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a b s t r a c t

We use the cohesive zone failure model to simulate debonding and failure in high strain-rate plane

strain deformations of a heat conducting particulate composite comprised of initially circular metallic

particulates immersed in a metallic matrix, with the goal of delineating the effect of these failures on

the initiation and propagation of adiabatic shear bands (ASBs). Failure is assumed to ensue at an

interface between two elements when a predefined combination of the normal and the tangential

tractions on that interface reaches a critical value. We postulate that the critical value of the traction in

the cohesive zone failure model decreases affinely with an increase in the temperature. Both particulate

and matrix materials are assumed to be isotropic, heat conducting, and to obey the von Mises yield

criterion with the flow stress depending upon the effective strain, the effective strain rate, and the

temperature according to the Johnson–Cook relation. The coupled transient thermomechanical problem

is analyzed by the finite element method by using 3-node triangular elements and the finite calculus

technique to prevent volumetric locking. It is found that the critical strength of the bond between the

particulate and the matrix significantly influences the loss of strength of the entire specimen. The time

of initiation of an ASB is influenced by the time when debonding ensues which depends upon the values

of the critical traction and the mode-mixity parameter in the cohesive zone failure criterion.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As modeling and simulation is increasingly used to predict the
behavior of structures and systems under catastrophic loading,
simulation techniques and physical models for dynamic failure
have become very important. Dynamic failure of ductile materials
is quite often preceded by the initiation and development of
adiabatic shear bands (ASBs) which are narrow regions, a few
micrometers wide, of intense plastic deformation. ASBs are
known to play a significant role in penetration problems, and
machining and metal-forming processes. For example, Magness
and Farrand [1] have postulated that if in a penetration problem
ASBs continuously form and lead to failure near the nose of the
projectile, resulting in a projectile with a sharp, rather than a
mushroomed, nose, then the penetration depth will be more
than that for the case of no ASB formation. Similarly, ASBs
facilitate the punching of a hole in a metal cutting process since
the kinetic energy required for punching a centimeter thick plate
ll rights reserved.

. Love).
by plugging equals nearly that needed to indent the same plate by
less than 1 mm.

Tresca [2] observed ASBs (he called them hot lines) over a
century ago during the hot forging of a platinum bar. Subse-
quently they were reported by Massey [3]. However, Zener and
Hollomon’s [4] observing them during the punching of a hole in a
low carbon steel plate, and proposing that they form when
softening of the material due to its being heated up has overcome
its hardening due to strain- and strain-rate effects generated
considerable interest in the field. Clifton [5] used the criterion that
an ASB initiates when the shear stress in quasi-static simple
shearing deformations of a homogeneous body attains its
maximum value to find the shear strain at the initiation of an
ASB in a thermoviscoplastic material obeying a power-law type
relation among the shear stress, the shear strain and the
temperature rise. Bai [6] postulated that an ASB initiates when
infinitesimal perturbations superimposed on finite homogeneous
deformations of a body begin to grow. Wright and Walter [7] built
upon the numerical solution of Wright and Batra [8] to show that
the shear stress collapses at the initiation of an ASB. These results
were confirmed experimentally by Marchand and Duffy [9] during
torsional deformations of thin-walled tubes. They also reported
the shear strain within an ASB being as large as 20. Even though
heat conduction plays a significant role in determining the ASB
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Fig. 1. Schematic sketch of the problem studied.
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width, the band is called adiabatic since there is not enough time
for the heat to be conducted away from it. Numerical solutions of
the coupled nonlinear equations governing simple shearing and
plane strain thermomechanical deformations of a thermoelasto-
viscoplastic body reveal that an ASB forms much later than when
the effective stress attains its maximum value (e.g. see Batra [10]),
and the delay between these two instants depends upon the
number, the size and the type of defects present in the body.
Much of the earlier work on ASBs is summarized in Bai and Dodd’s
[11] book, the book edited by Perzyna [12], and the review paper
by Tomita [13]. Mathematical aspects of the ASB phenomenon are
described in Wright’s [14] book.

Works enumerated above and numerous others have studied
the shear banding phenomenon in homogenous materials.
However, many materials are inhomogeneous because of impu-
rities and/or second-phase particles, which are frequently intro-
duced in order to strengthen the material (or give some other
desirable property). One such class of materials is metal-
particulate/metal-matrix composites, which are frequently pro-
duced to tailor bulk properties (density, failure strength, ductility)
by varying the volume fraction of two dissimilar constituents.

