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Abstract We analyze deformations of a beam

initially in the form of a full sine wave and loaded

by distributed tangential and normal surface tractions

with the goal of finding how the beam curvature and

the consideration of all nonlinearities affect the

maximum values of stresses and deflections. The

curvature of the beam in the left half is opposite of that

in the right half of the beam, and the radius of

curvature varies from point to point. The problem has

been analyzed by using the third order shear and

normal deformable beam theory (TSNDT) that

accounts for all geometric nonlinearities. The beam

material is St. Venant–Kirchhoff for which the second

Piola–Kirchhoff stress tensor is a linear function of the

Green–Lagrange strain tensor. It is found that for

quasistatic deformation with non-dimensional pres-

sure, �q0 ¼ q0L
4

100ELH4 ¼ 2:6, the axial stress at the point

3L
4
; H

2

� �
from the nonlinear theory equals nearly 4

times that from the linear theory. The lateral deflection

at the point 3L
4
; 0

� �
from the nonlinear theory is about

1.5 times that from the linear theory. Here q0 is the

uniform pressure applied on the bottom surface of the

beam, EL Young’s modulus in the longitudinal direc-

tion for infinitesimal deformations, H the beam height,

L the horizontal distance between the two end faces,

and L the arc length. Significant features of the work

include using the TSNDT, accounting for all geomet-

ric nonlinearities, using a materially objective consti-

tutive relation, considering curvature varying from

positive to negative, and applying both tangential and

normal surface tractions.

Keywords Sinusoidal beam � Geometric

nonlinearities � Materially objective constitutive

relation � Third-order shear and normal deformable

beam theory

1 Introduction

Curved beams are often used as structural members.

Various techniques to derive equations governing their

deformations include the direct approach of Cosserat

and Cosserat [1] in which directors are attached to

every point of the curve passing through centroids of

cross-sections of the beam. Deformations of directors

account for in-plane deformations of a cross-section

and the stretch along the curve gives the axial stretch

of the beam. A challenge here is to derive appropriate

constitutive relations and find values of material

parameters. Alternatively, one can make kinematic

assumptions on the displacement fields as is often
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done for the Euler–Bernoulli [2] and the Timoshenko

[3] beam theories and derive equations for the beam

from those of the three-dimensional elasticity theory.

Classical works in this field also include those of Love

[4], Reissener [5], Mindlin [6], and others. We refer

the reader to Ericksen and Truesdell [7], Antman [8],

Green and Naghdi [9] for the development of rod,

beam, plate and shell theories. Chidamparam and

Leissa [10], Hajiamaleki and Qatu [11], and Carrera

and Petrolo [12] have reviewed the literature on beam

theories wherein one can find additional references.

Carrera and Petrolo [12] have also discussed ramifi-

cations of including terms of various order in a beam

theory.

Lo et al. [13], Vidoli and Batra [14], as well as Batra

and Vidoli [15, 16] followed Mindlin’s approach of

expanding displacement components in terms of the

thickness coordinate z and retaining terms up to

various order in z. Governing equations for the

kinematic variables and the constitutive relations for

the kinetic variables are usually derived by taking

moments about the centroidal axis of the beam of the

three-dimensional equations of motion and the con-

stitutive relations, and integrating these over the beam

thickness.

For finite deformations of these structural members

it is common to include in the strain–displacement

relations only nonlinear terms in the gradients of the

transverse deflection proposed by von Karman and

neglect transverse normal strains. These approxima-

tions pose the challenge of either adopting an appro-

priate materially objective constitutive relation or

delineating approximations made in the constitutive

relation. The authors are not aware of a stress tensor

that is work conjugate to the strain tensor that does not

include all nonlinear terms in displacement gradients.

Of course, the error introduced in the solution of a

problem by not using a materially objective constitu-

tive relation depends upon loads, initial and boundary

conditions, and magnitudes of rotations and strains.

The error can only be quantified when a solution of the

nonlinear problem using a materially objective con-

stitutive relation is available.

