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Abstract 

Toupin's version of the Saint-Venant principle in linear elasticity is generalized to the case of linear elasticity 
with mierostructure. That is, it is shown that, for a straight prismatic bar made of an isotropic linear elastic 
material with rnicrostructure and loaded by a self-equilibrated force system at one end only, the strain energy 
stored in the portion of the bar which is beyond a distance s from the loaded end decreases exponentially 
with the distance s. 

Introduction 

Mathematical versions of Saint-Venant's principle in linear elasticity due to Sternberg, 
Knowles, Zanaboni, Robinson and Toupin have been discussed by Gurtin [1] in his 
monograph. In this paper we prove an analogue of Toupin's version of the Saint-Ve- 
nant principle for linear elastic materials with microstructure. For a linear elastic 
homogeneous prismatic body of arbitrary length and cross-section loaded on one end 
only by an arbitrary system of self-equilibrated forces, Toupin [2] showed that the 
elastic energy U(s) stored in that part of the body which is beyond a distance s from 
the loaded end satisfies the inequality 

U(s) ~ U(0) e x p ( -  (s -£)/sc(£)).  (1) 

The characteristic decay length sc(£ ) depends upon the maximum and the minimum 
elastic moduli of the material and the smallest nonzero characteristic frequency of free 
vibration of a slice of the cylinder of length £. By using an estimate due to Ericksen 
([7], p. 88) for the norm of the stress tensor in terms of the strain-energy density, one 
can show that sc(£) depends on the maximum elastic modulus and not one the 
minimum elastic modulus. 

Inequalities similar to (1) have been obtained by Berglund [3] for linear elastic 
micropolar prismatic bodies and by Batra [4,5] for non-polar and micropolar linear 
elastic helical bodies. Herein we prove a similar result for a straight prismatic body 
made of a linear elastic material with microstructure. These materials were first studied 
by Mindlin [6]. In them a deformable unit cell is assumed to be attached to each point 
of the body. The deformation of this unit cell is independent of the deformation of 
material points of the body. The unit cell may be interpreted as a molecule of a 
polymer, a crystallite of a polycrystal or a grain of a granular material. Micropolar 
elastic materials are a special class of these materials for which the unit cell is taken to 
be rigid. 
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We assume that the cross-sections are materially uniform in the sense that one- 
cross-section can be obtained from the other by a rigid body motion. Thus the material 
properties are independent of the axial coordinate of the point. Ericksen [7] has 
discussed material uniformity in more general terms. We use equilibrium equations in 
the form of Euler-Lagrange equations derived by extremising a functional. The char- 
acteristic decay length is found to depend upon the maximum elastic modulus and the 
characteristic frequency of free vibration of a slice of cylindrical body of length £. Thus 
a relatively large elasticity associated with the deformation of the microstructure will 
reduce the decay rate of the energy. 

Formulation of the problem 

Consider an unstressed straight prismatic bar with materially uniform cross-sections 
and made of a linear elastic material with microstructure. Introduce a fixed rectangular 
Cartesian Coordinate system so that in the unstressed reference configuration the 
X3-axis coincides with the axis of the bar, one end is contained in the plane X 3 = 0 and 
for points in the bar X 3 >1 0. We denote the coordinates of a material point in the 
reference configuration by X/, the coordinates of the same material point after the 
deformation by x,. and the displacement of the material point by u i. 

For an elastic material with microstructure, embedded in each material particle there 
is assumed to be a microvolume V' in which X~' and x,' are the components of the 
referential and spatial position vectors, respectively, referred to axes parallel to those of 
the X~ or xi and with origin always attached to the particle. A microdisplacement 

< = x" - x ;  

gives the displacement of the microvolume relative to the particle carrying the micro- 
volume. 

