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Abstract. For a helical body made of a linear piezoelectric material and loaded at one end only by 
a system of self-equilibrated forces, it is shown that the strain energy stored in the part of the body 
distant at least s from the loaded end decreases exponentially with the distance s. 

1. Introduction 

Toupin [8] gave the following mathematical formulation of Saint-Venant's principle 
in 1965. For a linear elastic homogeneous prismatic body of arbitrary length and 
cross-section loaded on one end only by an arbitrary system of self-equilibrated 
forces, the elastic energy U(s )  stored in the part of the body which is beyond a 
distance ~ from the loaded end satisfies the inequality 

U(s) ~< U(0) exp[ - ( s  - l)/sc(1)]. (1) 

The characteristic length so(l) depends upon the maximum and minimum elastic 
moduli  of the material and the smallest nonzero characteristic frequency of free 
vibration of a slice of the prismatic body of axial length I. By using an estimate 
due to Ericksen [4] for the norm of the stress tensor in terms of the strain-energy 
density, one can show that so(1) depends on the maximum elastic modulus only. 
Inequalities similar to (1) have been obtained by, amongst others, Berglund [3], 
Batra [1] and Batra and Yang [2]. Developments of Saint-Venant's principle in 
various settings of linear elasticity have been summarized by Horgan and Knowles 
[5] and by Horgan [6]. 

As pointed out by Toupin [8], the decay rate in Saint-Venant's principle depends 
strongly on the shape of the body. Here we consider a helical piezoelectric body 
with arbitrary but constant cross section. Following Batra and Yang [2], we modify 
the standard governing equations for linear piezoelectricity. We also propose a 
variational principle for the new form of governing equations. We describe defor- 
mations of the helical body in suitable curvilinear coordinates so as to keep our 
analysis close to that of Toupin. 



70 R.C. BATRA AND X. ZI-IONG 

2. Equations for Linear Piezodectricity 

Let the finite spatial region occupied by a piezoelectric body be B, the boundary 
of B be OB, the unit outward normal be n and ~B be partitioned as ~Bu U 0Bt = 
O BE O ~ BD = ~ B and O Bu fq O Bt = O BE f~ ~B~ = ~b, where ~Bu and O Bt 
are parts of 0 B  on which mechanical displacements and surface tractions are 
prescribed respectively. OBE is the part of OB which is in contact with a metal or 
an electrode, hence the tangential electric field vanishes on it. OBo is the part of 
~gB on which surface electric charge is prescribed. The surface electric charge is 
usually zero for dielectrics. The governing equations and boundary conditions for 
static linear piezoelectricity [7] are 

V . T = 0 ,  

~7 .D = 0 ,  ~ T x E = 0 ,  

OH 
T -  - - - C s - e E ,  

0s (2) 
0 H  

D -  0E - e s + x E '  

s = ½(Vu + (Vu)T) ,  in B, 

and the boundary conditions are 

u = ~ on 0Bu, Tn  = ~ on OBt, 

n x E = 0 on 0BE, D . n  = 0 on OBD, (3) 

where T is the stress tensor, s the infinitesimal strain tensor, u is the mechanical 
displacement _vector; E is the electric field vector, D is the electric displacement 
vector; ~ and f are prescribed boundary displacements and tractions respectively. 
H(s ,  E) is.the electric enthalpy function given by 

/ t  = ½s. Cs - ½E. x E  - E .  eS, 

where C is the fourth-order elasticity tensor, X the second-order electric permittivity 
tensor, e is the third-order piezoelectric tensor. These material constants exhibit 
the following symmetries: Cijkt = Cjikt = C~tij, eij~ = ei~j, X~ = Xji, and 
furthermore C and X are positive definite. It is easy to verify that H ( s , E )  is 
indefinite. We use the internal energy density 

W = W ( s , D ) = ½ T . s + ½ D - E = H + E . D ,  

and note that W is positive definite. 
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Following Batra and Yang [2], we introduce an electric displacement potential 
vector ~b and an anti-symmetric electric displacement (second-order) tensor D as 
follows: 

19 = - ½ ( r e -  (re)T),  

o - -  

Corresponding to 19, we also introduce an equivalent second-order anti- symmetric 
tensor 

~ ----- ~E~ 

where e is the third-order alternating tensor. 
Taking s and 19 as variables for W, and u and @ as basic variables, then V.D = 0 

is satisfied identically, and the governing equations can be written as 

w=w(s,V), 
V . T = 0 ,  V . ~ = O ,  

OW OW 
T -  ~ = - ~  

Os ' 019 ' 