Allix and Corigliano [17] used kinematic assump-

tions for the Timoshenko beam theory, derived

expressions for the Green-St. Venant strain tensor,

and used the St. Venant–Kirchhoff material for the

beam to study delamination in a double cantilever

beam. For a body stress free in the reference

configuration and made of the St. Venant–Kirchhoff

material, the second Piola–Kirchhoff stress tensor is a

linear function of the Green-St. Venant strain tensor,

and the strain energy density per unit reference volume

is a quadratic function of the Green-St. Venant strain

tensor. This constitutive relation is materially objec-

tive since both the second Piola–Kirchhoff stress

tensor and the Green-St. Venant strain tensors trans-

form as scalars under a rigid body motion superim-

posed upon the present configuration of the body.

Batra [23] has shown that the response predicted by

four linear materially objective constitutive relations

that give identical results for infinitesimal deforma-

tions yield totally different results for finite

deformations.

Batra and Xiao [18–20] adopted a third order shear

and normal deformable beam theory (TSNDT) in

which the two in-plane displacement components are

expanded up to third-order terms in the thickness

coordinate z, kept all nonlinear terms in the Green-St.

Venant strain tensor, and used the St. Venant–Kirch-

hoff material for the beam. They used this beam theory

to study delamination in straight and curved laminated

beams, and also hydroelastic fluid–structure interac-

tion during entry into water of a sandwich beam. Here

we use this theory to analyze the effect of geometric

nonlinearities on a curved beam that in the unde-

formed stress-free configuration is in the form of a full

sine wave. One of the goals is to identify the cross-

section on which stresses are the maximum. We note

that there is no shear correction factor used in this

theory, and transverse shear and transverse normal

stresses are found from the displacement field rather

than through a stress recovery scheme in which in-

plane stresses are found from the computed displace-

ment field and the transverse normal and the transverse

shear stresses by integrating with respect to z the

equilibrium equations, e.g., see [21].

2 Problem formulation

2.1 Kinematics

A schematic sketch of the problem studied is shown in

Fig. 1 in which y1; y2; y3 are orthogonal curvilinear

coordinate axes in the reference configuration with y1-

axis along the tangent to the mid-surface of the beam,

y2-axis pointing into the plane of the paper, and y3-axis
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pointing along the local thickness direction. Further-