We assume that the microdisplacement can be expressed as 

u; = x~kj, ~kj = ~,j(x), (2) 
and 

au, I a< 
axj << 1, ~ << 1, 

so that 

au~ aui 
OXj - axj -= h,j,  (3) 

au; au; 
- -  . 

a x ;  ax ;  

For the linear theory being studied here the strain tensors (Cf. Mindlin [6]) 

ei j  = ( hij "+" h j i ) / 2 ,  (4) 
~¢ij = h i j  --  lPij,  (5) 

a,kjk 
Xiy, = ~ - a,~kjk, (6) 
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Vi= Ui + W i , 

then 

describe the deformation of the continuum. Also the strain energy density W is taken as 
a positive-definite, homogeneous quadratic function of the forty-two variables e~j, 7~j 
and Xijk. To save some writing we denote the ordered triplet (e, 7, X) by r and write W 
a s  

W = ½r .  E r .  (7) 

Thus E, called the elasticity matrix, is a linear transformation from a 42-dimensional 
linear space into a 42-dimensional linear space. However, only 903 of the 1764 
elasticities E are independent. Because of the positive definiteness of W, 

a w  o w  
= EE. E r =  F. E2/'~< a M r .  EF=  2amW,  (8) 

o r  a r  

where 

a M = supremum of the eigen-values of E. 

We note that E depends only on X~, X 2 since the cross-sections of the bar are assumed 
to be materially uniform. When the expressions (4)-(6) for strains are substituted into 
(7) we obtain 

W =  W ( h i j ,  ~, j ,  Xijk, Xa), A = 1, 2 (9) 

in which W is a homogeneous quadratic function of the indicated variables except X a. 
An infinitesimal rigid body displacement is described by a uniform translation c~ and 

a rotation bij = -b j i  of the macromaterial and an equal rotation ~t~J]- (tp~j - ~kj,)/2 of 
the micromaterial. The displacements associated with a rigid displacement are 

14~j = Cj + b i j x i ,  wj: = x t i t~[ i j]  ~- x t i b i j .  (10) 

Thus if 
t _ _  ! t 

l) i - -  Id i + Wi , • i j  = t~ i j  "~- b i j ,  

a , , j  ( l l )  t 

X i j k  = OX k ' 

and 

ei j (u  ) = ei j (v) ,  "Yij(u, u') = "yij(¥, ¥'), 
X,j~ ( ' )  = X,j~ (*'), ( ] 2) 

w(~,,. , . ,  ~,jk. xA)= w(%. ,,,, x.k, xA). (13) 
That is, the addition of a rigid displacement leaves W unchanged. 

The equilibrium equations and boundary conditions obtained by seeking the ex- 
tremum of the functional 

are 

I 

m  14, 
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and 

- Oqjj----~ = 0 in B, (15) 

m 

a w  
Ohi jn i= f j  on OB, (16) 

OW 
~Xijkn~= Tjk on 0B, (17) 

where 

d S  i = n idUldU 2, (18) 

OXj OX k (19) 
n i=  +cij kOU l OU 2" 

Here the boundary 0B of the body B is assumed to have the local parametric 
representation X = X ( U  I, U 2 ) and the sign in (19)  is selected so that the vector n points 
out of the body. The permutation symbol cij k equals 1 or - 1 accordingly as i, j and k 
form an even or an odd permutation of 1, 2 and 3 and is zero otherwise. The surface 
traction f and the double force Tjk are measured per unit coordinate area dU~dU 2. The 
diagonal terms of Tjk are double forces without moments  and the off-diagonal terms 
represent double forces with moments. The antisymmetric part  Ttjkl of the double 
traction Tjk is the Cosserat couple stress vector. In Tjk, the first subscript gives the 
orientation of the lever arm between forces and the second subscript gives the 
orientation of the forces. 

Equations (14) and (15) are the equilibrium equations. Were we to write equations of 
motion in the absence of external body forces, the right-hand sides of (14) and (15) will 
be replaced by pt~j and ljk~,~e,~ wherein a superimposed dot indicates material time 
differentiation, p is the mass density and ljk~e,, , is the inertia tensor associated with the 
rnicrodeformation. Both p and I are evaluated in the reference configuration. We will 
need p and I subsequently when we consider the problem of free vibration of a slice of 
the prismatic body. 