ASBs in particulate composites have been studied both
experimentally (e.g. see Zhou et al. [15]) and numerically (e.g.
see Zhou [16], Batra and Wilson [17], Batra and Love [18]). The
latter approach has considered both homogenized materials (e.g.
see Batra and Love [19]) and analyzing deformations of each
constituent (Zhou [16], Batra and Love [18]). During their analyses
of a particulate composite by the finite element method (FEM)
Batra and Love [18] found that the ASB initiation criterion for a
homogeneous material does not apply to particulate composites,
and proposed the following alternative criterion: an ASB initiates
at a point when the energy dissipation rate there suddenly
increases by nearly an order of magnitude. This ASB initiation
criterion has subsequently been adopted by Charalambakis and
Baxevanis [20] and Batra and Love [19]. Zhu and Batra [21]
analyzed the initiation and propagation of ASBs in plane strain
deformations of laminated composites, and found that an ASB
initiating from a point on an interface between two adjoining
layers propagated easily into the softer material. Batra and Kwon
[22] studied ASB initiation in simple shearing deformations of a
bimetallic body with a defect placed at the interface between the
two materials and found that the ratio of the shear moduli of
the two materials significantly influenced which material shear
banded.

It has been conjectured that during high strain rate deforma-
tions of particulate composites, particulates debond from the
matrix resulting in the loss of load transfer between the two
constituents, preventing or significantly delaying the initiation
and development of ASBs. Depending upon the strength of the
particulate and the matrix materials and the bond between them,
failure may initiate in either constituent or along particulate/
matrix interfaces. This differs from earlier studies on ASBs in
delineating how crack formation and particulate/matrix debond-
ing affect the formation and evolution of ASBs. This additional
knowledge in failure mechanics would allow particulate compo-
sites to be constructed such that the ASB formation could be
deliberately reduced or enhanced.

In order to make the problem tractable with reasonable
computational resources, we adopt a cohesive-zone technique
to simulate failure at a point. That is, the formation of a crack is
determined by a small dissipative region called a cohesive zone,
where the combination of tractions and opening displacements
determine the level of failure of a material or of an interface
between two distinct materials. The cohesive zone method allows
numerical simulation of failure at multiple locations in the body
simultaneously and allows these failures to interact.
Dugdale [23] and Barenblatt [24] proposed the use of cohesive
zones to model material failure and generate traction-free crack
surfaces. Xu and Needleman [25]and Camacho and Ortiz [26]
introduced this theory in the FE methodologies to simulate
fracture along inter-element boundaries. The technique has been
used by numerous researchers to study material failure and
delamination of composites. Computed results depend upon
values assigned to material parameters in the cohesive zone
relation, and to some extent on the FE mesh. In this work cohesive
zones are inserted adaptively when surface tractions at an
interface between two adjoining FEs reach a critical value. A
limitation of this approach is that failure is only allowed to ensue
along element boundaries and, therefore, computed results are
mesh dependent. Using randomly oriented FEs and conducting
the same analysis with multiple meshes is required to increase
confidence in results.

The rest of the paper is organized as follows. The problem
studied is formulated in Section 2 that also describes the cohesive
zone relation and the ASB initiation criterion. The computational
algorithm is briefly discussed in Section 3. Results including the
effect of the particulate/matrix interfacial strength on the
development of ASBs are discussed in Section 4. In Section 5 we
remark on similarities and differences between the cohesive zone
and the nodal release techniques. Conclusions of this work are
summarized in Section 6.
2. Formulation of the problem

2.1. Governing equations

A schematic sketch of the problem studied is shown in Fig. 1.
Because of the assumption of plane strain deformations the
dimension of the prismatic body perpendicular to the cross
section shown in Fig. 1 is very large. A 2 mm� 2 mm square
particulate composite body is compressed by applying in the
vertical direction an axial velocity VðtÞ ¼ 20 m=s¼ 0:02 mm=ms on
the top surface while the bottom surface rests on a rigid and
frictionless surface. The prescribed velocity increases linearly
from zero to its steady state value in 1ms, giving the steady state
nominal axial strain-rate of 10,000/s. Circular cylindrical
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Fig. 2. Cohesive law: (a) tractions at the interface between two adjoining elements

and (b) traction/opening displacement relation.
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particulates of diameters ranging from 50 to 80mm are randomly
placed in a metallic matrix.

We use the referential description of motion and rectangular
Cartesian coordinates to describe the dynamic thermo-mechan-
ical deformations of the particulate composite. Both the particu-
late and the matrix materials are modeled as heat-conducting,
isotropic, homogeneous thermo-elasto-viscoplastic and exhibit
strain and strain-rate hardening and thermal softening. These are
characterized by the Johnson–Cook [27] empirical viscoplastic
relation:

sy ¼ ðAþBðep
e Þ

n
Þ 1þC ln

_ep
e

_e0

� �� �
ð1� TmÞ ð1Þ

in which the flow stress sy increases with an increase in the
effective plastic strain ep