more, X1;X2;X3 and x1; x2; x3 are fixed rectangular

Cartesian coordinate axes with the y2-axis parallel to

the x2- and the X2- axes. Let position vectors, with

respect to the fixed rectangular Cartesian coordinate

axes, of a point p located at y1; y2; y3ð Þ in the reference

configuration be x and X in the current and the

reference configurations, respectively. The displace-

ment u of point p and components, Gij; of the metric

tensor in the reference configuration are given by

u ¼ x� X ð1Þ

Gij ¼ Ai � Aj; Ai ¼
oX

oyi

ð2Þ

For orthogonal curvilinear coordinate axes Gij is non-

zero only when i = j. We set

H1 ¼
ffiffiffiffiffiffiffiffi
G11

p
; H2 ¼

ffiffiffiffiffiffiffiffi
G22

p
¼ 1; H3 ¼

ffiffiffiffiffiffiffiffi
G33

p
¼ 1; ~ej

¼ Ai

H ið Þ
no sum on ið Þ

ð3Þ

Here ~e1; ~e2; ~e3ð Þ are unit base vectors for the curvilin-

ear coordinate axes in the reference configuration. We

note that

H1 ¼ 1þ y3

R

� �
;
o~e1

oy1

¼ � ~e3

R
;
o~e3

oy1

¼ ~e1

R
ð4Þ

where R is the radius of curvature at the point

y1; y2; y3ð Þ.
Physical components of the deformation gradient,

F, and the Green-St. Venant strain tensor,

E ¼ 1
2

FT F� 1
� �

, with 1 being the identity tensor

are given by

F½ � ¼
1þ 1

H1

ou1

oy1

þ u3

R

� �
0

ou1

oy3

0 1 0
1

H1

ou3

oy1

� u1

R

� �
0 1þ ou3

oy3

2

6664

3

7775
ð5:aÞ

E11 ¼
1

H1

ou1

oy1

þ u3

R

� �

þ 1

2H2
1

ou1

oy1

þ u3

R

� �2

þ ou3

oy1

� u1

R

� �2
" #

E33 ¼
ou3

oy3

þ 1

2

ou1

oy3

� �2

þ ou3

oy3

� �2
" #

ð5:bÞ

2E13 ¼
1

H1

ou3

oy1

� u1

R

� �
þ ou1

oy3

þ 1

H1

ou3

oy3

ou3

oy1

� u1

R

� �
þ ou1

oy3

ou1

oy1

þ u3

R

� �	 


We note that E incorporates all geometric nonlin-

earities including the von Ka9rma9n nonlinearity, and is

valid for finite (or large) deformations of a beam. The

strain tensor for infinitesimal deformations is obtained

from Eq. (5) by neglecting the nonlinear terms

included in brackets. When only the von Ka9rma9n
nonlinearities are considered, we get

E11 ¼
1

H1

ou1

oy1

þ u3

R

� �
þ 1

2H2
1

ou3

oy1

� �2

E33 ¼
ou3

oy3

ð6Þ

2E13 ¼
1

H1

ou3

oy1

� u1

R

� �
þ ou1

oy3

Fig. 1 Schematic sketch of

a curved beam
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Recalling that beam’s dimension along the y3- (or

the z-) axis is considerably smaller than that along the

y1-axis, we assume the following third order Taylor

series expansion in y3 for u1 and u3:

u1 y1; y3; tð Þ ¼
X3

i¼0

y3ð Þiu1i y1; tð Þ ¼ Li y3ð Þu1i y1; tð Þ

ð7:aÞ

u3 y1; y3; tð Þ ¼ Li y3ð Þu3i y1; tð Þ ð7:bÞ

Lj y3ð Þ ¼ y3ð Þ j;

L
0

j y3ð Þ ¼ DjiLi y3ð Þ summed on i; i; j ¼ 0; 1; 2; 3ð Þ
ð7:c; dÞ

D½ � ¼
0 0

1 0

0 0

0 0
0 2

0 0

0 0

3 0

2

64

3

75 ð7:eÞ

Here and below a repeated index implies summa-

tion over the range of the index. In Eq. (7), u10 and u30 are,

respectively, the axial and the transverse displacements of

a point on the beam mid-surface, u1i and u3i(i = 1, 2, 3)

may be interpreted as generalized axial and transverse

displacements of a point, Lj
’(y3) equals the derivative

of Lj y3ð Þwith respect to y3, and t denotes the time. The

first subscript on u corresponds to the displacement

direction, and the second subscript to the power of y3.

For u10 = u12 = u13 = u31 = u32 = u33 = 0, we get

the Timoshenko beam theory, and when u11 ¼ � ou30

oy1

the Euler–Bernoulli beam theory. The displacement

field in Eq. (7) is a special case of the Kth order

displacement field considered amongst others, by

Batra and Vidoli [14], Carerra and Petrolo [12], Lo

et al. [13], and Cho et al. [22]. We call the beam theory

based on Eq. (7) the TSNDT. Note that it accounts for

the transverse normal strain and does not assume the

transverse shear strain at the top and the bottom

surfaces to be zero. Substitution for u1 and u3 from Eq.

(7) into Eqs. (5) and (6) gives expressions for physical

components of the deformation gradient F and the

Green-St. Venant strain tensor E.

2.2 Kinetics

The in-plane displacements u1; u3ð Þ of a point are

governed by the following equations expressing the

balance of linear momentum written in the Lagrangian

description of motion using physical components

T11; T13; T31; T33; of the first Piola–Kirchhoff stress

tensor [6], and initial and boundary conditions.

