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Free vibrations of a piezoelectric body 
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Abstract. We present a systematic analysis of the eigenvalue problem associated with free 
vibrations of a finite piezoelectric body. The analysis is based on an abstract formulation of the 
three-dimensional theory of piezoelectricity. A series of fundamental properties of free vibrations 
of a piezoelectric body are proved concisely. The problem of free vibrations of a piezoelectric plate 
governed by the two-dimensional plate equations due to Mindlin is treated in a similar manner. 

1. Introduction 

The free vibrations of a finite piezoelectric body has been of interest for a long 
time because of its applications in resonators. It has been studied either by 
using the three dimensional equations of piezoelectricity or the two-dimen- 
sional plate theory I-1]. The two sets of equations are rather complicated. This 
has obscured insight into the mathematical structure of the equations and has 
made the mathematical manipulations tedious. 

In this paper, an abstract formulation is employed. Based on the introduc- 
tion of abstract vectors and operators and the construction of appropriate 
function spaces, several fundamental properties of free vibrations of a 
piezoelectric body are proved in a systematic and concise manner. Following 
the proof of the essential property that the operators involved are self-adjoint 
and positive on appropriate function spaces, the reality and positivity of the 
eigenvalues, the orthogonality of eigenvectors corresponding to distinct eigen- 
values, and a variational principle in Rayleigh quotient form for the eigen- 
values are established. The Rayleigh quotient is non-negative on an 
appropriate function space. This leads to a few properties of the smallest 
eigenvalue or the lowest resonant frequency. These properties generalize the 
corresponding results of classical elasticity. The problem of frequency shift due 
to small disturbances, a problem of great practical interest, is also studied 
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within the abstract formulation by a perturbation method and a variational 
method. It is shown that the perturbation method gives equivalent results to 
those obtained by the Ritz method with a special choice of trial functions. The 
problem involving free vibrations of a piezoelectric plate governed by the 
two-dimensional plate equations of Mindlin is also formulated in an abstract 
form and then similar results follow automatically. 

2. Free vibrations of a three-dimensional body 

2.1. Governing equat ions  

Let the finite spatial region occupied by the piezoelectric body be f~, the 
boundary surface of I) be S, the unit outward normal, of S be ni, and S be 
partitioned as 

S u w S  r = S ,  w S  o = S, 

S u r e S t  = S ~ c ~ S  o = ~ .  (1) 

Physically, Su, St, S~, and So are, respectively, parts of the boundary S on 
which mechanical displacement, traction vector, electric potential, and surface 
electric charge are prescribed. 

For the time-harmonic free vibrations of a piezoelectric body with circular 
frequency co, the governing equations and boundary conditions in rectangular 
Cartesian coordinates are [2] 

--CjiklUk.lj --  ek jP .k j  = pm2U~ in fl, 

--ei~,uk,,  + eik~b,u = 0 in fl, 

u i = 0 on Su, 

T~i(u, ¢k)nj = (CjiuUk,t + ekjick,~)nj = 0 

~b=0 onS~, 

Di(u, dp)n i = (eiktUk. l --  eig dp.g)n i = 0 

on S T , 

on S o, (2) 

where u i is mechanical displacement, T~i stress, ~b electric potential, D i electric 
displacement, p mass density, cou elastic moduli, eo electric permittivity, and 
e~i k piezoelectric constants. Throughout this paper, a repeated index implies 
summation over the range of the index, and a comma followed by an index j 
stands for partial differentiation with respect to xj. The material constants have 
the following symmetry properties 
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cij u = cjiht = CkUj, 

eOk = elk j ,  eij = %,  (3) 

and are positive definite, i.e. for any nonzero symmetric tensor aiy and vector b~ 

Cijklaijakj > O, eijbib j > 0 (4) 

In Eq. (2), values of o92 are sought corresponding to which nontrivial 
functions u~ and/or ~b exist, hence we have an eigenvalue problem. We note that 
for the eigenfunctions u~ and ~ corresponding to an eigenvalue o92, u~ alone 
must be nontrivial. This can be seen by setting u i = 0 in Eq. (2), then ~b must 
vanish identically. 

