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Abstract. Based on a continuum model of solid-solid phase transformations, the macroscopic 
response of a bar of a thermoelastic phase transforming material loaded quasistatically is investi- 
gated. A critical loading rate is identified for the evolution of a single phase boundary in the bar 
during an isothermal process. It is shown that, when the loading rate is larger than this critical loading 
rate, nucleation occurs either continuously or at multiple sites; when the loading rate is lower than 
this critical loading rate, the size of the hysteresis loop increases with increasing loading rate, and 
decreases with an increase in the mobility of the phase boundary. The heat conduction due to the heat 
generated by the latent heat of the phase transformation is considered for a special case. 
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I. In troduct ion  

Martensitic transformation can be induced by mechanical loading when the tem- 
perature is within a certain range. This is the so-called stress-induced martensitic 
transformation. One of  the main features of  the stress-induced martensitic trans- 
formation is that the load-deformation curve in a uniaxial test is hysteretic during 
the loading and unloading process. This phenomenon is called pseudo-elasticity. 
The stress-induced martensitic transformation is thermomechanical  because there 
is latent heat generated during the phase transformation (Grujici et al., 1985; Shaw 
and Kyriakides, 1994). However,  when the loading rate is very low, the transfor- 
mation process can be treated as isothermal (Shaw and Kyriakides, 1994). Efforts 
have been made towards understanding and modeling of  pseudo-elasticity, see for 
example the work of  Abeyaratne and Knowles (1993), Falk (1980), Jiang (1993), 
Kim and Abeyaratne (1995), Leo et al. (1993), and Miiller and Xu (1991). Here we 
investigate the macroscopic  response of  the stress-induced phase transformation 
by using the model  proposed by Abeyaratne and Knowles (1993), though our view 
point is different. 

* Current address: Graduate Aeronautical Laboratories, Mail code 105-50, The California Institute 
of Technology, Pasadena, CA 91125, USA. 



146 XIAOGUANG ZHONG AND R.C. BATRA 

Borrowing from an idea widely used in materials science, Abeyaratne and 
Knowles (1988) proposed a nucleation criterion and a kinetic relation to describe 
solid-solid phase transformations at the continuum level. With these two consti- 
tutive relations added to the conventional constitutive relation, Abeyaratne and 
Knowles (1988, 1993) predicted hysteresis, and Abeyaratne et al. (1994) predicted 
shape-memory effects in martensitic transformations. However, the nucleation cri- 
terion does not determine uniquely the nucleation site in a uniform bar. One way to 
ascertain this is to assume a geometrical inhomogeneity in the bar, as Abeyaratne 
and Knowles (1988) did; another way is to select a favorable nucleation site, as 
was done by Abeyaratne and Knowles (1993), and Kim and Abeyaratne (1995). 
For the latter case, it is implied that once nucleation begins, the kinetic relation 
takes over. 

Here we build upon the model of Abeyaratne and co-workers, and do not assume 
a priori a nucleation site in the form of a geometrical inhomogeneity or a defect. 
Instead we consider the effect of gravitational force and presume that the nucleation 
criterion holds at all times. The specimen's weight provides a natural inhomogeneity 
in the specimen, and models more closely test configurations in which a specimen is 
held vertically in a testing machine. We analyse both a displacement controlled test 
and a load controlled test. In each case, deformations are assumed to be isothermal 
and a critical loading rate is identified. When the loading rate is smaller than this 
critical value, a single phase boundary separating two distinct phases propagates 
slowly. When the loading rate is larger than this critical loading rate, the nucleation 
takes place either continuously or at multiple sites. Furthermore, if the loading rate 
is smaller than the critical loading rate, the size of the hysteresis loop increases with 
an increase in the loading rate, but decreases with an increase in the speed of the 
phase boundary. Also, the analysis reveals that the transformation process should be 
treated as dynamic for loading rates exceeding the critical loading rate even though 
it may be small in the usual sense. If the latent heat is taken into consideration, we 
have a coupled nonlinear thermo-mechanical problem. We consider a special case 
for which an analytical solution is formally obtained. We observe that the phase 
boundary speed decreases due to the latent heat generated at the phase boundary, 
and the reverse transformation can occur even under a monotonically increasing 
load; this was speculated by Kim and Abeyaratne (1995). Also serrations in the 
load-displacement curve can be caused by local heating. 