(4) 

and boundary conditions (3)3,4 are replaced by 

£ n = 0  on OBE, ~ = 0  on OBD. (5) 

Since the internal energy density W is a positive definite quadratic function of 9 
variables, sij and 19ij, we denote the ordered pair (sij, 19i~) by F. Thus we have 

W = ½F.CF, (6) 

where C is a linear transformation from a 9-dimensional linear space into a 9- 
dimensional linear space, and because of the positive definiteness of W, 

OW OW 
= CF.  CF = F • C2F <~ 2C~MW, (7) 

OF OF 

where aM is the l~gest eigenvalue of C. 
Let 

Z=fBW(S, 19)dv-fo t . u d a +  fo ¢ • ~bda, (8) 
Bt B D 
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where ~b = £n. It is easy to check that ~Tr = 0 is equivalent to equations (4), (3)1,2 
and (5). We note that the commonly used potential is of the form 

t . u d a +  f0 C D . n d a ,  (9) ~ = fBW(s 'E)dv-  foBt BD 

where ¢ is defined by D = - V ¢ .  

3. Formulation of  the Problem 

Consider a linear piezoelectric body B which is a clockwise helix of arbitrary 
but constant cross section in the unstressed state. Introduce a fixed rectangular 
Cartesian coordinate system X with the X3-axis coinciding with the axis of the 
helix, the plane X 3 = 0 containing one end cross-section, and X 3 ~> 0 for points 
in B. The base vectors for X-coordinates are ei (i = 1,2, 3). Following Batra [1], 
we introduce the curvilinear coordinates Y by the transformation 

y2  = si 0 cosO 0 X 2 , (10) 

y3  0 1 X 3 

where 0 = bX 3 = bY 3, b is the angle of twist of the helix. In index notation, 

X ~ = R } Y  s. (11) 

Through transformation (10), we transform the helix in the X-coordinates into a 
straight prismatic body in the Y-coordinates. 

The covariant base vectors of the Y-coordinates are given by 

OX OX ~ 
gi = Oyi  -- Oy i  ek, 

i.e. (gl) 
g2 = 

g3 

sin/9 cos O e2 • 

- b Y  1 sin/7 + by2 cosO - b Y  1 cosO - by2sinO e3 

The metric tensor G, defined by Gij = gi "gj, has the form 

[Gi~] = 
1 0 bY  2 

0 1 - b Y  ~ 

bY  2 - b Y  ~ 1 + b2((Y~) 2 + (y2)2) 

(12) 

(13) 
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and the non-zero components of the Christoffel symbol are 

73 

r h  = r h  = ~,, 

I'~3 = I'3~l = - b ,  

r~3 = -b2yl~ 

r3~3 = - b 2 y  2. (14) 

We now write governing equations and boundary conditions in the Y-coordinates. 
For simplicity we derive the governing equations by the variational principle (8). 
The key issue is to relate components of s, u, D and ¢ in the two coordinate 
systems. In order to simplify subsequent algebraic manipulations, we denote the 
components of u with respect to X coordinates by ¢t i and introduce the ordered 
triplet u i by 

~t i = R )  u j .  

Thus 

U = ~2Zei 

= (u 1 - by2u3)gt + (u ~ + by lu3)g  2 + n3g 3 

_= ~g~ + ~g~ + ~3g 3. (15) 

So u 3 is the component of u in the g3 direction in the Y coordinates, but u 1 and u z 
are not components of u in the gl and g2 directions. 

Recall the definition of the gradient in curvilinear coordinates (e.g. see Malvern 
[9]) 

~ = ½(vu + (vu) r) 

1 { O~ t - O~t t Gt j r~k)C)k)  " " = ~ ~Gub--~ + G~Jb--~ + (G.r~k + . g'g~ 

• . 

= Si jg 'g  a. (16) 

Written explicitly, 
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Ou 1 
Sl l  ---- Oy l ,  

l(Ou I Ou2~ Ou 2 
,5'12---- ~ ~--y--~ + Oy 1 ) ,  S22 = Oy 2 , 

1 (Ou 3 OU 1 Oul 10zt2 ~ 
Sl3 = -~ ~k Oy  1 + " ~  + bY 2 0 y  1 bY - ~  + bu 2) , 

1 ( Ou 2 Ou 3 Ou 1 Ou 2 ) 
$23 = ~ ~k~--y-" ~ + ~ + by2oy-"- ~ - bY 1 0 y  2 bu 1 , 

OU3 Oul 10u2 
$33 = Oy 3 + b Y 2 0 y  3 - bY - ~  + b2(ylu  1 + y2u2). 