2.2. A n  abs t rac t  f o r m u l a t i o n  

For convenience, we denote 0 )  2 by 2 and introduce vectors U and V, and 
operators A and B as 

u = {u, ,  v = {v, ,  

A U  ~-- { - -  CjiklUk,lj --  ekji~),kj, --  eik I Uk.li d- 8ik (~,ki}, 

a u  = {pu,,  0}. (5) 

Then equation (2) can be written as 

A U = 2 B U  inf2, 

ui = 0 on Su, 

T j i ( U ) t / j  - - - - -  (C jiklUk,l -~- ekjif~,k)n j = 0 o n  ST, 

q~=0 onS~, 

Di(U)n i = (eiklUk, t --  eikC~,k)nl = 0 on S D. (6) 

We also introduce a function space ,~(f2): 

E(~) = {UIU satisfies boundary conditions (6)2-5}- (7) 

We note that E(12) contains all eigenvectors of Eq. (2). With the above 
definitions, the eigenvalue problem defined by Eq, (2) can be stated as: Find 2 
for which there exists a nontrivial U e-=(f2) such that 

AU = ).BU. (8) 
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For  later use, we also introduce a subspace E*(f2) c E(~): 

E*(f~) = {U real lU ~E(f~), --eiktUk.z~ + ~ikqb.k~ = 0 in f~}. 

Next we introduce an inner product  ( ; ) for vectors in E(f~): 

<u; v> = fn (u,v, + ev~) df~. 

2.3. Self-adjointness and non-negativeness of  the operators 

For  any U and V ~-=(f~), we have 

(AU;V> = <{-cj,~,u~. o - e~,~p,~, -e,~,u~.,, + e,~b.~,}; {v,, ~,}> 

and 

(9) 

(10) 

f 
= Ja [(--cJi~'uk'o -- ekJi~P'~i)vi + (--eiktu~'" + e~k~b'k/)~b] 

= ffs [ -  Tji(U)njvi -- D~(U)n~h-I dS 

fa  [CJiktUk'tVi'J + ekJiq~'kVi'J + eiktuk't~'i - -  t;ik~b'k~k'i] + d~ 

=-fs[~,(U)niv,+D,(U)n,~']dS+fs[~,(V)ntu~+O~(V)n~O]aS 

+ ~f~ [ -  CktijVi,jl- eik|~,it)u k + (--e~jlVi,jk + eikl~.ki)~p] d~ 

= - ; s  [T~i(U)njv~ + Di(U)nid/] dS 

+ fs  [T~l(V)ntu~ + Dk(V)nk(k] dS + (U; AV) 

= (U; AV) (11) 

(BU; V) = ({pu,, 0}; {v,, ~})  

= In pu~v~d~ 

-- (U; BY>, (12) 

which show that the operators A and B are self-adjoint on ~ ) .  On .~*(f~), we have 
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<AU;U> = <{--Cj,uUk,,~ - ekjif~,kj, --e,ktUk.u + e,k~b.ki}; {U,, ~b}> 

= f .  [(-cj,~lU~,~j - e k j , ~ , ~ g u ,  + (-ei~tuk, n - eik~,t,i)~-I dO 

= fS [ -  Tji(U)njui - Oi(U)ni~] dS 

f [CjiklUk,lUi,j all- ekji~),kUi,j -~- eiklUk,l~),i -- ~'ik~,k~,i] + dO 
da 

[CjiklUk,lUi,j "31- ~ik ~,k ~,i "~- 2 ( e i u u k , t d P , i  - -  ~ikqb,kq~,i)] dO 

[CjiklUk,tUi, j + eik~p.k~p, i -- 2(eiktU~,zi -- e/k~b,ik)q~ ] dO 

+ fs  2(eiuUk'z- elkdP'k)nlckdS 

= ft~ [(CjiuUk'lUi'j + eikqb'kqb'i] dO >>- 0 (13) 

and 

<nu; u> = <{pu,, o}; {u,, q,)> 

= f pu~ui df~ >>. O, 
Jo 

(14) 

which show that A and B are non-negative on E*(f~). 

