 1(1/h). It is evident that the aspect ratio of the

cross section of the inclusions significantly affects the

relaxation time of k3; but has less noticeable effect on

the relaxation time of (3'3__3,33. Whereas the reciprocal of

the relaxation time of Ci333 monotonically decreases
with an increase in the volume fraction of the PZT
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Figure 8. For four different values of the aspect ratio, R, of the
elliptic cylindrical PZT inclusions embedded in a viscoelastic matrix,
the dependence of the relaxation times of the effective moduli upon
the volume fraction of the PZT inclusions (a) Ciiy and (b) k3a.

inclusions, such is the case for k33 only for R = 1.0 and
0.1. For thin PZT ribbons, t; has a maximum value at
/>~ 0.66. For p. =0, p, = 1, 14 = 1, the relaxation time
of the effective ki3 is independent of the volume fraction
and the aspect ratio of the cylindrical PZT inclusions.

5.2 Complex Effective Moduli of the Piezocomposite

We assume that boundary conditions prescribed on
the boundary of the representative volume element are
such as to produce the following homogeneous time
harmonic strain and electric fields within the RVE:

0 : O/n ax Joy
el) = ef™e’™!,  EJ(f) = E] e, (5.1)

where J = +/—1, &7 and E are the amplitudes of
the strain and the electrlc ﬁeld respectively, and w, and

wp: arc the corresponding frequencies. We replace the
effective moduli in Equation (3.1) by their complex
values signified by a superscript * and denote their real
and imaginary parts by a prime and a double prime
respectively. For example,

;'H — C.';H + JCuM (52)

Note that C*, C' and C” may depend upon the frequency
of the applied fields; C' and C” are often referred to as
the storage and the loss moduli respectively.

For the 1-3 piezocomposite being studied here,
expressions for the storage and the loss moduli are
given below wherein indices i, j, k etc. and L are not
summed.

f ] 2fp5‘r, 1
1212 _ "1 _ | 4 5 f] (] — z
2( Po){ — + 2( Po)w;
fPcTe Pe f
<11+ 2 L 77 2
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| l PcTe J PeTe
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— 5 ~ ps
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E B waEk;I; . wEl:;‘;
ko tptop (w4 wh) +4b ok
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From Equations (5.3)(5.6), one can see that if the
frequency w, =0 (r = ¢ or E), no matter b; > 0, =0 or
< 0, we obtain

yk!/c — C{;M‘J UM/C —
= =) '-H’ _
Ciik = € ks €k =0,
0 -
Ko=)/ = (5.7)

That 1s, in the absence of time harmonic strain and
electrictields, the imaginary electroelastic moduli vanish.
However, if w, > 00 (r =¢, or £F) when b; > 0 or = (.
we have

i

/ 77
k. _ 50 A Dkt = 2 Ciikr _ 0
— “ijkl ikl ijki* — Y

C Wpr C
~/ 20 ¢Uk 5! o' — 0,
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i Wiy K

and when b; <0
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e
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dielectrically nonrelaxing viscoelastic matrix.

Thus the loss electroelastic moduli of the piezo-
composite tend to zero and the storage electroelastic
moduli approach constants as the frequency of the
applied loads goes to either zero or infinity. However,
the two limiting values of the storage electroelastic
moduli are different.

The dependence upon the frequency w of the effective
storage moduli Cj.4,, €535, €, and k5, for the piezo-
composite with a dielectrically nonrelaxing viscoelastic
matrix 1s displayed in Figures 9(a)—(d) respectively;
values of p., . and f for different curves are given
in Figure 9(a). Whereas €, 1s nearly independent of the
frequency, and ¢3;; and kj; vary slightly with the
frequency in the range 107* < w < 104, Cj3;; exhibits

1.965
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Figure 9. Dependence upon the frequency w of the effective storage moduli (a) Ciizaar (D) €34, (C) €}, @nd (d) ki, for the piezocomposite with a
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Figure 10. Variation with the frequency w of the effective loss moauli (a) C_ng, (b) €3a,,
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(c) & and (d) ki, for the piezocomposite with a

dielectrically nonrelaxing viscoelastic matrix. See Figure 9(a) for the identifications of different curves.