e and the effective plastic strain rate _ep
e ,

but decreases with an increase in the non-dimensional tempera-
ture T. In Eq. (1), parameters B and n characterize the strain
hardening of the material, C and _e0 its strain-rate hardening, and
m its thermal softening. The non-dimensional temperature T is
defined as T ¼ ðy� yref Þ=ðym � yref Þ, where y is the current temp-
erature at the material point and ym and yref are the presumed
melting and the reference temperatures, respectively. Note that
ym is obtained by fitting the relation (1) to the test data, and need
not equal the actual melting temperature of the material.
Furthermore, the hardening parameters C and n are considered
to be constants, despite a known transition in strain-rate
hardening in many metals between quasi-static and dynamic
rates. However, this assumption’s impact on the results presented
here is lessened due to the exclusive consideration of high rates of
deformation (_ep

e 4103=s), which are above the transition strain
rates seen in the materials of interest; e.g. see Section 4.1. The
materials of the particulates and the matrix are assumed to obey
the von Mises yield criterion and the associated flow rule.

Deformations of the body are governed by the balance of mass,
linear momentum, moment of momentum, and internal energy,
which can be found in many continuum mechanics books (e.g. see
Truesdell and Noll [28], Batra [29]). Effects of heat conduction are
considered with all of the plastic working converted into heating;
thus the Taylor–Quinney coefficient is taken to equal 1.

We assume that the body is initially stress-free, at rest, and at a
uniform temperature. It is subjected to the following boundary
conditions:

v2 ¼
�v0 t̂=t̂ ramp; 0r t̂r t̂ ramp

�v0; t̂ 4 t̂ ramp

(
on X2 ¼H; ð2Þ

v2 ¼ 0 on X2 ¼ 0;

T11 ¼ T21 ¼Q1 ¼ 0 on X1 ¼ 0 and X1 ¼H;

T12 ¼ Q2 ¼ 0 on X2 ¼ 0 and X2 ¼H:

Here, t̂ represents the analysis time. All bounding surfaces are
taken to be thermally insulated, the top and the bottom surfaces
to be smooth, and the left and the right vertical surfaces to be
traction free. Q equals the heat flux measured per unit area in the
reference configuration, T the first Piola–Kirchhoff stress tensor,
and ðX1;X2Þ coordinates of a point in the reference configuration
with respect to rectangular Cartesian coordinate axes (e.g. see
Fig. 1).

Prior to debonding, particulate/matrix interfaces are assumed
to have continuous tractions, displacements, temperatures and
normal components of the heat flux. Subsequent to debonding,
the newly created surfaces are taken to be thermally insulated
and tractions on them are computed from the cohesive relation
given in Section 2.2. Since the failure occurs in less than 40ms
traction-free crack surfaces being thermally insulated is a reason-
able assumption; for longer analyses, a convective boundary
condition would be necessary.

2.2. Cohesive zone relations

Fig. 2 demonstrates the traction-separation law used in the
computational model. Each interface between two adjoining FEs
is considered for failure, where the state variables of the two ele-
ments connected to the segment are used to compute the failure
state of the segment. Fig. 2a shows one such segment, which is
connected to elements 1 and 2. The outward normals to the seg-
ment surfaces are denoted by n1 and n2, where the superscripts
denote the connected elements. The normal tractions (s1;s2) and
tangential tractions (t1; t2Þ on the interface are computed using
each element’s stress tensor sij as shown in Eq. (3) (computations
are performed for each element; superscripts are deleted for
clarity); (e.g., see Truesdell and Noll [28], Batra [29]).

s¼ sijninj;

ti ¼ sijnj � sni; ð3Þ

where a repeated index implies summation over the range
ði¼ 1;2Þ of the index, and r is the Cauchy stress tensor. We
denote by t the magnitude of the tangential traction. For the
segment, the normal and the tangential tractions ŝ and t̂ are

ŝ ¼ ðs1þs2Þ=2;

t̂ ¼ ðt1þt2Þ=2: ð4Þ



ARTICLE IN PRESS

B.M. Love, R.C. Batra / International Journal of Mechanical Sciences 52 (2010) 386–397 389
That is, ŝ and t̂ equal the average of magnitudes of the normal
and the tangential tractions on the two sides of the common
interface; this helps reduce numerical errors introduced by the FE
analysis since the magnitudes of the normal and the tangential
tractions on either side of the interface are identical in a perfect
continuum.

We follow Ortiz and Pandolfi [30] and define an effective
traction t as:

t¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2
jt̂j2þmaxðŝ;0Þ2

q
; ð5Þ

where ŝ and t̂ are the tractions defined in Eq. (4). The parameter
b determines the relative importance of the shear traction and
therefore represents a form of ‘‘mode-mixity’’ of the crack and the
material. This effective traction t is computed at every element
interface at every timestep. When t reaches a critical value
(defined as tcrit), the segment is considered failed, appropriate
nodes are duplicated, a new segment is generated, and a cohesive
element is introduced. The introduction of the cohesive element
and the alteration of the mesh is carried out dynamically in the
analysis and does not require the introduction of cohesive
elements at the beginning of the analysis. The mesh alteration is
also considered irreversible; that is, the material cannot ‘‘heal’’
and re-join two crack faces into undamaged material. The crack
faces may meet and stay in contact, but they are still considered
two separate segments and are dealt with by the appropriate
contact algorithm to avoid inter-penetration of the material
across the contact surface.