2.4. Reality o f  eigenvalues 

Having shown the self-adjointness of operators A and B, we prove that all 
eigenvalues of Eq. (2) are real. Let 2 be an eigenvalue, and U the corresponding 
eigenvector. Then (2, U) satisfies Eq. (8). Taking the inner product of both sides 
of Eq. (8) with ~J, the complex conjugate of U, we obtain 

<AU; LI> = 2<BU; U> (15) 

Subtracting the complex conjugate of both sides of equation (15) from it, we 
arrive at 

<AU; CI> - <~.LI; U> = 2<BU; ISI> - 2<BU; U>. (16) 
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Since A and B are real and sdf-adjoint, we have 

0 = (2 - ~ . ) (BU;  (J ) .  (17)  

For the eigenfunction U, 

(BU; (J) = fa  PU~fil dfl>0, (18) 

which implies that 2 - 2 = 0, or the eigenvalue 2 is real. For a real eigenvalue, 
we can always choose the corresponding eigenvector to be real. To see this, we 
take the complex conjugate of Eq. (8), and obtain, with the reality of A, B, and 
2, 

A[J = 2BU. (19) 

Thus O is also an eigenvector corresponding to 2. The linearity of the problem 
implies that ~(U + O) and 1/(20(U - (J) are also eigenvectors corresponding 
to 2. In the following, we will assume that eigenvectors have been chosen real 
so that E*(F~) contains all eigenvectors and E(f~) has real vectors only. 

2. 5. Positivity of eigenvalues 

On E*(f~), for an eigenpair (2, U), we take the inner product of both sides of 
Eq. (8) with U and obtain 

(AU; U )  = 2(BU; U).  (20) 

Since both A and B are non-negative on -=*(f~), and for eigenvectors they are 
strictly positive, Eq. (20) shows that all eigenvalues 2 must be positive. 

2.6. Orthogonality of eigenvectors 

Let 2 (m) and 2 ~n) be two distinct eigenvalues of Eq. (2) and the corresponding 
eigenvectors be U tin) and U ~"). Thus 

A U e m )  = 2tm)Bu{m), 

AU ~n) = 2¢")BU ~"). (21) 

Then taking the inner product of both sides of Eqs (21)1 and (21)2 with U ~') 
and U ~m) respectively, and subtracting one from the other, we obtain 

0 = ( 2  (m) - -  2~"))(BUtm); Ut")), (22) 
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where we have used the fact that A and B are self-adjoint. Since 2 tm~ ~ 2 ~nJ, 

(BUtm}; U tnJ) = fo aulm,ur , df~ = 0, (23) 

which implies that eigenvectors associated with distinct eigenvalues are mu- 
tually orthogonal (Tiersten [3]). We note that Eqs (21) and (23) also imply 
another form of the orthogonality condition, viz., 

f n  u ~rn~ "k~)~'t'~nq df~ (AU(m); U (n)) = [(--CjiktU~km.~ -- eaj, Ck!~)U~ "~ + (--elk, k.,, + t,kW.k,,~ 

[C~ikt Uim.}U!~.3 + ekj, qb!~U!~.3 + eiu ui=.}ck!7 ~ -- eik C~!~'(a!7 ~] dO = O. 
do 

(24) 

2. 7. Variational formulation 

We now give a variational formulation for the eigenvalue problem defined by 
Eq. (2). For a fractional functional 

A 
n = ~ ,  (25) 

61-I = 0 implies that 

~A - I-I~F = 0. (26) 

We consider the following functional of U ~ E(~)): 

(AU; U)  
n(U)  = (27) 

(BU; U )  

By using the self-adjointness of A and B, the stationary condition of H is seen 
to be 

6A -- n~l-  = (AU; ,~U) + (,~AU; U)  - rI((BU; ,~U) + (,SBU; U))  