Many conclusions drawn from this work agree qualitatively with test findings. 
In Section 2, the model used is summarized briefly. We analyze analytically the 
hysteresis of the stress-induced phase transformation in an isothermal process 
under various loading conditions in Section 3. A thermomechanical problem is 
considered in Section 4. 
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2. A Model of Phase-Transforming Material 

Consider a one-dimensional bar with uniform cross section A that occupies the 
interval [0, L] in an unstressed reference configuration, see Figure 1. A thermo- 
mechanical process in the bar is characterized by the longitudinal displacement 
field u(z,  t) and the temperature field O(z, t). We assume that u and 0are continuous 
with piecewise continuous first and second derivatives in (0, L) for t > 0. Let 
"~(x, t) = ux(z ,  t) =- Ou(z,  t ) /Oz  denote the axial strain in the bar. The material of 
the bar is assumed to be thermoelastic and is characterized by a two-well Helmholtz 
free energy potential ~b(7, 0) in a certain range of temperature. Such kinds of 
materials can undergo solid-solid phase transformations. In fact, the material has 
two stable or metastable phases; one can be dentified as austenite which is stable at 
high temperatures, and the other as martensite which is stable at low temperatures. 
The axial stress cr and the entropy per unit mass r/in the bar at a particle can be 
expressed as 

cr = 6-('y, 0) = p~b.r ('y , 0), (2.1) 

=-¢0(7,0), (2.2) 

where p is the referential mass density of the bar. On neglecting the effects of 
inertia forces, the principle of linear momentum and the first and second laws of 
thermodynamics give the following governing equations in a smooth region: 

crx + P9 = 0, (2.3) 

qz = P&Tt, (2.4) 

and 

qOz >~ O, (2.5) 

where 9 is the gravitational constant, and q is the heat flux. 
At a discontinuity :c = s(t) where a phase boundary, if there is one, is situated, 

the following jump conditions must hold: 

[a] = 0 ,  (2.6) 

[q] + f k + pO[~]k = O, (2.7) 

where f defined by 

f = p[~b] - a['),] (2.8) 



148 XIAOGUANG ZHONG AND R.C. BATRA 

O 

Fig. 1. 

"// / / / / / / / / / /  
• 

L 

1 
P,~ 

A schematic sketch of the problem studied. 

is the driving traction on the phase boundary, a superimposed dot denotes the 
material time derivative, and [a] indicates the jump in cr across the phase 
boundary. 

In addition to constitutive relations (2.1) and (2.2), we also have the following 
constitutive relations for the phase transformation process: one is the nucleation 
criterion which determines when and where a new phase will initiate, and the 
other is the kinetic relation which determines the rate of  phase transformation. The 
nucleation criterion can be stated as 

austenite --~ martensite • or(z, t) >~ Ocr(0), (2.9) 

martensite -~ austenite : or(z, t) ~< Crc*r(0), (2.10) 

where Crcr(0 ) and Cr~r(0 ) are the appropriate critical stresses. The kinetic relation 
can be stated as 

f ---- ~b(,~, 0), (2.11) 

where q5 (6, 0) is a monotonically increasing function of  ~ and may be discontinuous 
at ~ --- 0, but is continuous elsewhere. Alternatively, we can express the kinetic 
relation as 

~ = V ( f ,  0). (2.12) 
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We use the model proposed by Abeyaratne and Knowles (1993). For 0 < 0 < Oc, 
the Helmholtz free energy function is given by 

~'72--aap '7(O--OT)- -C010g0@ , - 1  < ' 7  <'Tin(O), 

_e_ "r~'('~--'r'~ ) 2 - ( ~ (  O)-~m ( O) )~ 
- -  2p ~M(O) - -~m(O)  

~ ( ~ , 0 )  = - - a # / ~ ( O - - O T ) - - c O l o g ~ ,  7re(O) < 7 < 7 m ( O ) ,  (2.13) 

- 2 + + - 

- - # / p a T ( O - - O r ) - - c O l o g ~ ,  7M(O) < 7 .  

When 0 > Oc, the material can have only the austenite phase. For the Helrnholtz 
free energy function given by (2.13), we have 

#') '  - -  # 0 ~ ( 0  - -  OT) , - - I  < "7 < "Tm(O), 

~ ' ( ' 7 ,  O) = # ( ' 7  --  "7T('7 --  " T M ( O ) ) / ( ' 7 m ( O )  

- - ' 7 M ( O ) ) )  - -  #0~(0  --  OT) ,  "Trn(O) < "7 < "7M(O),  

U('7  - -  "7T) - -  # 0 ~ ( 0  - -  OT) ,  "TM(O) < "7 < (:X:). 