Upon failure initiation at an interface between two adjoining
elements, we define an effective crack opening displacement d
(again, following Ortiz and Pandolfi [30]):

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2d2

s þd
2
n

q
; ð6Þ

where ds and dn are the tangential and the normal relative
displacements of the two crack faces.

The cohesive zone concept indicates that the material under-
going cracking does not reach two fully traction-free surfaces
until a certain amount of work has been performed (which is
usually correlated to the familiar Griffith fracture energy). To
accomplish this, we adopt the cohesive relation (Eq. (7)) proposed
by Camacho and Ortiz [26].

t=tcrit ¼ 1� d=dcrit ;
_dZ0;

t¼
tmax

dmax
d; either _do0; or _d40 and drdmax

on the debonded interface;

t¼ 0; dZdcrit : ð7Þ

As evident from Fig. 2b, Eq. (7) implies that the applied tractions
vanish when either (a) one reaches the critical opening displace-
ment dcrit or (b) the AO segments unload as the crack closes (as
indicated by the line to the origin in Fig. 2b). For dZdcrit the
segments are truly independent and one has a pair of traction-free
thermally insulated surfaces forming the crack faces. For drdcrit ,
a failed segment is checked for _d40 or _dr0. In the former case,
tractions are given by Eq. ð7Þ1 if d is a monotonically increasing
function of time for the segment; otherwise the traction is given
by Eq. ð7Þ2 which is also used if _dr0. While using Eq. ð7Þ2 the
percentage change in both ŝ and t̂ is kept the same. In Eq. ð7Þ2
tmax and dmax are values of t and d, respectively, just prior to
reversing of the opening of the segment; tmax and dmax satisfy
Eq. ð7Þ1. It should be noted that , for monotonic increase of d to
dcrit, the area, tcritdcrit=2, under the t2d curve is the energy per unit
surface area that is dissipated during fracture and equals the
Griffith fracture energy. Molinari et al. [31], among others, have
used the cohesive failure model to simulate fragmentation in a
bar made of a linear elastic brittle material. They have shown that
introducing a slight degree of randomness improves upto two
orders of magnitude the convergence of the energy.

Determination of the appropriate critical traction tcrit and
critical displacement dcrit from experimental results obtained
during dynamic loading is difficult. It has been experimentally
shown (see Rosakis et al. [32]) that dynamic fracture toughness
depends on crack speed. In all likelihood, the fracture toughness
depends on the material, the strain-rate and temperature in the
vicinity of the crack, and the initial flaw distribution.

Here, we account for temperature effects by assuming that the
critical traction decreases affinely with temperature increase
according to the following relation:

tcrit ¼ tcrit;0 1�
y� yref

minðymeltÞ � yref

� �
; ð8Þ

where tcrit;0 is the critical traction at the reference temperature
yref and minðymeltÞ is the lower of the presumed melting
temperatures of the particulate and the matrix. This assumption
mimics the thermal softening in the Johnson–Cook constitutive
relation (Eq. (1)); we have assumed that the critical traction
decreases as the yield stress of the material decreases. The
functional form (8) of the thermal softening is a postulate;
experimental investigation of the dependence of fracture tough-
ness on temperature would benefit the analysis greatly. We have
tacitly assumed no strain-rate or other state-variable dependence
of the critical traction tcrit;0.

The mode-mixity parameter b determines the relative strength
of the material in mode-I (tensile) and mode-II (shear). Estimates
for the mode mixity have been found experimentally by Chen and
Ravichandran [33,34] for brittle ceramics; but little experimental
work has been done for ductile metals, especially under extreme
plastic deformations. Here, we have assumed that b equals 0.866,
mainly for lack of information. This value of b represents a
moderate mode-mixity ratio seen in a variety of ductile metals
(a range between 0.7 and 0.9 has been reported for steels [32] and
similar ranges have been used in simulations for brittle ceramics
[26]). The effect of the value of b is assessed in Section 4.3. For
mode II failure b is close to zero, t given by Eq. (5) approaches
infinity and d equals dn. Thus the present approach is not suitable
for simulating shear dominated failure.