= (AU; 6U) + (AfU;  U)  - H((BU; ~U) + (B~U; U))  

= (AU; 6U) + (6U; A U ) -  rt((BU; ,~U) + (,~U; BU)) 

= 2 ( A U -  HBU; 6U) = 0, (28) 
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o r  

A U  - nBU = 0 (29) 

since 6U is arbitrary. Therefore, we have the following variational principle: In 
order that the functional I-I(U) defined by (27) be stationary in -~(f~) Eq. (2)1,2 
must be satisfied, and the stationary value of II equals 092. Here the boundary 
conditions (2)3_ 6 are regarded as constraints which must be satisfied by all 
admissible vectors U for H. Written explicitly, the Rayleigh quotient H is given 
by 

H(ut, d?) = Sta (c~jkzu~,jul,,i - eijdP,i49,j + 2eik, ul, adLi) d ~  
So puiui dD 

(30) 

which was obtained in [4]. 
adjointness of A and B. 

We further have, on E*(fl) 

Here it is a direct consequence of the self- 

rI(ui, dp) So (Co~lUi,jUka + eii~,~q~,j) dO (31) 
= So pu~u~ df~ 

Since H is non-negative on E*(f~), it is bounded from below. Therefore the 
smallest eigenvalue must be a minimum. Following standard arguments in 
variational analysis [5], we obtain the following results. 

The smallest eigenvalue will increase if (i) p decreases; and (ii) cii u increases 
to c~ju such that (c~jkt - %u)a~jau > 0 for any nonzero symmetric a o. 

2.8. Frequency shift by a perturbation method 

In applications, it is often of interest to study small change in the eigenvalues 
caused by small variations in the operators which may be due to small 
variations in the physical and/or geometrical parameters of the system. The 
small change in an eigenvalue is usually called a frequency shift. For the 
frequency shift problem associated with the eigenvalue problem (8), we 
consider the following problem: 

(A + eA*)U = 2(B + eB*)U,  (32) 

where e is a small parameter, cA* and eB* are the small changes in operators 
A and B, and 2 and U are unknowns. We make the following perturbation 
expansions: 
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;t = 2 ° + dr* + O(e2), 

U = U ° + eU* + 0(~2), (33) 

where 2* is the first-order frequency shift which is to be determined. Substitu- 
ting (33) into (32), and collecting terms of equal powers of e, we have the 
following perturbation problems of successive orders. 

Zeroth order: 

AU ° = ).°BU° (34) 

First order: 

AU* + A*U ° = 2*BU ° + 2°B*U ° + 2°BU *. (35) 

The solution to the zeroth order problem (34) is assumed known. In order 
to solve the first-order problem (35) for 2", we take the inner product of both 
sides of (35) with U °, and use the self-adjointness of A and B to obtain 

(uo; A*U o) _ ~?(UO; B*U o) 
2" = (36) <uo; BU°> 

Since all terms on the right-hand side of (36) are known, we can compute 
the frequency shift. The above perturbation method was used in I-8] to find the 
frequency shift caused by a small change in the thickness of a quartz plate. The 
derivation, leading to an expression equivalent to (36), was very lengthy. Here 
it follows immediately from the self-adjointness of A and B. Equation (36) 
delineates clearly how small changes in operators contribute to the frequency 
shift. 

2.9. Frequency shift by a variational method 

If the small changes in A and B are also self-adjoint, then the Rayleigh quotient 
for (32) is 

((A + eA*)U; U)  
H(U) = ((B + eB*)U; U)"  (37) 

The use of unperturbed modes U ° as trial functions in the Ritz approxi- 
mation method gives 
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2 ~ <(A + eA*)U°; U°> 
<(B + eB*)U°; U°> 

<AU°; U°> + e<A*U°; U°> 

<BU°; U°> + e<B*U°; U°> 

<AU°; U°> 1 + e<A*U°; U°>/<AU°; U°> 

<BU°; U°> 1 + e<S*U°; U°>/<BU°; U°> 

<uo; A.U°> _ ~o<UO; B*UO> 
2 ° + ~ (38) 

<U°; BU°> 

A comparison of (38) with (36) shows that the frequency shift computed by 
the Ritz method is asymptotically equal to that given by the first order 
perturbation method. This equivalence of results given by the two methods was 
also discussed in [8]. 