(2.14) 

Furthermore, from (2.8), we have 

f = ' 7 T (  cr - -  f i T ) ,  (2.15) 

A T ~ ' y T O T (  M - [ - m  ) =  a 
p 2 ' 

(2.16) 

and 

pAT (0 -- OT), 
~ r T -  OTTT (2.17) 

where "7.~ ( 0 ) = "7c + m ( O - O c ) , and "7 M ( O ) = 7c + M ( O - O c ) . Here a is the coef -~ 
ficient of thermal expansion, 7T the transformation strain, 0T the transformation 
temperature, c the specific heat, AT the latent heat, and aT the Maxwell stress at 
temperature 0. 

We call strain interval - 1 < "7 < "7.~ (0) 'the low-strain phase' or 'austenite', the 
interval 7re(O) < 7 < "7M(O) 'the unstable phase', and 7M(0) < 7 'the high-strain 
phase' or 'martensite'. The low-strain and the high-strain phases are metastable 
phases. 

We further assume that heat conduction is governed by Fourier's law, 

q = kOz, (2.18) 
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where the thermal conductivity k is taken to be a positive constant. 

3. An Isothermal Process 

For an isothermal process, the temperature and entropy in the bar are necessarily 
constants (see Abeyaratne and Knowles, 1993), and are denoted by 00 and r/0 
respectively. Thus there is no heat conduction. In this section, we omit 0 and r~ in 
all expressions and reformulate the mathematical problem as a mechanical one. It 
is also assumed that there is at most one phase boundary in the bar at x = s(t). 
The corresponding governing equation is, when x 7~ s (t), 

crz + pg = O, (3.1) 

and at x = s(t), the jump condition 

[~] = o  (3 .2)  

must hold. The stress-strain relation (2.14) can be expressed as 

#9', --1 < 7 < 3 ' m ,  

o( '~ )  = ( ~ . ,  - O M )( ' ~  - -  7 M ) / ( 7 . .  - -  "~M) + o M ,  

/Z (7  - -  ~ 'T) ,  7 M  < "/ < Cx3, 

7m < 7 < 7M, (3.3) 

where cr,~ -- #Tm, O'M = / t ( " / M  - -  ")'T). The driving traction is given by 

f = "yT(cr -- a0), (3.4) 

where a0 is the Maxwell  stress at temperature 00. 

3.1. DISPLACEMENT-CONTROLLED TEST 

The displacement A( t )  is imposed at x = L with A(0) = 0. Let ~(t) = A(t ) /L .  
If  we denote the stress at z = L by p(t), then or(z, t) = p(t) + pg(L - x), so we 
have for - 1  < or/# < 7m 

1 fo L a ( z , t )  dx = p(t_~)+ pg_~_L 
~(t) = -£ ~ ~ 2~ (3 .5)  

Let 6(t) = 8(t) - (pgL/2tt), then 

5 ( t )  - p ( t )  (3.6) 
# 

When or(0, t) = p(t) + pgL = Ocr, martensite will initiate at z = 0. As the 
axial stress is monotonically decreasing along z, the point x = 0 is the only place 
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in the bar where nucleation occurs. The phase transition initiates at time t = t* 
given by 

6 ( t * )  - -  O c r  - -  pgL  ( 3 . 7 )  

# 

Reset the time scale by taking t = t* as a new starting time. Then we have s (0) = 0, 
where s(t) is the position of the phase boundary at time t, 6(0) = (act - pgL) /#  
and p(0) : act - pgL. Recalling (3.3)3 and (3.5), we have 

p(t) 
6(t) -- + '-~-~ s(t). (3.8) 

# l.a 

The phase boundary position s(t) is determined from equation (3.8) and the fol- 
lowing kinetic relation at the phase boundary: 

As 

"~T(~(S, t) - oo) : ~(~). 

a(s , t )  = p(t) + pg(L - s(t)) = #6(t) + pgL 

from (3.9), for constant loading rate, we have 

#')'T q- pgLs( t )  ' 
L 

¢'(~)~ + ~ - - (~  + a)~ : ~TT~, 

where ~(0) = q ~ - I  ( . ) ,T(O-cr  _ O.0)), a = (pgL)/(#7~).  
It is easy to show that equation (3.10) has a single stable equilibrium point 

Thus 

• _ ! 