The critical opening displacement dcrit cannot be readily
determined from theoretical knowledge or experimental evi-
dence. The pair tcrit and dcrit define the fracture energy per unit
surface area. The value of dcrit affects stability of the numerical
algorithm, and must be chosen such that the computations (a) are
stable (which places a floor on dcrit) and (b) give reasonable results
for small crack openings (which places a ceiling on dcrit). Here, the
value of dcrit has been taken to be one-tenth the mean element
altitude in the specimen (which for the FE-meshes employed
herein equals 0.015 mm); this value allows for stable numerical
results while allowing for a fairly small crack opening displace-
ment. With an assumed value of dcrit , one can compute the value
of tcrit;0 from published values of the Griffith fracture energy per
unit surface area.
2.3. ASB initiation criterion

We assume that an ASB initiates at a point when the energy
dissipation rate there suddenly increases by nearly an order of
magnitude, the material point is deforming plastically, and
deformations in its neighborhood are inhomogeneous. This differs
from the ASB initiation criterion proposed by Batra and Kim [35]:
an ASB initiates at a point when the shear stress there has
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dropped to 80% of its peak value at that point, the material point is
deforming plastically, and the deformations of the material
surrounding it are highly inhomogeneous. For a simple shearing
problem, Batra and Kim’s criterion quantifies Marchand and
Duffy’s [9] experimental observation that the torque required to
deform the specimen drops very rapidly when an ASB initiates. As
made clear by results presented in Fig. 1 of Batra and Lear’s [36]
paper, the requirement of the material point deforming plastically
rules out false ‘‘initiation’’ of an ASB due to elastic unloading.
During high strain rate deformations of particulate composites,
Batra and Love [18] found that this criterion can be satisfied at a
material point at time t̂1 but is not necessarily satisfied at a
subsequent time t̂2 due to the load exchange between particu-
lates and the surrounding matrix.

Experimentalists generally decipher the formation of an ASB
through post-mortem examination of failed specimens, calling a
narrow region of intense plastic deformation a shear band. Some
experimentalists have attempted to capture an ASB in situ
through surface observations. As ASB formation is highly sensitive
to initial defects, one must take great care when comparing either
post-mortem or in situ experimental results to computational
results to ensure that one is comparing the same quantity at the
same material point. Furthermore, analysis of 3-dimensional
deformations have shown that an ASB initiates first at a point in
the interior of the body [37,38]. Thus measurements on a surface
may not be true indicators of the time of initiation of an ASB.

We note that concepts of fracture toughness and/or the J-
integral cannot be used to characterize the initiation and/or the
propagation of an ASB; e.g. see Batra and Love [18,39]. However,
these are implicitly imbedded in the cohesive zone model and are
thus being tacitly used for the initiation of debonding.

Here we hypothesize that an ASB has initiated when the axial
load rapidly drops.
3. Numerical solution of the problem

3.1. Brief description of the technique

We analyze the problem by the FEM, using 3-node triangular
elements. The FE mesh using triangular elements provides a much
larger number of potential crack paths and the mesh generation is
easier than a mesh using quadrilateral elements. The problem of
volumetric locking is remedied by utilizing a node-centered
pressure and the finite calculus technique of Onate et al. [40].

Coupled nonlinear ordinary differential equations obtained
from the weak formulation of the problem are integrated by using
the conditionally stable explicit central difference method. The
time step is controlled by the well documented Courant [41]
condition. We employ a lumped mass matrix produced by the
row-sum technique and lumped heat capacitance matrix to allow
efficient solutions using the explicit central difference method.
The constitutive update uses a backward Euler method similar to
the radial return algorithm. Deformations during a time step are
first assumed to be elastic; if they are not, the stresses, plastic
strains, and temperature are updated such that the resulting state
is on the yield surface. It is assumed that all plastic work results in
an increase in temperature (the Taylor–Quinney coefficient is
tacitly assumed to be unity). The heat conduction equation is
solved and the resulting nodal temperatures are calculated by
taking a forward Euler step after the mechanical step is taken; the
very short time steps in this analysis allow this stepping
technique to produce reasonable results.

Following the debonding/fracture process detailed in Section
2.2, the interpenetration of the material across an interface is
avoided by using a contact algorithm. The algorithm checks for
interpenetration after the position/velocity update in the central
difference scheme, and then interpenetrations are corrected using
a symmetric sliding interface algorithm, similar to that given by
Johnson and Stryk [42]. This algorithm has no ‘‘defined’’ master
and slave surfaces, and thus is independent of the order of
processing. Here, we have assumed no friction between the
contacting/sliding surfaces; in reality, the friction between these
surfaces is complex and difficult to model at the scale of this
problem.

3.2. Verification of the computer code

The computer code has been verified by using the method of
fictitious body forces, e.g. see comments following Eq. (20) of
Batra and Liang [43]. In this method, a closed form expression for
the solution variables is assumed, and these are substituted in the
balance laws to find body forces and sources of energy needed to
satisfy them. Also, initial and boundary conditions corresponding
to the assumed solution are found. The initial-boundary-value
problem corresponding to these initial and boundary conditions,
body force and the source of internal energy is solved numerically
with the code. If the computed solution agrees with the presumed
analytical solution of the problem, then the code’s accuracy has
been verified. The results for a plane-strain shear banding
problem were further compared to results from our previous
code [18], and ASB initiation times were predicted to within 1%
difference in heterogeneous bodies with no debonding.
4. Computation and discussion of results

We assigned the following values to material parameters for
the particulates and the matrix:

Particulates (metal 1): r0 ¼ 19;300 kg=m3, E¼ 400 GPa, n¼
0:29;k¼ 160 W=mK, cp ¼ 138 J=kg K, a¼ 5:3� 10�6=K.