q0 €u1 ¼
1

H1

oT11

oy1

þ 1

H1

o H1T13ð Þ
oy3

þ 1

H1R
T31 þ f1

ð8:aÞ

q0 €u3 ¼
1

H1

oT31

oy1

þ 1

H1

o H1T33ð Þ
oy3

� 1

H1R
T11 þ f3

ð8:bÞ

ui y1; y3; 0ð Þ ¼ u0
i y1; y3ð Þ; _ui y1; y3; 0ð Þ ¼ _u0

i y1; y3ð Þ
ð8:c; dÞ

TijNj ¼ �tj y1; y3; tð Þ on Ct;

ui y1; y3; tð Þ ¼ �ui y1; y3; tð Þ on Cu; i; j ¼ 1 and 3

ð8:e; fÞ

In Eq. (8) f1 and f3 are components of the body force

per unit reference volume along the y1- and the y3-

axes, respectively, q0 is the mass density in the

reference configuration, and €ui ¼ o2ui

ot2 . The initial

displacement ui
0 and the initial velocity _u0

i are known

functions of y1 and y3. Furthermore, N is a unit

outward normal in the reference configuration at a

point on the boundary Ct where surface tractions are

prescribed as �ti. On the remaining boundary, Cu,

displacements are prescribed as �ui.

We multiply both sides of Eqs. (8.a) and (8.b) with

Lj y3ð Þ; j ¼ 0; 1; 2; 3; and integrate the resulting

equations over the beam thickness to obtain the

following.

Aji €u1i ¼
oM

j
11

oy1

� DjiM
i
13 þ

1

R
M

j
31 þ �f j

1 þ B
j
13;

j; i ¼ 0; 1; 2; 3

ð9:aÞ

Aji €u3i ¼
oM

j
31

oy1

� DjiM
i
33 �

1

R
M

j
11 þ �f j

3 þ B
j
33;

j; i ¼ 0; 1; 2; 3

ð9:bÞ

Here

M j
mnðy1; tÞ ¼

ZH=2

�H=2

Lj y3ð ÞTmnH nð Þdy3; H 1ð Þ ¼ 1;

H 3ð Þ ¼ H1

ð10:aÞ
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B
j
13ðy1; tÞ ¼ Lj H=2ð ÞH1T13 H=2; tð Þ

� Lj �H=2ð ÞH1T13 �H=2; tð Þ ð10:bÞ

B
j
33ðy1; tÞ ¼ Lj H=2ð ÞH1T33 H=2; tð Þ

� Lj �H=2ð ÞH1T33 �H=2; tð Þ ð10:cÞ

�f j
a ðy1; tÞ ¼

ZH=2

�H=2

Lj y3ð ÞfaH1dy3 ð10:dÞ

Aji y1; tð Þ ¼
Z

H
2

�H
2

Lj y3ð ÞLi y3ð Þq0H1dy3;

m; n; a ¼ 1; 3; and i; j ¼ 0; 1; 2; 3:

ð10:eÞ

The quantity M j
mm equals jth order moment of the

stress Tmn about the y2-axis; M0
mm is usually called the

resultant force, and M1
mm the bending moment. The

quantities B
j
13 and B

j
33 equal jth order moments about

the y2-axis of the tangential surface traction T13 and

the normal surface traction T33 applied on the top and

the bottom surfaces of the beam; for j = 0 these equal

the resultant forces and for j = 1 their first-order

moments about the y2-axis. Similarly, �f j
a equals jth

order moment of the body force fa about the y2-axis,

and Aji the inertia tensor associated with the general-

ized displacements u1i and u3i.

After expressions for moments M j
mn in terms of

displacements have been substituted in Eq. (8), we

obtain governing equations of motion for the curved

beam which are 8 nonlinear coupled partial differen-

tial equations (PDEs) for the 8 unknowns, u1j and u3j.

These PDEs involve second-order derivatives of

u1j and u3j with respect to y1 and time t and are to be

solved under pertinent initial and boundary conditions.

The traction boundary conditions in Eq. (8.e) on the

top and the bottom surfaces of the beam are incorpo-

rated in Eq. (9); e.g., see Eqs. (10.b) and (10.c). Eight

boundary conditions at a clamped, simply supported

and traction free edge, say y1 ¼ 0; respectively; are

uaj 0; tð Þ ¼ 0; a ¼ 1; 3; j ¼ 0; 1; 2; 3; ð11:aÞ

u3j 0; tð Þ ¼ 0; M
j
11 0; tð Þ ¼ 0; ð11:bÞ

M
j
11 0; tð Þ ¼ 0;M j

31 0; tð Þ ¼ 0: ð11:cÞ

In order to derive initial conditions, we substitute from

Eq. (7) into Eqs. (8.c) and (8.d), multiply both sides of

the resulting equations with q0Lj(y3), and integrate

with respect to y3 on the domain �H=2;H=2ð Þ to

obtain the following equations from which initial

values uai(y1, 0) and _uai y1; 0ð Þ are determined.