Similarly, if we define ¢ = ~iei and 6i = R~ CJ, we have 

(17) 

~)11 ~- ~)22 = ~)33 ---- O, 

7~12 = -Zhl  = - ~  ~ Oy2 

1 ( 0 ~  1 
~ 3  = -~3~ = - ~  ~Oy3 

1 f 0 ¢  2 
~23 = - ~ 2  = - ~ ~ O y  ~ 

OY 1 ] 

0~33 0 ¢  2 
Oy1 + bY 1 0 y  1 

0¢ 3 0¢ 2 
Oy2 + bY l Oy 2 

_ _  _ ) coy1 + b¢2 ' 

_ _  _ by  2 0 ¢  1 b¢1~ 
OY 2 ] " 

(18) 

Thus 

w = w ( s , v ) =  e¢(%, ~ ~ ¢,~,u,  ¢~), 

where a comma followed by the index j implies partial differentiation with respect 
to YJ. The potential function (8) in the Y-coordinates can be written as 

7r = f B ( V d v -  foBtt iui  da + fOBD¢i@da, (19) 

where dv = dY 1 dY 2 dy3,  da = dU 1 dU 2, y i  = y i ( u l  ' U 2) being the parametric 
representation of the lateral surface of the helical body. (57r = 0 gives 

J Ou i = O, - J 0 ¢  ~ O, (20) 

and 

o ~  o ~  
~' ,s  ~u~ ns = f~' v-~-'-~ n~ = ¢~" 

,J 
(21) 
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For the problem under consideration, the loads are applied at y3  __ 0, and the 
remainder of the boundary is free of mechanical and electrical loads. Let 

Cs = {Y: Y E B , Y  3 = X 3 = 8 } ,  (22) 

then we require that 

fco O~ ~ dy1 dy2 = fCo fi d y l d y Z  = 0, 

fC 6kleijkYJft dY 1 dY E = 0. (23) 
o 

Here moments are taken with respect to the origin and Co is defined by (22). 
Before we state our theorem, we note that for a rigid body motion w and for 

any given u, if 

v = u + w, (24a) 

then 

W ( v '  , / , '  ' " ~(<~, ' , .~, ~, j ,  v ' ,  ¢ ' )  = ~.~, ~,,, ¢ i ) .  &~ (v) = Sij (u), (24b) 

With the definitions, 

a -- b sup (IYll, lyE1), 
YECo 

Cs,t =- {Y: Y E B, s ~< y3  ~< s + l}, (25) 

f y  W dv, U(~) = ~> 

we have the following 

~ O ~ M .  If  for an unstressed helical body ~ d e  of a linear piezoelectric 
material, the loads applied at Y ~ = 0 satis~ (2~) and 

oCv 
O u  i n j  = 0 o n  OB - Co, 

,J 

o¢¢ 
o¢ ,  = o  on OB, 

then 

U(s) ~< U(0) exp ( - ( a  - l)/ac(1)), (26) 
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where 

= ~/~-~--~(1 + 2a). so(l) O~M 

Here )~o( l) is the smallest non-zero characteristic value of free vibration of a slice 
of the helical body of axial length l, with the mass density per unit volume equal to 
one, and with the i~nertia density associated with d2 equal to one. 

Proof. Since W is a homogeneous quadratic form of u:j, ¢~j, C, ¢~, by Euler's 
t heo rem,  

U(s) = f I;V d~ 
dYa>~ 

= ~/y3), f OlaF i OIfV i O~r i ~ i ~  [ ~u,j + ~ * , j  + + d~ ,-~,~ ~ u  0¢ i ] 

= ~ / c . { O * ,  0 " , ,  ~ . ~ u  ~ + 

1 [ o ~  ~ o $  .~ 
2fc~ + 

= - -  

To obtain (27), we used the divergence theorem ~ d  the equilibrium equations (20). 
Because of (~) ,  we c ~  write (27) ~ 

U ( s ) = - ~ / c ,  { O ~  i O~ .i~ + ) 

Using expressions (17) ~ d  (18) for Sq ~d  Dij, we have 

OI~V 1 0 W  ~lm -]- OW 2 
Ov~3 - 20Sm'~ -0-~ b Y '  

o~v 1 ow_~2.~ - o_~W bg~ ' 
Ov~3 - 2 0S~3 0S33 

ol;v o w  
0V,33 -- 0 S 3 3 '  

(29) 



S A I N T - V E N A N T ' S  PRINCIPLE 77 

and similar expressions for (01~¢'/0¢13) can be obtained. Substituting (29) and 

similar expressions for (01~/0¢13) into (28), using the Schwarz and geometric- 
arithmetic mean inequalities (see [8]), i.e. 