We are interested in the case when the part  X 3 = 0 of the boundary is loaded and the 
remainder of the boundary is traction free. In order that there exist a solution of (14) 
and (15) under these conditions, the applied loads must be self-equilibrated and must 
satisfy 

o w  o w  - 

°X3[jkl ] 
(20) 

Here 
body 

moments  are taken with respect to the origin and Cs is the cross-section of the 
contained in the plane X 3 = s. With the definition 

v ( s )  = WdZ,  (21) 

we state and prove below the 
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Theorem. If a prismatic body made of a linear elastic material with microstructure and 
with materially uniform cross-sections is loaded on C o by a self-equilibrated force 
system and if 

f~ = 0 = Tjk on OB - C o, (22) 

then 

u(s)  u(0) exp(-  (s - (23) 
where 

s¢(2) = 2( aM/Ao(.g)) '/2, (24) 

)%(£) is the smallest nonzero characteristic frequency of free vibration of a slice of the 
body of axial length 8, unit mass density and the inertia tensor associated with the 
microdeformation equal to the identity tensor. 

Proof of the Theorem 

Recalling that in (13) W is a homogeneous quadratic function of the indicated variables 
except X~, we have by Euler's Theorem 

1 r [ OW 3W - -  + 
--~tl/jk~jk OXijk J J =~jx3>~,lTg~, % +~3-~-Wxi~k]dV, (25) 

1 r [ OW OW 
= - -~  Jc,[-~3juJ + 3-~3jk~/j~]dS3. (26) 

In order to obtain (26) from (25) we have used the divergence theorem, equilibrium 
equations (14) and (15), boundary conditions (22) and 

nk = -~3k on C .  

Because of (13) we can replace u and ~k in (26) by v and ¢ where v and ~ are given by 
(11). Thus 

ljc[l   1 U(s) = - ~ , ~ --=-- ~ e p j k  dS 3. (27) 

Physically this expresses the requirement that a self-equilibrated force system does no 
work during a rigid displacement of the body. From Eqns. (4)-(6) and (11), we 
conclude that 

OW 1 aW OW 
+ - -  (28) Oh3j 2 Oe3j O'Y3j 

and hence 

- = - - v j + - - v . +  V(s)  = ~ -20e3j OT3j j ~ j k  dS3- (29) 
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Using the inequality 

which holds for a > 0 and is consequence of the Schwarz and geometric-arithmetic 
mean inequalities (e.g. see [2] p. 93), we obtain 

fc 3W 1 1 ~W ~W - -m---vgdS3 ~ ~ a, . ~--~3j dS3 + vjvjdS3 , 
"] oe3j 4 ~e3j i c, J 

l [ a ,  --aWaWds+lfvjvjdS3l. (31) fc ~ei j  Oeij 3 1 c, I 

Similarly 

1 O W  3 W  1 : 
_ f aw v dS, ~ ~ ~ dS, +-- , (32) 

Y "d~Y3j J bYij 3Yij ~X 2 C s 

fG 3W 1 3W 3W dS 3+ 1 - ~ * j k d S 3  ~< a3 *:k~gkdS3 , (33) 

and hence (29) can be written as 

- ) 1 3W O___.WW 3W 3W aW aW dS 3 
U(s)<-~ /3 ~eij ~ e i j + - - - - ~ . - -  

+ ~ L ( 2  vjvj + ~jk~jk)d $3], (34) 

where we have set a~ = a s = a 3 = / 3 .  Substitution from (8) into (34) results in 

U(s) <~l [ t JG2aMWdS3 + ~ fc(  VjVj + . (35) 

Integration of both sides of (35) with respect to X 3 from X 3 = s to X 3 = s + £ for some 
£ > 0 and setting 

1 s + 2  
~fs U(y)dy = Q(s,£)  

gives 

Q(s,.f)<~/3aM f WdV+ 1 •  fc, (v:+ + ++k++k)dV, 
2#. :c,+ 

in which 

G,~=(X:X ~ B , s~  X3 <.s+ £) 

= portion of the prismatic body between the planes X 3 = s and X 3 = s + .a. 