Ajiuai y1; 0ð Þ ¼
ZH=2

�H=2

q0Lj y3ð Þu0
a y1; y3ð Þdy3 ¼ F aj y1ð Þ

ð12:aÞ

Aji _uai y1; 0ð Þ ¼
ZH=2

�H=2

q0Lj y3ð Þ _u0
a y1; y3ð Þdy3

¼ _F aj y1ð Þ; a ¼ 1; 3; i; j ¼ 0; 1; 2; 3

ð12:bÞ

Even though the equations governing transient defor-

mations of the beam have been developed, results for

only static problems are presented here.

2.3 Constitutive relations

We assume that the beam material is St. Venant–

Kirchhoff for which the strain energy density, W, per

unit reference volume is given by

Smn ¼
oW

oEmn

;W ¼ 1

2
EmnCmnabEab;

Cmnab ¼ Cabmn ¼ Cnmab

ð13Þ

Here C is the fourth-order elasticity tensor having

21 independent components for a general anisotropic

material. The independent components of C reduce to

9, 5 and 2 for an orthotropic, transversely isotropic and

isotropic material, respectively. The strain energy

density for the St. Venant–Kirchhoff material reduces

to that of a Hookean material if the finite strain tensor

E in Eq. (13) is replaced by the infinitesimal defor-

mations strain tensor eab.

For plane strain deformations of an orthotropic

material with the material principal axes coincident

with the coordinate axes (y1; y2; y3Þ, Eq. (13) reduces

to

S11

S33

S13

8
<

:

9
=

;
¼

C1111 C1133 0

C3311 C3333 0

0 0 C1313

2

4

3

5
E11

E33

2E13

8
<

:

9
=

;
ð14Þ
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Recalling that T ¼ FS; where T is the first Piola–

Kirchhoff stress tensor, we get

T11 T13

T31 T33

	 

¼ F11S11 þ F13S13 F11S13 þ F13S33

F31S11 þ F33S13 F31S13 þ F33S33

	 


ð15Þ

Substitution for F from Eq. (5) into Eq. (15), and for

E from Eq. (6) into Eq. (14) and the result into Eq. (15)

gives expressions for T in terms of generalized

displacements u1i and u3i and four elastic constants

C1111, C1133, C3333, and C1313. Even though compo-

nents of S are quadratic in displacement gradients

those of T are cubic in displacement gradients. Thus

constitutive relation (15) accounts for material non-

linearities in the sense that components of T are

nonlinear functions of displacement gradients. We

note that constitutive relations (13), (14) and (15) are

materially objective and are invariant under a rigid

body motion superimposed upon the present config-

uration. The true stress or the Cauchy stress, r; is

related to the first Piola–Kirchhoff stress by r ¼
1
J

TFT ; where J is the determinant of the deformation

gradient F. Thus components of r are complicated

functions of displacement gradients because of the

appearance of J in the denominator in the expression

for r.

3 Problem solution

We are unable to analytically solve the above formu-

lated nonlinear problem; thus we analyze it numeri-

cally. We refer the reader to Ref. [18] for derivations

of the weak, the Galerkin and the matrix formulations

of the problem, and verification of the developed

computer code by the method of manufactured

solutions. Here we present below results for static

deformations of a sinusoidal curved beam under

different loads. We assume that the material principal

axes coincide with the coordinate axes shown in Fig. 2

and the beam is loaded by a uniformly distributed

surface traction, q0, on the bottom surface that makes

angle h, in the reference configuration, with the

tangent to the beam centroidal axis. In fig. 2 we have

used (x, z) for the axes (y1, y3). For h = 0�, 30� and

90�, the surface tractions are tangential, mixed and

normal to the beam surface in the reference

configuration. Values of material parameters for the

beam are listed below.