noticeable dependence upon the frequency in the range
of 107°-10°Hz. In general, with an increase in the
frequency of the applied loading, values of k3; decrease
but those of (3,5, increase. The difference in the values
of Ci;;; at high and low frequencies can be as high
as 50%, that in the values of e};; and k35 1s < 0.5%.
Figures 10(a)-(d) show the vanation of the loss modul

11335 €333, €, and k%, with the frequency w of the applied
load. A change in the values of 7, shifts the frequency
at which the maximum value of Cj;;; occurs but
does not alter its maximum value which 1s proportional
to p.. Comparing curves 5 and 6, we see that its
maximum value and the range of frequencies for which
the loss modulus is positive do not depend upon

the volume fraction of the PZT inclusions; however,

values of f strongly influence the storage moduli C3333,
and €3,,. The maximum values of €333, €, and k3, are
negligible as compared to those of €33, €, and k3,
respectively. i
Figures 11(a) and (b) exhibit the dependence of k3,
and kj, upon the frequency w for the piezocomposite
with a dielectrically relaxing elastic matrix; values of o,
t, and f for different curves are given in Figure 11(a).
Whereas the storage modulus k3, is essentially indepen-
dent of w, the loss modulus k%, strongly depends
upon o and this dependence is similar to that of C3535.
The doubling of the volume fraction of the PZT
inclusions doubles the storage modulus k3, but decreases
slightly the loss modulus &%,. In Figures 12(a) and (b),

we have plotted the dependence of the storage, kjs,
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and the loss, k%,, moduli upon the frequency, w, for
different values of p., p«, 7. and 14 listed 1n Figure 11(a).
The maximum increase in the value of k3, 1s about 5%
and its values increase monotonically from those at low
frequencies to the ones at high frequencies. Values of the
loss modulus vanish at very low and at very high
frequencies and the frequency at which its peak value
occurs depends upon the values of 7,. An Increase
(decrease) in the value of t; increases (decreases) this
frequency.
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Figures 13(a)-(d) and 14(a)—(d) exhibit respectively
how the dependence of the effective storage and the
effective loss moduli upon the frequency vary with the
aspect ratio R = a,/a; of the cross section of the elliptic
cylindrical PZT inclusions. The aspect ratio of the cross
section of the PZT inclusions does not influence much
the variation with the frequency of the storage and the
loss moduli Cy33, €333. ki3, Chazy» and kf3;. However,
values of &), ¢/ and ¢3;; do depend noticeably upon the

aspect ratio R.

b) ki
0.9

0.3

Figure 11. Dependence upon the frequency w of (a) the effective storage modulus fr;;,a, and (b) the loss modulus Ega for the piezocomposite with

a dielectrically relaxing elastic matrix.
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Figure 12. For different values of pc, p., Te and tq, the dependence upon the frequency o of (a) the effective storage modulus ki, and (b) the

loss modulus ki, for the piezocomposite with a viscoelastic matrix.
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Figure 13. For four different values of the aspect ratio of the cross section of the cylindrical PZT inclusions, the dependence upon the frequency
w of the effective storage moduli (@) Claa,, (D) €345, (¢) €}, and (d) k3, of the piezocomposite with a viscoelastic matrix.

6 CONCLUSIONS

We have derived closed form expressions for the

effective moduli of a piezocomposite comprised of
elliptic cylindrical PZT inclusions aligned parallel to
each other and embedded in a dielectrically relaxing
viscoelastic matrix. The interaction among inclusions is
accounted for by using the Mori-Tanaka method. The
correspondence principle of linear viscoelasticity 1S
employed to deduce expressions for the constraint
strain tensor and the constraint electric field 1in the
PZT inclusions from those for the gcometrically
identical piezocomposite but the viscoclastic matrix

replaced by an elastic matrix. All of the viscoelastic
moduli are assumed to have the same relaxation time
which may be different from that of the dielectric
constants. |
It is found that relaxation times of different effective
moduli of the piezocomposite are not the same. The
relaxation of the dielectric constants of the matrix atfects
only the effective dielectric constants and the shear
components of the effective piezoelectric and the visco-
elastic components of the piezocomposite. The relaxa-
tion of the viscoelastic moduli of the matrix influences all
of the effective moduli of the piezocomposite. The
effective loss moduli of the piezocomposite vanish for
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Figure 14. For four different values of the aspect ratio of the cross section of the cylindrical PZT inclusions, the dependence upon the frequency

w of the effective loss moduli (a) Clyas, () €34, (C) €} and (d) k3, of the piezocomposite with a viscoelastic matrix.