A¼ 730 MPa, B¼ 562 MPa, C ¼ 0:029, m¼ 1:0, n¼ 0:0751, ym ¼

1700 K, _e0 ¼ 1� 10�6=s.
Matrix (metal 2): r0 ¼ 9200 kg=m3, E¼ 255 GPa, n¼ 0:29, k¼

100 W=mK, cp ¼ 382 J=kg K, a¼ 15:0� 10�6=K.
A¼ 150 MPa, B¼ 546 MPa, C ¼ 0:0838, m¼ 1:0, n¼ 0:208; ym ¼

1225 K, _e0 ¼ 1� 10�6=s.
Here r0 is the initial mass density, E the Young’s modulus, n

the Poisson’s ratio, cp the specific heat, k the thermal conductivity,
and a the coefficient of thermal expansion. The reference
temperature yref was taken to be 293 K.

The parameters for the cohesive law were taken to be:
Metal 1–metal 1: tcrit;0 ¼ 1:8 GPa, dcrit ¼ 1:5� 10�2 mm,

b¼ 0:866.
Metal 2–metal 2: tcrit;0 ¼ 1:5 GPa, dcrit ¼ 1:5� 10�2 mm,

b¼ 0:866.
Metal 1–metal 2: tcrit;0 ¼ 0:8,1:0;1:2;1:5 GPa, dcrit ¼ 1:5�

10�2 mm, b¼ 0:866.
These values are computed from fracture energies for the

respective materials, realizing that the area under the curve in
Fig. 2b equals the fracture energy per unit surface area. For
tcrit;0 ¼ 1:8 GPa; dcrit ¼ 0:015 mm, energy dissipated per unit sur-
face area during monotonic debonding equals 13;500 J=m2.
Effects of varying strength tcrit;0 of the particulate/matrix interface
and b on the ASB formation have been studied.

Square specimens of various sizes (1, 2 and 4 mm side) were
given random distributions of particulates with radius ranging
from 50 to 80mm, holding the volume fraction of particulates to
3170:2%. The specimens were meshed with triangular elements
with an approximate side length of 0.02 mm. The particulates
were arranged such that there was a minimum of three triangular
elements (0.06 mm) between any two particulates. Subsequent to
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the initial rise in the applied axial velocity, each specimen was
subjected to plane strain compression at a nominal axial strain
rate of 10,000/s.
Fig. 4. Strain rate histories for four points; position of points at t ¼ 25ms

shown in (a).

5

4.1. Results without debonding

As a reference, each specimen was deformed without allowing
debonding and fracture to occur. ASBs formed in a way consistent
with that given in Batra and Love [18]; i.e. large plastic strains and
a nearly discontinuous velocity field at about 453 to the loading
axis. Figs. 3a and b exhibits contours of the effective plastic strain
and the vertical velocity component for one of these cases. It is
clear that one dominant ASB with effective plastic strain of � 1
and inclined at � 453 to the loading direction formed. Once the
ASB had formed the specimen was divided into two regions; the
lower virtually stationary pyramid, and the upper one moving
downwards with the velocity imposed on the top surface. There is
a sharp gradient in the velocity field between these two regions
where strain rates and the effective plastic strain are quite large.

Fig. 4 exhibits fringe plots of the velocity field at t̂ ¼ 25ms and
time histories of the effective plastic strain rate at four points.
Points 1 and 3 are within the ASB, and 2 and 4 are outside of the
ASB; points 1 and 2 are in the matrix, and points 3 and 4 in the
particulates. It is clear that the effective plastic strain at these four
points are more than 104=s except at late times when the ASB has
developed. The strain rates at points 1 and 3 increase by a factor
of 10 as the ASB develops. It is clear from these results that the
error, if any, in not considering the dependence of C in Eq. (1)
upon the strain rate is negligible.