EL ¼ 172 GPa;ET ¼ 6:9 GPa;GLT ¼ 3:4 GPa;

GTT ¼ 1:4 GPa; mTL ¼ mTT ¼ 0:25

ð16Þ

Here subscript L denotes the direction parallel to

the fiber or the x-axis, subscript T the transverse

direction or the z-axis, m is Poisson’s ratio, and GLT is

the shear modulus in the x z-plane.

The beam centroidal axis in the reference config-

uration is assumed to be described by

X3 ¼ aL � sin
2pX1

L

� �
; X1 2 0;L½ � ð17Þ

where L ¼ 25:4 cm is the X1-coordinate of point A in

Fig. 2, the beam thickness, H = 1.27 cm, the non-

dimensional parameter a ¼ 0:1 defines the amplitude

of sine wave, i.e., of the beam centroidal axis. Thus the

curvature of the beam for X1 2 0; L
2

� �
is opposite of

that for X1 2 L=2;L½ �. Below we use the more

common notation (u, w) for the axial and the lateral

displacements.

The deflection, w; along the z-axis, is normalized by

�w ¼ 100E1H3w

q0L
4

ð18Þ

The centroidal axis is divided into uniform

2-node elements, thus piecewise linear basis func-

tions are used to compute results with the TSNDT.

For N nodes along the beam axis, the total number

of degrees of freedom equal 8 N. If plane strain

deformations of the beam were analyzed using

4-node quadrilateral elements, (N - 1) elements

Fig. 2 Schematic sketch of a clamped–clamped full sine-wave

beam loaded by uniformly distributed surface traction, q0, on the

bottom surface that makes angle h with the tangent to the beam

centroidal axis
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along the beam axis and 3 elements through the

beam thickness, we will have 8N degrees of

freedom. The FE mesh is successively refined to

obtain a converged solution of the problem.

3.1 Results from the linear theory

For 81 and 121 uniform 2-node FEs along the beam

centroidal axis, we have listed in Table 1 stresses and

deflections at critical points from the linear theory for

the beam loaded by uniformly distributed tractions

with h = 0�, 30� and 90� on the bottom surface of the

beam. Here, L ¼ 27:8 cm equals the beam length

along the centroidal axis. We note that for h = 0� and

90� the applied tractions are, respectively, tangent and

normal to the bottom surface of the beam where

surface tractions are applied. For h = 30� the applied

surface tractions have both tangential and normal

components. The differences in stresses and the

deflection computed by the two FE meshes at critical

points listed in Table 1 are small implying that the

solution has converged. The traction boundary condi-

tions on the bottom surface of the beam are also well

satisfied. For h = 30� differences in the applied and

the computed values of the shear traction, rxz, and the

normal traction, rzz, on the bottom surface are 0.2 %

and 0.8 %, respectively. For h = 0� and 90�, differ-

ences in the applied and the computed values of the

tangential tractions on the bottom surface equal 1 %

and 0.3 %, respectively.

For h = 0�, 30� and 90�we have exhibited in Fig. 3

through-the-thickness distributions of the axial, the

transverse shear and the transverse normal stresses on

the section x ¼ 3L=4. Because of the curvature of the

beam, rxx does not vanish at the mid-surface, z = 0,

the variation of rxx with z is non-linear, and the

distributions of rxx and rzz are not symmetric about the

mid-surface.

In Fig. 4 we have plotted the variation of the

transverse normal stress and the transverse shear stress

on the bottom and the mid-surfaces of the beam,

respectively. For the bottom surface loaded by normal

pressure, the curvature of the beam results in positive

and negative values of the axial stress on beam’s

bottom surface with the axial stress being positive near

the edges and compressive in the middle of the beam.

However, the axial stress is of opposite sign in these

regions for the tangential traction applied on beam’s

bottom surface. The effect of axial variation in beam’s

curvature is more evident in distributions of the

transverse normal and the transverse shear stresses.

The effect of curvature on beam’s deformations has

been studied by changing the value of a in Eq. (17).