very low and very high frequencies, and the frequency at
which they have peak values varies with the relaxation
times of the moduli of the dielectrically relaxing
viscoelastic matrix, and the ratio of the instantaneous
to the equilibrium values of the moduli of the matrix.
For steady loading of the piezocomposite, the
effective viscoelastic moduli of the piezocomposite
have the largest value for ribbon like PZT inclusions
and the smallest value for circular cylindrical PZT
inclusions. The aspect ratio of the elliptic cross section
of the PZT inclusions affects significantly the effective
value of the e, = e3; but does not alter much the value
of @117 where ¢33 is the effective piezoelectric moduli of
the piezocomposite along the axis of the PZT inclusions.

Whereas the volume fraction of the PZT inclusions
significantly affects the relaxation times of the effective
moduli Ci3zz and ki3, the aspect ratio of the cross
section of the PZT inclusions has a noticeable eftect on
the relaxation time of k33 but not that much effect on the
relaxation time of Ci313.
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APPENDIX
A Determination of Parameters in Equations (32)—41)

In order to simplify equations, we introduce following
dimensionless parameters:

Cly — ¢
P —m: D2 =

i
- Cli33 — Poc

Cliz — Poc , =
(I —po)c

(1= po)c

Cia13 _‘%(1 — Po)C B Ciyiz —3(1 = po)e

— o 5 = p;
P (1 — po)c 7 (1= po)c
Cl... — ¢
Pe = 3333 ’
(1 — po)c
k{l - K kg::, I K'
g1 =— {2 = « ’ qi — — p ’
pyo= (3{31)2 oy = (E’gn)z _
(I — po)kc (1 — po)xc
2
Fy = (€333) = 6’511_%3_3
(1 — po)kc (1 — po)kc

PTz — %(pl +p2)a pl_Q — %(Pl _pZ)a

a a|
M) — R My = R
a +a; a + a;

where 2a, and 2a; are principal axes along x; and x;
directions, repectively, of the elliptic cross section of the
cylinder.

A.1 RELAXATION TIMES OF THE
PIEZOCOMPOSITE

The relaxation times of the piezocomposite are related
to a; and b; (L = A, B, C, D) whose expressions are
given below.

ba=(a4) —wy,
,
bp = (ag)” — wp,
|
YD

2
bC — (CIC) — W, b[) — T,
wp

(AT)

where

de d
Wg = X4 4Tdles WB = XBETH'IE:

2 4 3
. at et de 94
XA - 3 XA - ) ’ XA — ’
4 0 4 W 4
2 4 3 4 l
d QOB—I_Q_@_ e __ ¢B+¢B de ©p
B — 2 XB — p - ’
LB'B w—B R
1 3 ]
e _Yc—YC ee __ PcC AD
XC e ’ XC m_cﬁ ( )

o, =1+ 1 —fIm{2ps+qi +2(1 — f)(r1 + pag)m},
o = p{1 = (1 —f )m[l —2ps + 2(1 = f Ypam]},
o = pl = (1 =f)ym[l —qi + (1 —f)gim])),

oy = pepcfl = (1= )m[2 = (1 = fImyl},
4

ws=) ¢ (A3)
=1

o =1+ (1 —fIm{2ps + q1 + 2(1 = f )(r1 + pagi)m2},
05 = p{l — (1 = f Ima[1 = 2ps + 2(1 — f )pam]},
03 = pll — (1 = f)mll — g1 + (1 = f )gqimal},