Seq (1 + a ) fT  " 

On the other hand, from (3.9), we also have 

(3.9) 

(3.10) 

if~ < ( l+a)h(O)(TT/L) , theng( t )  < 0, h(t) < h(0)andh(t)  --~ (L~)/((1 + 

~)7~)" 
if 6 > (1 + a)h(O)(TT/L), then g(0) > 0, which means ~(0+) > h(0). 
Thus the stress at x = s ( 0 + ) +  will be greater than act, which indicates that 
nucleation occurs in front of the phase boundary. This means that when the 
single phase boundary assumption is removed, the nucleation of new phase 
occurs either continuously or at multiple sites. 

(3.12) qS,(~)g_ #q,~ (h(O) - L~ ) 
Z (1 + a)TT " 

we have 

(3.11) 
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So we have identified a critical loading rate, 

~cr --- (1 q- a)¢-l(')'T(acr - (:ro)) ~ T . (3.13) 

When ~ < ~cr, we check the macroscopic response of the bar, i.e., the relation 
between p(t) and ~(t). 

Using equation (3.8), we can rewrite equation (3.9) as 

¢ ~ --  --  7 T ( 1  + a)p + #TTa~ + #07T = O, (3 .14)  

where ~o = ao - pgL, and 

) ~ s ( 0 )  . (3.15) 

Therefore, 

• If ~ < (Tr /~ )  ~ (0), then ~(0) < 0, and the load will drop due to the nucleation 
of the new phase.. 

• If (TT/L)~(O) < ~ < ~cr, then ~(0) > 0, and the force at x = L will increase 
due to the nucleation of the new phase. 

With 

pr(t) = p(t) -- ¢ ~ + #Tra5 + aO~T (TT(1 + a)), (3.16) 

equation (3.14) can be written as 

( ~ [ ~ 2 a  ~ r ) ) _ ¢ ( ~ ) = T T ( 1 T a ) p r "  (3.17) 
. 

We can show that equation (3.17) has a stable equilibrium point, 

l + a  

Thus, for large t, 

- - ) -  ¢ ( 7 - ~ ) ) / ( 3 ' T ( 1  + a))- 

L ~ 
¢ (5¥ 1 - ¥ - 5 ) # a S  &o 

p( t) -~ + + - - .  
"~T(l+a) ~ l + a  

(3.18) 

(3.19) 

For an unloading process we obtain similar results, and omit the analysis. As 
¢(z) is a monotonically increasing function of z, from (3.19), we can see that 
the larger the loading rate, the larger the size of hysteresis loop which equals 
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Fig. 2. A typical macroscopic response of the bar in an isothermal process. 

the difference between the load during the forward transformation and the load 
during the reverse transformation. If we take the kinetic relation as linear, such as 
qS(k) = wk, then we see that the size of the hysteresis loop will decrease as the 
mobility (1/w) of the phase boundary increases. 

Heretofore, we have assumed that the kinetic function ¢(~) is continuous. For a 
kinetic function discontinuous at ~ = 0, but continuous and monotonic elsewhere, 
we can obtain similar results. 

A typical p - 5 curve predicted by this model is given in Figure 2. It should 
be noted that the load drop due to the nucleation of the new phase depends on the 
critical stress, loading rate, and the mobility of the phase boundary. 

3.2. FORCE-CONTROLLED TEST 

The analysis here is similar to that in Section 3.1, except that p(t) is known instead 
of 5(t). The elastic loading part is exactly the same as before; once a new phase 
initiates at z = 0, equation (3.8) holds, but the equation obtained from the kinetic 
relation is quite different now. For constant loading rate, it is 

¢(~) + a ~ " ~ s  = 7Tp(t) --7T?rO 
L 

with s(0) = 0, or alternatively, 

qS'(~)g = ")'T (~ -- a - ~ )  • 

(3.20) 

(3.21) 

Therefore, 
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1. If/5 < a(#fT/L)h(O), then h(t) < ~(0), and the axial stress at the phase 
boundary drops. The phase boundary propagation speed will approach a con- 
stant, 

~ -4 - - - .  (3.22) 
/Z'yT a 

In other words, if we have a long enough specimen, then the eventual transfor- 
mation rate will be in equilibrium with the loading rate. 