We note that the random distribution of the particulates does
not significantly impact the ASB initiation time. Fig. 5 shows the
axial load versus the nominal axial compressive strain for six
microstructures with approximately 31% volume fraction of
particulates. The axial load is computed from tractions at nodes
on the top surface where axial velocity is prescribed, and taking
the specimen dimension in the X3�direction equal to 1 mm. Note
that the sudden drop in the applied load (indicative of shear band
formation) occurs at the axial strain between 30% and 34% for
each of the specimens. Thus the difference between the minimum
and the maximum ASB time is 12%.
Fig. 3. Contours of (a) effective plastic strain and (b) vertical velocity at time

t¼ 23:8ms for a particulate composite subjected to plane strain compression at a

nominal axial strain rate of 10,000/s.
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4.2. Results with material failure

4.2.1. Effect of specimen size

When simulating microstructures, the question of an appro-
priate size for the specimen always arises. To examine this effect,
we subjected 1 mm� 1 mm, 2 mm� 2 mm, and 3 mm� 3 mm
specimens to plane strain compression. The particulates were
randomly generated with diameters ranging from 100 to 160mm,
and their volume fractions equaled 31%70:2%. The finite
element size was held constant throughout all of the simulations.
The critical traction tcrit;0 on the particulate/matrix interface was
taken to be 1.0 GPa, and material properties were assumed not to
depend on the particulate diameter.
Fig. 7. Crack ‘‘pinning’’ phenomenon that ca
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Fig. 6 shows the load versus compression curves for all three
specimen sizes. Note there are two 2 mm� 2 mm specimens;
these two curves show the typical variation caused by slightly
different particulate arrangements but the same volume fraction;
this is similar to the effect of microstructures studied in Section
4.1. Note that the ASB initiation time for the 3 mm� 3 mm case
coincides with that of one of the 2 mm� 2 mm specimens, but the
1 mm� 1 mm specimen shows a substantially earlier load drop.
This difference can possibly be attributed to the number of
particulates in the specimen; in the 1 mm� 1 mm specimen, the
small number of particulates allows an ASB to form entirely in the
matrix at a substantially earlier time. With a sufficient number of
particulates, the formation of the ASB is impeded by the harder
particulates; this effect was also seen in Batra and Love [18]. Note
that the oscillations seen in the load/compression curves are due
to the stress-wave reflections in the specimen. The period of these
reflections is related to the size of the specimen and thus, a
3 mm� 3 mm specimen is the largest plausible at this loading
rate without the stress wave effects becoming significant. The
difference in the acoustic impedences of the particulate and
the matrix materials affects reflections, refractions and the
transmission of waves at interfaces; the acoustic impedance of
metal 1 equals 1.81 times that of metal 2. The time integration
scheme should be checked for not producing excessive
oscillations in the solution due to the acoustic impedance
mismatch between the particulate and the matrix.

Until the axial compressive strain of 0.15, the axial compres-
sive load essentially scales with the specimen width, i.e., the axial
force for the 3� 3 specimen is three times that for the 1� 1
specimen.

For further analyses, we use the 2 mm� 2 mm specimen, as it
gives reasonable results with substantially less computational
effort than the 3 mm� 3 mm specimen.
4.2.2. Crack-tip pinning

One potential problem that arose early in the analyses is that
of crack-tip ‘‘pinning’’ (see Fig. 7) which led to a collapse of an
element and the termination of the analysis. This phenomenon
n result in termination of the analysis.
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occurs due to compressive stress fields in the domain, which are
typical of this loading scenario. A crack nucleates due to shear
stress at 453 to the loading direction on the particulate/matrix
interface and propagates until it is arrested due to this
compressive field. Subsequently, the compressive deformations
tend to crush the element near the crack tip in the softer matrix.
To allow the analysis to proceed, we resorted to element deletion
Fig. 9. Contours of vertical velocity for a single specimen for mode-mixity para

b¼ 1:0 and t̂ ¼ 22:8ms, and (d) b¼ 1:2 and t̂ ¼ 22:8ms. Dark lines denote cracks/new i
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when the minimum altitude of an element became 1/10,000th of
its original value. The element was simply removed from compu-
tation (thus removing a small amount of mass from the problem
and creating a small void) and contact surfaces were updated and
the analysis continued. For the problems studied herein at most
ten out of several thousand elements were deleted; thus the error
caused due to the deletion of these elements is negligible.
4.3. Effect of mode mixity

The parameter b in the cohesive law (see Eqs. (5) and (6))
determines the critical traction under mixed-mode (normal and
shear) loading conditions. One determines tcrit;0 from the pure
mode I fracture toughness, and then computes b using the pure
mode II fracture toughness. The cohesive law then determines the
critical traction under combined loading. Unfortunately, experi-
mental determination of mode II fracture toughness is difficult,
particularly under dynamic loading. While there are reasonable
estimates for b for monolithic materials (see Chen and Ravichan-
dran [33,34]; Pandolfi et al. [32]), the strength of the interface due
to shear is much less well characterized.