0p = Pepcll — (1 = fIma[2 — (1 = f )m1]},

4
wp =) ¢, (Ad)

i=1
pc =1+ 1 =N = po)pi
+ 2mymopi[1 4 po + (1 — )1 = po)(3 — po)pil)
v = pcf2 + (1 =1 = po)pr — 1]
+ (1 = Imima[(1 + po)(p1 —p2 = 1),
~ (1 =73 — poXp1 — pop2)l};
ve = (p)*{f — (1 =f )1 + poymim
x (1=3(1=/)3 = Ppo))},

3 |
i—1
op = 14+2(1 — f )1 — (1 + po)mmy]ps,
o5 = pAl — (1 =1 — (1 + po)mym;]},

2 .
@p =Y ¢p. (A6)

m=|
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A.2 PARAMETERS RELATED TO EFFECTIVE
ELECTROELASTIC MODULI OF THE
PIEZOCOMPOSITE

The parameters related to effective electroelastic
moduli of the piezocomposite are

6?1“ = ] ‘l"ézl”[] +p{(] _elll])'*"q)llll/l"p(_']a
C]ll” -—p{(l ‘|‘C|”[ﬁllll)

é%lll = (I - PO)‘“‘_Z s

HT—

ngp = 1 + C%zzz[l + p((l — 9"222) + (D2222/w ]
Ciom = pel(1 4+ Coppy%20m),
f : Nt
Po) ow; 2222
62333 = 1+f(1 = po)pe + C_%333[(]
+ P3333/wc],

C_"‘i‘%*n =pll —f

6'22222 = (1

— po)P3 — PoPc(1 — 63333)

— Poé%333192333]

Ciygy = —f(1 =/ )] —-po)—-—-z Cias,

fﬂ—'

Cll'?2 =po+ anz[l +ﬁf-(1 "QIIZE)‘I' ¢Il22/""(‘]a
Cl 122 — oc(po + C1 ;22191 122)

Cli33 = po+ Ci 33l +P¢-(1 — 01133) + P33/,

Cms = pe(po + C13301133);
3

f y |
C? .. = (] — pg)-— C" 14,
133 = ( PU)WC 1 1133

=

i3z = o+ Crypal1 + po(1 — 02233) + P33/,

C2213 — pc(PO + C§233192231) C2233 — (] ‘“PO)_Z C§§33,

H'.r'._

Clapz =451 = po) + Ch 51 + pe(1 — 61313) + Pi313/wa,
Clm *—Pf[ (I =

I3H = (1 — PO)—Z C’,”3,3,

F’H

Chip3 = (1 = po) + CZ5[1 + pe(1 = 02323) + D323/ W),

65;13 — p([l(l _ pU) + 63323192323]’

Cly = (1 —po)—z Chinns

HI

(AT)

!
e
(}?1] = C t3|(l + d)l}l/n’A)a €|31 —f(l + ph")(] + P() E;:: ’
!
C
6(2]12 = ‘212(] + D32/ wp), ‘5’2‘;2 = f(1 4 p X1 4+ pc) HBI )
H 3
—_ - € i
C =1
. ~ | fes 1 :
"gzz = 37(1 + Pa2/w¢), €39 = L;l Zf’gfzzs
C =l
2333 = fei33 + &333(1 + P333/we),
3
~ (’ pail
e;ll. = —f(1 —f )1 — po) 22 29333a (A8)
m=1
A:?, = | +l€2 [1+ o1 =611) + ‘bll/”’A]
f n
I‘:lsz(]’*‘]\llﬁll) k%l:__ Zk“’
koz =1+ 43 5l + o(1 — 622) + P2/ wp],
f x> (A9)
px(l + ,\221922) k".lz — / kg?z,
WB”,;
k931 + fq3 + k3;(1 + ®33/we), _
2
(L =fpe, Ky=f(1-1)1 “Po)—gzk%-
ni=|
For ijkli=1111, 2222, 1122, 1133, 2233, we have
Hf\f — [(1 + p()(A”A{ X{é) + pl’(ﬁfﬂ\f o ])]1"1':‘3r
q’fjkf — [ g;kf — XC + Pf‘X((’jEj(ﬁaffki = 1)](1}*)23
A, — AYS
Dy = —t I (A10)
Xc — Xc
Moreover