2. If j5 > a(#')'T/L)~(O), then ~(t) > ~(0), and the axial stress at the phase 
boundary is greater than the critical stress. Due to the continuity of the stress in 
[he bar, the axial stress in front of the phase boundary is larger than the critical 
stress. Thus rather than the evolution of a single phase boundary according to 
the kinetic relation, we have either a continuous nucleation of new phase or 
nucleation of new phase at multiple sites. Hence the critical loading rate is 

/Z'YT 1_1 
~Scr = a-~-q~ (3'T(acr -- a0)). (3.23) 

3.3. REMARKS 

The foregoing results illustrate that, the evolution of the phase transformation at 
one location in a quasistatically loaded bar can happen only in a limited, and 
practically very small loading rate range. When the loading rate is larger than the 
critical loading rate, the single phase boundary assumption is not valid. 

For the loading rate smaller than the critical loading rate, we make the following 
observations: 

• Generally there is a load drop in the p - 3 curve. However, the load rise is 
generally an indication of nucleation of the second phase at multiple sites. 
This conclusion is consistent with the experimental results (Grujicic et al., 
1985). 

• Though the propagation speed of the single phase boundary varies with time 
even when the loading rate is constant, it approaches a steady value very fast 
(see Equation (3.11)). So except at the time of initial nucleation of new phases, 
one can assume that the phase boundary propagation speed is nearly constant 
This has been assumed by Grujicic et al. (1985), Leo et al. (1993), and Shaw 
and Kyriakides (1994). 

• The phase boundary propagation speed equals approximately ((1 + a) fT)-1  
times the grip loading rate. For the NiTi specimens used by Leo et al. (1993) 
and Shaw and Kyriakides (1994), the single phase boundary propagation speed 
is predicted to be about an order of magnitude higher than the grip loading 
rate; this was observed by Shaw and Kyriakides (1994). 

• If the body force is neglected, i.e., if we take a --~ 0, for a displacement 
controlled experiment, we still have a finite magnitude of the critical loading 
rate, but for the force controlled experiment, the critical loading rate goes to 
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zero. So in the absence of body forces, even with the assumption that there 
exists a favorable nucleation site, the force controlled experiment on phase 
transitions can not be treated as quasi-static. 

When the loading rate is larger than the critical loading rate, in displacement 
controlled or force controlled experiments, the phase transformation process should 
be treated as dynamic rather than quasi-static, even though the loading rate might 
be small in the usual sense. Thus, the comprehensive experimental results obtained 
by Shaw and Kyriakides (1994) and especially the multiple site nucleation shown 
in their :c - t plots, can be explained. We are currently working on the modeling 
of hysteresis in martensitic transformation by using a dynamical model. 

We note that this model can not predict, in an isothermal process, the serrations 
commonly observed in the load-deformation curve. If we abandon the assump- 
tion that the kinetic function must be a monotonically increasing function of the 
propagation speed of the phase boundary, that is, if we consider an unstable kinetic 
function, then serrations can be accounted for by the model in an isothermal process 
(Rosakis and Knowles, 1996). However, it is more likely that serrations are either 
due to the thermal softening of the material caused by the latent heat generated 
at a phase boundary, or due to the nucleation at multiple sites in the specimen, or 
possibly due to the inertia effect in the phase transitions. 

4. A Process with Heat Conduct ion 

4.1. A SPECIAL CASE 

The latent heat given off at the phase boundary (Gmjicic et al., 1985) will serve 
as a source of heat and make the temperature in the bar nonuniform. In order to 
obtain an analytical solution, we assume that the coefficient of thermal expansion, 
a,  is zero, and the bar is insulated from its surroundings. The latter assumption 
is reasonable for experiments conducted in air. Thus from equations (2.4), (2.2), 
(2.13) and (2.18), when x • s(t), 

Ot =uOzz, (4.1) 

where u = k/pc  is the thermal diffusivity. 
When x = s(t),  equations (2.7), (2.8), (2.2), (2.13), and (2.18) yield 

[q] = [kOz] = --i(7T(P + p9(L - s)) + pAT). (4.2) 

So there is a moving heat source at x = s(t). 
The initial condition is 

O(z, 0) = 0o, (4.3) 

and the boundary conditions are 

Oz(O, t) = O=(L, t) = 0. (4.4) 
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We can rewrite the governing equations as 