Let R ¼ L=ð4p2aÞ denote the minimum absolute

radius of curvature of the beam. Thus for a = 0.1,

0.05 and 0, R equals 6.43, 12.9 and ? cm, respec-

tively. We note that a = 0 corresponds to a straight

beam. For these three values of R and h = 90�, we

have plotted in Fig. 5a–c the variation of the axial

stress on the bottom surface, of the transverse shear

stress on the mid-surface and the normalized deflected

shape of the mid-surface of the beam. Values of R do

not significantly affect the distribution of the axial

stress on the bottom surface, and influence the

transverse shear stress on the mid surface only at

points near the two clamped edges. However, results

plotted in Fig. 5c suggest that the deflection of the

point (L=2, 0) increases with an increase in the value

of R. The increase in the centroidal deflection is

considerably more when R is increased from 6.43 to

12.9 cm than when it is increased from 12.9 cm to ?.

The mid-span deflection for R = 6.43 cm is 15 % less

Table 1 Stresses and deflections at critical points (indicated by coordinates (x, z)) from the linear theory for the sinusoidal beam

loaded by uniformly distributed tractions with h = 0�, 30� and 90� on the bottom surface of the beam

h Number of elements rxx/q0
L
2
; H

2

� �
rxx/q0

L
2
;� H

2

� �
rxz/q0

3L
4
; 0

� �
rzz/q0

3L
4
;� H

2

� �
rxz/q0

3L
4
;� H

2

� �
�w L

2
; 0

� �

0� 81 -39.61 40.46 2.507 -0.00351 -1.013 -0.1924

121 -39.61 40.46 2.507 -0.00323 -1.013 -0.1924

30� 81 21.24 -20.96 -1.524 -0.8733 -0.5013 0.0448

121 21.24 -20.96 -1.525 -0.8733 -0.5013 0.0448

90� 81 -111.1 -112.0 -7.390 -0.9965 0.00850 0.4229

121 -111.1 -112.0 -7.391 -0.9971 0.00872 0.4229
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than that of the straight beam (R = ?). The slope at

the clamped edges does not appear to be zero as is

assumed in the Euler–Bernoulli beam theory.

3.2 Results from the non-linear theory

We set a = 0.1, and consider uniformly distributed

pressure acting on the bottom surface of the beam in

the current or the deformed configuration. The

pressure is normalized by

�q0 ¼
q0L

4

100ELH4
ð19Þ

Fig. 3 Through-the-thickness distributions of stresses from the

linear theory for the beam loaded by uniformly distributed

tractions with h = 0�, 30� and 90� on the bottom surface of the

beam (121 elements)

Fig. 4 Distributions of the axial stress, the transverse normal

stress and the transverse shear stress on the bottom and the mid-

surfaces of the beam from the linear theory for the beam loaded

by uniformly distributed surface tractions with h = 0�, 30� and

90� on the bottom surface of the beam (121 elements)
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and results presented below are for �q0 ¼ 2:56. The

influence of the von Kármán geometric nonlinearity

has been studied by assuming the 2nd Piola–Kirchhoff

stress tensor is a linear function of the von Kármán

strain.The material defined by this constitutive relation

is not hyperelastic since the second Piola–Kirchhoff

stress tensor cannot be obtained by differentiating the

strain energy density with respect to the von Kármán

strain tensor. We have listed in Table 2 the normalized

axial stress, the normalized transverse shear stress and

the normalized deflection at some points of the beam.

These results suggest that the axial stress at points
3L
4
;� H

2

� �
and 3L

4
; H

2

� �
from the nonlinear theory equal

3.15 and 3.87 times that from the linear theory. The

deflection at the point 3L
4
; 0

� �
computed using the

nonlinear theory equals 1.48 times that from the linear

theory. Thus results from the two theories are quite

different. The results considering von Kármán geo-

metric nonlinearities are between those of the linear

and the nonlinear theories.

For the linear and the nonlinear theories, we have

plotted in Fig. 6 the non-dimensional deflection of the

point (3L=4, 0) versus the non-dimensional pressure

�q0. It is clear that the consideration of geometric and

material nonlinearities increases the deflection of the

point (3L=4, 0) and the difference in deflections from

the two theories increases with an increase in the value

of �q0 and becomes noticeable for �q0 [ 2 even though

effects of nonlinearities begin to show for �q0 ¼ 1:5.

The difference between full nonlinearities and con-

sidering von Kármán geometric nonlinearity only will

become significant for �q0 [ 2:4.