W3333 = {[(1 — po)p3 — PoP)(AS333 — X&) — Popc(93333 — 1)} o
D1333 = [(] —Po)P%(A33‘;3 C) "'POP{-X?(%M:% — l)}(rc)z

1333 = 33::,3 1\,{,3,333- (All)
Xc— Xc
For ijki=1313 and 2323.
Wi = (1 + | O, = M) + (X — Afj)Ta)
+ p(‘ri’(ﬁﬁk! — ])
‘bgkl = [AUH X{f + D¢ Xf(ﬁﬁkl — l)] TiTes
! (1= x§ — x}’f’)m — X5 Te |
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where L= A for ijkl=1313 and B for ijjki=2323. For
ijk=311, 322 and 333, we have

Wik = (Af — XO)Ter Py = (Aff — xENT)',  (AI3)
and for jjk =131 and 232
— d P e Pc
‘p!ﬂ\ — [XL 1 + px}rd + [XL 1 + pc] Te,
! d
b = — x5 T, T4, Al4
* [(1+pc)(1+px) XL] “’ A

where L = A4 for ijk =131 and B for ijk =232. Forij=11
and 22

Wy =1+ p| (G — ATe + (6 — Af)ea| + peray — 1,

b = [Ad€ X%+ pe xS (ﬁy )]Tefd:
[1— (A% + A“'E)]Te
11— (x +x )}z, — erd

0 = (A15)

where L = A for ij=11 and B for ij =22. Expresstons for
Vi3 and P33 are

®3; = (As3 — x%)(t.)’. (A16)

W33 = (A3 — X¢)Te,

In Equations (A10)-(A16), non-zero components of
A‘?“ andA!k,, for jki=1111, 2222, 3333, 1122, 1133,
and 2233 are

CUA! CUH

UU o ~-m
Zm_ ijkl

=]
Cg;‘kz

23 “m
m=1 " ijki

AE‘iz — (A17)

The components of Ayk,, s and Ajji, for ijki=1313

and 2323 have the forms

"H'2 L
Ad . C{fk! + C;}kl ¢ CUH + CUU
ki 4 ~m Uﬁk{ mo
Zm-—l ijki y‘m-— Cr;H ( Al 8)
UM C
Z =1 UM

The non-zero components of Ay and A7 lor ijk =311,
322, 333, are given by |

> 1 =3 e
€., —¢€ .

[jk ijk (A
e ] lj ee / i (A]9)

ijk 3 ? ik 3 -t
Z:;»;,v;—]e',y;1 Zm ¢ uA

and
Al = ki + ki, e kY, + ki) Ade — ki)
4 UH? ? 24 ’ 4 UH?
Zm:lkll Z kll er.':lkll
Ad. — k3, + k4 e k32 + k3 Ade _ k3,
22 = > 22 T 4 F 2= S o
Zm_ Zm: Zmzl 22
k_%s
Az = s (A20)
Zmzlk%
Furthermore

Clin =p1 +2(1 = ma2(1 = po) + (1 + poymiIpiap)

le =1 i {(1 —po)pr — 1 = (1 =/ )m22(1 — pyy)
—pPo
+ (1 + po)m](p1 — pop2))
>
Cli = I(T)po {1 —2(1 =)+ po)nm]2(] = po)

+(1 + poym ]

6‘%222 = p1 +2(1 —f )m[2(1 — po) + (] +P0)”3'2]l’_|*j P>

pFP {(1 —po)pr — 1 — (1 —f ) {2() — po)

+ (1 + po)m2](p)

(0c)°
I — po

C%zzz — 1
— pop2)}
{1 —3(1 =1 )1+ po)mi[2(1 — po)
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Pc
I —po
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(35222 =
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1 —po
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2
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3 pO(pr')z
| — Po

Ciy;a=pa+ 0 —f)m(r1 + paqy),

Chais = Papie(my + fim)

Ciys = —1pl1 + (1 = f)maql,

Clys = — L pepclmy + finy)

pa + (1 = f )ma(r) + paqy),

C2i03 = papc(my + finna)
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|
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