Ot = POzx + ~(x -- s(t))~(~/T(p + pg(L - s)) + pAT)/(pc), (4.5) 

where ~ is the Dirac (~-function. 
The phase boundary position s(t) is determined by kinetic relation (2.12), 

i.e.~ 

h(t) = V( I ,  O(s(t), t)), (4.6) 

where 

(~ 0(~(~/,~/-0~) (4.~ 
I = ~ r  ( t )  + ~ 9 ( ~  - s ( t ) )  - ~ I r ~ r  0 r  " 

We can solve equation (4.5) foca l ly  for 0 ~ d  substitute the result into the kinetic 
relation (4.6). The formal solution of (4.5) is 

n~x (4.8) o(~,t) = O o +  ~ ~. ( t )cos~ ,  
n : O  

where, for n ¢ O, Cn (t) is given by 

pCCn(t) = 2~-r(t) 2")'T(#~/T(nTr) 2+ pgL) (cos n~_~(t) 

/oo 
_ 2 u ~ t s i n ~ e - ~ ( t - ~ ) ( n ~ / ~ ) ~ d r  

~ ~ . ~  + ~ ~ ~ L2 c o s  e -u(t-r)(nr/L)2 d~; (4.9) 

and for n = 0, we have 

2 2 ~ t  
pcco(t) = ~s( t ) r ( t )  -- ~ ~TT~8(T) dT + 

an~ ~(~) = p(t) + pa(L - ~(t)). 
Substitution from (4.8)-(4. lO) into (4.7) results in 

~(t) = ~(~( t ) ,  ~(t)), (4.~ ~) 

e-"t(nrr / L )2 ) 

~T(#~/T + pgL) s2(t), (4.10) 
L 2 
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which is a highly nonlinear equation for s(t). By solving this equation, we can find 
s (t), and 0 (z, t), the macroscopic response of the bar, i.e. the relation between p(t) 
and d(t). However, this equation can not be solved analytically. 

4.2. CASE STUDY 

We solve (4.11) approximately by the forward difference scheme, 

S(tn+l) = s(tn) + A t a ( s ( t n ) ,  5(tn)). (4.12) 

The parameters used in the calculations are of the right order of magnitude; it is 
hard to get a full set of parameters for a single material. We take # = 10 GPa, p = 
103kg/m3,0T = 300°K, 0c = 400°K, 00 = 325°K, TT = 1 .25%,M = 7.5 × 
10 -5, m = 10 x 10 -5, the thermal diffusivity v = 10 -4 m2/s, the thermal conduc- 
tivity k -- 100 J/(ms°K), the specific heat c = 103j/(kg°K), and the length of the 
specimen L -- 1 cm. 

The kinetic function used for calculations is V(f, O) = f /w  with w = 106 Ns/m 3, 
and the loading rate ~ is taken to be 10-3/s. The phase boundary propagation speed 
vs. time curve is given in Figure 3. Due to the latent heat given off at the phase 
boundary, it moves back and forth even though the bar is under monotonically 
increasing load; during the reverse phase transformation, the speed of the phase 
boundary decreases. The force-elongation curve is shown in Figure 4; we see the 
serrations in the p - 5 curve due to the local heating. The temperature change at 
the center of the bar during the phase transition is given in Figure 5. 

4.3. DISCUSSION 

The analysis of the simplified thermomechanical process reveals some features of 
thermal effects on phase transitions. First, the latent heat given off at the phase 
boundary decreases its propagation speed. Secondly, when the loading rate is small 
enough, it can also induce reverse transformation even though the load is monoton- 
ically increasing. An analysis of the thermal effects on the phase transformation 
process in a more realistic setting was recently conducted by Kim and Abeyaratne 
(1995). However, no serrations in the load-displacement curve were observed by 
them. And thirdly, due to the elevation of the temperature near the phase boundary, 
load rise due to the nucleation of new phases is more likely than in an isothermal 
process. 

From the present work and the experimental observations of Shaw and 
Kyriakides (1994), we conjecture that the thermal and interia effects play important 
roles in developing serrations in the load - deformation curve, and more generally 
in the solid-solid phase transitions. 
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Fig. 4. The macroscopic response of the bar in a thermomechanical process. 
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Fig. 5. Temperature change at the center of the bar; (a) the forward phase transformation, (b) 
the reverse phase transformation. 
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