(36) 

(37) 
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In order to bound the last integral on the right-hand side of (37) by an integral of W, 
we consider the problem of free vibration of a prismatic body of length 2, unit mass 
density and the microdeformation inertia tensor equal to the unit tensor. Define a 
characteristic solution (e.g. see [1] Section 75) as the ordered triplet [A, u, ¢/] such that 
is a scalar, u and Xb are fields on C~2, and 

--~-0 ( 0 ~ )  + x u j = 0 o x ,  in C~,~ e, 

OX i - -  ~ + X~j k = 0 in C~, e, 

_f_ (UiU i =~- + j k + j k ) d V  = 1, 
" c  

s , £  

f, = o = T+, on OC.+. 

(38) 

(39) 

(40) 

(41) 

By taking the inner product of (38) with u, of (39) with ~b, adding the respective sides of 
these two equations and integrating the resulting equation over C~+e, using the diver- 
gence theorem, equilibrium equations (14) and (15), and the boundary condition (41), 
we obtain (for details, see [1]) 

2 f  WaY 
"+ Cs .  # 

= 2 f  WdV. (42) 
x f 

C,.,e 

In order to conclude (42)2 from (42) l we have used (40). Since W =  0 for a rigid body 
displacement, the smallest characteristic frequency of free vibration of Cs2 is zero. In 
order to eliminate the rigid body displacement and thereby the possibility of zero 
characteristic frequency we consider smooth fields v and ~ that satisfy 

fc,(v,v,++,j+,j)dV-O, f v, dV=0, 0=fc,?j,+v,dV. (43) 
, C s , l  , ,  

As shown by Toupin [2], for a given u one can choose w in (11) such that v satisfies 
(43); the corresponding d~ is related to + by (11)3. Thus the lowest non-zero characteris- 
tic frequency A0(£ ) of free vibration of Cs2 will satisfy the inequality 

2f ~dV 

f (v,,>, + (441 
C,,+" 

Substitution from (44) into (37) results in the following: 

f WdV, (45) Q(s' £) ~ - T -  c,., 
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in which 

2 
s~-7~= ½pa,, + x0---~" 

We choose fl = 2/(aMho) I/2 so that ~ takes on the minimum value 

ST'~= 2( aM/hO) 1/2. (46) 

Differentiation of (36) with respect to s yields 

dQ 
,is f way. .e Scs,~ 

This when combined with (45) results in 

s~-7(23-~ + Q ~ 0. (47) 

Integrating (47) and using 

V(s +8) <, Q(s, ~e) ~ U(s) 

which follows from the observation that U(s) is a nonincreasing function of s, we 
arrive at 

u(~ +8) 
e x p (  - ( s 2  - s ,  • V(s2) 

The choice s~ = 0 and s 2 = s - £ gives the desired inequality (23). 

Remar~ 

For a linear elastic body without any microstructure, i.e. ~ij = 0, the deformation is 
completely described by the strain tensor eij and the characteristic decay length sc(£ ) 
reduces to essentially that given by Toupin, the remaining difference being due to the 
sharper estimate (8) used herein. For a micropolar linear elastic body ffkj + ffgk = 0, eij 
and Yij describe the deformation of the body and again our results reduce to those 
obtained by Berglund except that we study anisotropic materials whereas Berglund 
assumed the bar to be made of an isotropic material. 

As is apparent from (24), the characteristic decay length depends upon the smallest 
non-zero characteristic frequency of free vibration of a slice of the prismatic body of 
axial length £. Methods exist [8] for estimating these characteristic frequencies, or these 
frequencies might even be obtained experimentally. Needless to say our estimate of the 
decay rate is not the optimum one since we have been arbitrarily strengthening the 
various inequalities. 
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