2 ~  fhdv<~ 7 ~  f 2 d v + l  f~h2dv (30) 
"7 

for every 7 > 0, we have 

u(~) .< ~eijr [7[ ( Ow ow Ow ow ] 
J C ,  - -  + d a  ~ os~3 ova3 ov~3] 

lfo (¢vJ + ¢'¢J)da] +~ , 

-Z ~ ~ e, j~.  ~ os~-~. + ov~-~ ov~-~, da 

] + - $ij(viv j + ¢i¢J)da  
7 • 

~[ ; ~/~ ] <~ -~ 2~M7 W da + - ~ii(viv i + ~ i ~ ) d ~  , (31) 
• ~ ~ 

where r = (1 + 2~) ~ d  we have Nso used (7). Integ~te both sides of (31) with 
respect to Y~ from Y~ = ~ to Y~ = ~ + I for some I > 0 ~ d  set 

1 [~+~ 
7 ~ U(t) dt = Q(s, l). (32) 

~ e  result is 

] ~(s , l )  ~ ~ 2 ~  W d v  + - -  (viv j + ~i~J)dv . (33) 
~,1 ~ ~1 

To bound ~e  second integrN on the fight-h~d side of (33) by ~ integ~ of W, we 
consider the fr~ vibration problem of the helicN spring ~ d  define the following 
eigenvNue problem: 

(0&) 
,J On i + ,~u i = O, 

,J 0¢  i + ~ = o. 

(34) 
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Taking the inner product of (34)1 with ui, of (34)2 with ¢i, integrating the resulting 
equations over Cs,t and adding the respective sides gives 

2 f c,,,l?V dv 
A(/) = 8ijfc,,,( uiuj + ¢i¢J) dv" (35) 

A(/) = 0 if and only if 1~ = W = 0, and W(s, 79) = 0 only when s, 79 both are 
equal to zero. We exclude this physically uninteresting case by requiring non-trivial 
uj and Cj to be orthogonal to the eigenvector (w, ~b) corresponding to the zero 
eigenvalue: 

~ij [ (uiwj + ¢iCj)dv = 0, ~ij [ (uiuj + ¢i~bj)dv # O. 
J C  a,| JCs,l 

Thus the lowest eigenvalue A0(/) will be positive and will satisfy 

A0(/) ~< 2fv,~ W dv 
' ( 3 6 )  

~jfc, , (¢¢ + ¢~¢#) dv' 

so from (33) and (36) we have 

~P (aM7 7A;(1)1 ) 
[ O(8, l) .< + .~I-., Wdv (37) 

7 > 0. We choose 7 = m/(aM'kO) 1/2 so that so(l) = ~ (aM7 + . .._~) for all 

takes the minimum value so(l)= F (~o-~)1/2. Thus 

,c(t) [ Wd~. (38) O(s,l) <~ I Jc,,, 

Differentiation of (32) with respect to s yields 

_ 1J~ Wdv, d~d~ ~ [ V ( ~ + ~ ) - V ( ~ ] = - 7 ~  ,,, 

which when combined with (38) gives 

Q + s~(i)-d~s <~ 0, (39) 

where we have used W ) 0. Integrating (39) and using the property that U(8). is 
nonincreasing, U(s + l) <~ Q(s, l) <. U(s), we obtain 

V(~ + l) ~< exp[ - (~  - ~)/s~(/)]. (40) 
u(811 
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The choice ~ql ---- 0 ,  S 2 = 8 - -  l in (40) yields the desired inequality (26). 

4. Remarks 

For b = 0 the helical body becomes straight and our result reduces to that of Batra 
and Yang [2]. The helical nature of the body affects the decay rate through the 
appearance of a (cf. (25)) in the decay rate. Also the smallest non-zero frequency 
A0(l) of free vibration will be affected by the helix angle and the cross-section of the 
body. As pointed out by Batra and Yang [2], it is difficult to delineate the effect of 
the electric field on the decay rate. Since the presence of electric fields increases W, 
it may lower A0(1). However, its effect on the maximum eigenvalue of the linear 
symmetric transformation C (cf. (6)) is unclear unless one considers a specific 
material. Thus it is hard to quantify how the helix angle and the piezoelectricity 
affect the decay rate. 
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