The computed deformed shapes of the mid-surface

(z = 0) of the beam from the linear and the nonlinear

theories are exhibited in Fig. 7. The effect of the

difference in the sign of the curvature in the left and

the right halves of the beam is apparent in this plot for

both the linear and the nonlinear theories. For

X1 [ 12 cm, the deflection computed using the non-

Fig. 5 For R = 6.43, 12.9 and ? cm, distributions of the axial

stress on the bottom surface, the transverse shear stress on the

mid-surface, and the transverse deflection of the mid-surface for

the beam loaded by uniformly distributed tractions with h = 90�
on the bottom surface of the beam (121 elements)

Table 2 Stresses and deflection at critical points from the

linear and the nonlinear theories for the beam loaded by a

uniformly distributed normal pressure on the bottom surface of

the beam and non-dimensional pressure �q0 ¼ 2:56 (121

elements)

rxx/q0
3L
4
;� H

2

� � rxx/q0
3L
4
; H

2

� � rxz/q0
3L
4
; 0

� � w/H
3L
4
; 0

� �

Linear -24.68 22.90 -7.39 0.83

Nonlinear -77.68 88.70 -5.07 1.23

Nonlinear (von

Kármán)

-52.18 62.55 -6.81 1.01

Meccanica (2015) 50:355–365 363

123



linear theory is more than that from the linear theory.

The distributions of the non-dimensional axial stress

on the bottom surface of the beam from the linear and

the nonlinear theories are compared in Fig. 8.

Whereas for the linear theory the variation of rxx with

respect to the arc length is symmetric about the

midspan, that from the nonlinear theory is asymmetric.

Also the value of rxx at the right edge is nearly 50 %

more than that at the left edge. In Fig. 9 we have

displayed through-the-thickness variation of the axial

stress on the section x ¼ 3L=4 computed using the

linear and the nonlinear theories. For all theories,

rxx = 0 for z/H = 0.15. Thus the neutral surface

defined by points where rxx = 0 does not coincide

with beam’s mid-surface.

4 Conclusions

A third order shear and normal deformable theory

(TSNDT) for analyzing finite deformations of a beam

Fig. 6 For the linear and the nonlinear theories, variation of the

non-dimensional deflection, wð3L=4; 0Þ=H, versus the normal-

ized pressure �q0. The beam is loaded by a uniformly distributed

pressure on the bottom surface (121 elements)

Fig. 7 For �q0 ¼ 2:56, deformed and undeformed positions of

the beam centroidal axis computed using the linear and the

nonlinear theories for the beam loaded by uniformly distributed

pressure on the bottom surface of the beam, (121 elements)

Fig. 8 For �q0 ¼ 2:56 and using the linear and the nonlinear

beam theories, variation of the axial stress on the bottom surface,

z ¼ �H=2; (121 elements). The bottom Fig. is a magnified view

of the stress distribution with the expanded vertical scale

Fig. 9 Comparison of through-the-thickness variations of

stress rxx at x ¼ 3L=4 computed using the linear and the

nonlinear theories for the beam loaded by uniformly distributed

pressure on the bottom surface of the beam, and the

nondimensional pressure �q0 ¼ 2:56 (121 elements)
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made of the St.Venant–Kirchhoff material has been

developed. The theory has been used to analyze

quasistatic deformations of a beam initially in the form

of a full sine wave and loaded on the bottom surface by

uniformly distributed tractions with h = 0�, 30� and

90�. These values of h imply that the applied load is

either along the tangent to the surface, or inclined at

30� to the tangent or normal to the surface. Stresses are

found from the displacement fields rather than through

a post-processing technique. It is shown that traction

boundary conditions on the bottom and the top

surfaces of the beam are well satisfied. For h = 90�,

it is found that the axial stress at a point in the beam

from the nonlinear theory is 4 times that from the

linear theory, and the transverse deflection from the

nonlinear theory is about 1.4 times that from the linear

theory. For the linear theory, the maximum deflection

at the midsection decreases with a decrease in the

maximum radius of the beam.

Results for the von Kármán theory are generally

between those for the linear and the nonlinear theories.
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