3. Free vibrations of a plate 

3.1. Governing equations 

We consider a piezoelectric plate of thickness 2b, with Cartesian coordinate 
axes x I and x 3 in the middle plane, and x 2 normal to the plate. Let the 
two-dimensional region in the x l - x  3 plane occupied by the piezoelectric plate 
be A, the boundary curve of A be C, the unit outward normal of C be n~ (with 
n 2 = 0), and C be partitioned as 

C~w CT = C ~ u  CD = C, 

C,  c~ C T = C~ n C D = ~ .  (39) 

The eigenvalue problem for free vibrations of a linear piezoelectric plate is [9] 

'T'(O) "22K3~"(1) in A, - T]~?) = m22bpu~°', - T~)tj + ,2, = ,~, 3," v,,, 

- D  (°)=0, _nt~)+D~O)=0 inA, 

__,j.qto) + ~(u!O) + u tg)J,, + 62iu~ l) + 62ju! t)) = 0 in A, 

eta) ~,ut~) u t~)x = 0 in A, 

E!o) + -~,,'~°) + 62~4,.) = 0, E~ ~) + ~.~.~") = 0 in A, 

OH ~H 
- ~ ° ) + ~ = 0 ,  -~'+~--~u=Ovo,a inA, 
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OH OH D! 

ul °~ O, .(1) 0 o n C , ,  

njTj!°)=0, naT~J ) = 0  on C T, 

-~b ( ° )=0 ,  _ (~(1)=0  onCe ,  

niD! O) O, n(l) = G'-'~ = 0  OnCD, 

in A, 

(40) 

where u! °} and U (1) a r e  zeroth and first order displacements, -u';(9' and o,a¢'(1) the 
zeroth and first order strains, T~ .°) and TlJ ) the zeroth and first order stresses, 
4) ~°) and q~tl) the zeroth and first order electric potentials, E~ °) and Eg) the 
zeroth and first order electric fields, D~ °) and D~ ~) the zeroth and first order 
electric displacements, 2b the thickness of the plate, p the mass density, and co 
the resonant frequency. We note that indices i, j, k range from 1 to 3, Greek 
indices a, fl assume values 1 and 3 only, and (),2 = 0. H = H(S (°), S (1), E (°), E (1)) 
is the electric enthalpy function. For a linear piezoelectric plate, H and the 
corresponding linear constitutive relations [-9] are 

H kl~to) ¢(o)¢(o) ~ F(o)F(o) o,,(o)v(o)c(o)~ 

1/~3i~.(1) ( ' (1)K' ( I )  ,, 17(1)17(1) 9~ (1 )  17(l)K'(1)'t 

" r (0 )  ")h/'.~(0) c ( 0 )  . ( 0 )  tT(0)'~ ,Z,(1) 2 k a i ~ ( D  £,(1) ~(1) ~ ' ( I )x  
1 U . ~ u 1 , ~ i j k l ~ k l  - -  Cki j t_ ,  k ),  l~tli' ~ 3 o ~c~t~75o~6 - -  t:),atfl,t..,7 7~ 

D~o) 2h(  (. . ( o ) e ( o ) ~  D(l) = 2K31~ w ( l )  _{._ ~(1) C(1)$ -~,ei~E~ °) + ~ijk,'jk ~, ~t, ~%t~,~ ~ , , ~ ,  

(41) 

(42) 

where .(o) ~(1) .(o) and o(1) t~ijkl, t':ta?6, ~ij,  ~ijk t;ct/~ ~, are material properties. Given p, b, and H, 
values of O) 2 a r e  sought corresponding to which nontrivial solutions u! °), u(- 1), 
S(O) c(1) T/~O), T(~), ~bto), ~bt E~ °), E() ), D! °) and D(~ 1) exist. With (42), Eq. (40) t j  , ~ 'af l  , 1), 

can be written as a group of seven equations for the seven unknowns u~ °), u~ ~, 
4) ~°~, and ~b ~t~, which are the counterpart of Eq. (2). 

3.2. The abstract Jormulation 

We introduce the following vector U: 

U = ~{ulO), u~l), (b¢o), ~(1), Tj!O), "~,,T(1) D!o), D~I), -uS;@, jp,,¢(1) E~O), Eg)} (43) 

and operators A and B: 

f 
AU = j - -  T;!'°)'jt,j, - -  l//a,p'T'(1) 21_ T(0)I 2:l , -Dt°)i,i, - t)tl)-,,~ + D(2 °), 

_ b/t1) C(1) ± 1_./,,(1) (1)'~ 
~ t  3 + 21, i , j  + "," 
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E!° '+  4)!°)+ (~214) (1), E (1) -~- 4)!a l), 

~H OH 
T3O) _ _  

- o + rl~(9)' - T~(~) + rO~ '(I)' 

D!°' + 0-~?" + ' (44) 

BU = {2bpu! °), ~,2K3~"(l)/.,u,~t, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. 

We also define 

~,(A) = {U [boundary conditions in (40) are satisfied}. (45) 

With the above definitions, the eigenvalue problem (40) can be stated as: Find 
,l = co 2 for which there exists a nontrivial U ~-=(D) such that 

AU = JlBU. (46) 

For two abstract vectors U and V e F,(A), we define the inner product 

<U; v>  = fA (u~°)v!°' + u~'v~" + 4~°~¢ ~°' + 4)(1)~ (1) 

T(9)~-(9) + T(1)ar(1) o{o)og(o) r,(1)og(1) 

.(/(o) f/,(o) ¢(I) c2a(1) F(0),f(o) ~(I),~,(I)% "]- ~ji ~ j i  nu °a~  ~" a~ + __, ~,  + --~ ~ . dA,  (47) 

where U is given by (43) and 

V = {v} °), vg), ¢(o), ¢(t), ~(o) a - . )  ~o) ,  ,~ . )  ~!9) .D.) 6~!o), ~t)} .  (48) 

3,3. Self-ad]oinmess o f  the operators  

For vectors U and V e-~(A), we obtain the following after integration by parts 
and using the boundary conditions given in equations (40): 

<AU; V> = r~.°~v~ ° ~ , , ~  , + (-r~2,~ + ~2, , ~  

D(°),/. (°~ + ( '~(t) D~2O))¢.) 

[- (~(..0) . l , ' ,  (0)  u(.O) .Jr_ ~ 2 j u ! l )  _t_ ,,~ ,,(1)'~-]/aT(O) + L ~lJ T 2--'(~i,j -~ j , t  T , . , 2 i~ j  ] j ~  j i  
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+ r ~(I) It. (I) ,,(Hv~a-(1) L - -O= / l  + 2-~.a=,# Jr" a#,=)j,./ #= 

,.h( 1)10~( i ) + (E!o) + -~,,'h(°) + <h~.)) .~!o)  + (E(I) + ~-,~ , ~  

+ -~5 °) + ~  _,j + -r~(~' +~--~ ~ '  
uo=# / 

f )'_ ~ (o),,~o) + (-#-~'2p + #-~°2).~) ..). 

-~ , . )  ~(2o))4).) ~(o),h(o) + ( _  ~=,= + 

r _  (~(o.) i,,, (o) v(.O) ~ ~),(1)~],T,(0 ) 
+ L ~*s  + ~ ' i , i  + J,* + 62 j r !  I) + "2i< ' j  1.J,i i 

L - -  ~" =, 6 _~_ ,,(1)yl,lr',(1) 

)b(HIFI(H + (g!o) + ~b!o) + 62i~b(,))D!O) + (g~) + v-,, , ~=  

+ - - ~ j  + -~j + -- + S ~  
t,J=# / 

= (U; AV), (49) 

~A 21,3_,.(I L,(1)X dA (2bpu!°)v! °) + .So t.,u= v= ) 

= (U; BV), (50) 

(BU; V )  = 

where 

= b(cij~l~tj(O ~o) ~kl(O) _ °iJ'~t° ,,~(O),~(O)wj __ z'~tJ ktat'~{O) .~(0) (.p(O)~,jk ] 

t~3/~(1) c~(1)c.(1) o .~(1)#(H ")~(H #(Hc_p(1)~ (51) 

Relations (49) and (50) show that operators A and B are self-adjoint. It is 
important in deriving the two-dimensional plate theory from the three-dimen- 
sional theory that the self-adjointness be kept. With the selfoadjointness, we can 
prove the reality of the eigenvalues in the same way as was done in Section 2.4. 
We assume below that the eigenvectors have also been chosen as real. 
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3.4. Orthogonality o f  eigenvectors 

Following the steps outlined in Section 2.6, we can prove that 

(BU(m); U ~n~) = 0 (52) 

o r  

fa  2/.~3~,,(1)(m)..(1)(n)'t  dA = 0. (53) (2bpu~°)(")u! °)(') + 3" ~'"~ "~ J 

Hence eigenvectors U ('~) and U (") associated with distinct eigenvalues are 
mutually orthogonal. Relation (53) was proved in 1-10] "after much tedious 
manipulation". Similarly, the other orthogonality condition 

(hU(m); U ~)) = 0 (54) 

yields 

fa{--T;"O)'(m)u ('O)(n)'' 't '(I)(m)'T'(O)(m)l''(1)(n)J,,J , "1" I , - -  'flat,,6 '-[- " 2~  ]"at 

- -  D ~°)(')'~(°)('),,i ~- + ( - ~,~n(l)(m) + D~°) (") )~  (1)(~) 

+ Lr-.~:°)")~,, + ~u~°~ (m) + u?)<"' + ,h ,u?  ) ( ' ) .  • + ~,u~l'<"))]T~i °'(') 

l- (,(1)(m) 1/ .  (1)(m) ~,( 1)(ra)/-I T(1)(n) + L- -°~# + 2~ua,p +"p,a #A ~#a 

t/)( 1)(mhD(1)(n) + ( E !  0)(m) + -r,~'4(P)(m) + ¢~2icp(l)(m))D~ °)(n) + (E~)(m) + -,-,:, , ,, 

( ( on('~) "~ .~.o.)(,) + - rJ~ ~'~ + ~ o ~  + - r~o)(~) + ~ ~,~ 

+ D!°'(m' + ~ / I  E!°)"° + D(~')(m) + ~ , ]  E(~"(') dA = 0, (55) 

where 

H(m) / , t~ (o )  c(O)(m)g'(O)(m) __ p F.(O)(m)~(O)(m) '~,a(.O)p.~,O)(m)q'(O)(m)~ 

1/.3[~(1)  C( I  )(re)C(1)(m) e F(1)(m) ~'(1 )(m) ~p(P F(~)(m)e(~)(m)~ (56) 

We note that (55) can be simplified to 

f a r  T~0)(m),,(°)(') T/1)tr') T(o)tm)~,,(1)(n)n dA = 0, (57) L - -  ~j~,~ -~ + ( - -  p~,,s -t- ~2~ ,,-~ .J 
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which is equivalent to (53). 

3.5. Variational formulat ion 

The Rayleigh quotient for the eigenvalue problem (46) is 

<AU; U> 
i t ( u )  - - -  

<BU; U> 

= LFT'!'°)u { ° ~ ,  ,,j + , ~  -e . ,  + , 2 ,  ,.~ + , ,,-.i + ~ - ~  , , - ,~  

+ H(S (°~, St1), E(O), E(1)) + E!°)D! °J + E~I)Dt_ 1~ 

tj ~tJ 2 

( 5 8 )  

where some of the terms have been integrated by parts. We note that the 
variational principle is of mixed type with all of the field variables taken as 
independent variables, and similar variational principles were given in [11]. 
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