Fig. 8 shows the load versus compression for a single
microstructure with a range of values of b for the interface. The
critical traction was taken to be tcrit ¼ 1:2 GPa. We consider values
of b ranging from 0.6 to 1.2, which should contain the physically
meaningful solutions to the problem (note that functions in Eqs.
(5) and (6) become singular as b tends to zero or infinity). The
load versus compression curves are quite different over this range
of b, although the load versus compression curves seem to
‘‘converge’’ for bZ1:0. Further evidence of this is seen in Fig. 9;
note the similarity of the results for b¼ 1:0 and 1.2.
meter and times of (a) b¼ 0:6 and t̂ ¼ 13:2ms, (b) b¼ 0:8 and t̂ ¼ 19:4ms, (c)

nterfaces.
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The dark circles in Fig. 9 imply that the matrix has debonded
from the particulate. Also white regions imply voids or cracks. The
deformed shapes and locations of ASBs for b¼ 0:6 and 0.8 are
quite different from those for b¼ 1:0 and 1.2. Thus the mode-
mixity or the cohesive failure criterion plays dominant roles in
not only the time of formation of an ASB but also in their spatial
locations. A smaller value of b makes the interface more
susceptible to shear fracture; for b¼ 0:6, many of the particulate
matrix interfaces are fractured prior to the development of the
ASB. As one would expect this debonding of particulates and
matrix materials leads to distinctly different local stress states
and velocity fields which in turn change the ASB evolution as
evinced by differences in results shown in Figs. 9a and 9b. The ASB
initiation time for b¼ 0:6 is nearly one-half of that for b¼ 1:1.
Without experimental data for mixed-mode loading for particu-
late/matrix interfaces, we continue to use b¼ 0:866 for the
interface as well as for the monolithic materials.

4.4. Effect of interfacial strength

We note that experimental data on the particulate/matrix
interfacial strength is not readily available in the open literature.
Accordingly, we conduct a parametric study and consider three
values of this strength, namely tcrit;0 ¼ 1:0, 1.2, and 1.5 GPa; results
for the no debonding case are also presented.

The results for a single microstructure for all three values of
the critical traction tcrit;0 and for the no debonding case are shown
in Fig. 10, and the plot of axial load versus axial compressive
strain for these four cases is exhibited in Fig. 11. Note that
reducing the interface strength generally decreased the ASB
Fig. 10. Contours of vertical velocity for a single specimen for critical tractions and

tcrit;0 ¼ 1:2 GPa and t̂ ¼ 20:4ms, and (d) tcrit;0 ¼ 1:5 GPa and t̂ ¼ 23:0ms. Dark lines denot

that are still bonded.
initiation time. Furthermore, the lower two values of the
interface strength exhibited significant ‘‘debonding’’ of the
particulates from the matrix prior to localization, which is
evinced from the load versus compression curve deviating from
the ‘‘no fracture’’ case. The 1.2 and 1.5 GPa critical stresses
times of (a) no fracture and t̂ ¼ 23:8ms, (b) tcrit;0 ¼ 1:0 GPa and t̂ ¼ 15:0ms, (c)

e cracks/new interfaces while light gray lines denote particulate/matrix interfaces
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showed fracture almost exclusively along the ASB through the
bulk material (mainly in the matrix) at fairly late times; note the
agreement with the ‘‘no fracture’’ case in the load/compression
curve to 20% compression.

Examining the dissipation rate to observe the initiation of an
ASB reveals some interesting results. For the case of no fracture,
Fig. 12a shows the expected dramatic rise in the dissipation rate
for an element in the ASB. For a relatively high value of the critical
traction, tcrit;0 ¼ 1:5 GPa in Fig. 12c, the dissipation rates show a
similar trend. However, for a relatively low value of the critical
traction (tcrit;0 ¼ 1:0 GPa in Fig. 12b), the dissipation rate increases
but there is no dramatic change of slope (other than the brief
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spikes at the time of fracture of segments near the element in
question), despite the dramatic drop in load shown in Fig. 11.
Examining the details of deformations reveals the difference
between these two cases. In the tcrit;0 ¼ 1:0 GPa case, fracture
occurs while the axial compressive load is increasing, with little
plastic strain near the fractured surfaces (thus indicating ‘‘brittle’’
fracture). The ASB forms along a path through the matrix
connecting multiple sites of brittle fractures, and the load drop
is due to a combination of the decrease in strength of the material
induced by fracture surfaces and the thermal softening of the
material in the ASB. For the higher value of the critical traction
tcrit;0 ¼ 1:5 GPa, an ASB forms just as in the case of no fracture, and
the load drop occurs due to the thermal softening of the material
along the ASB. A crack develops in the shear banded material. The
crack and the ASB include many particulate/matrix interfaces. The
rapid increase in the energy dissipation rate is not a good
indicator of ASB formation in the presence of weak particulate/
matrix interfaces.
5. Remarks

Batra and Love [39] used the nodal release technique to
simulate crack propagation in mode I and mode II deformations of
a functionally graded thermoviscoplastic body deformed at high
strain rates. When a prespecified local failure criterion was met at
a node, it was split into two nodes an infinitesimal distance apart
and the nodal connectivity was modified. The brittle failure was
assumed to ensue at a point when the maximum principal stress
there exceeds three times the quasi-static yield stress, and the
ductile failure was initiated when the effective plastic strain
equals 1.5. They thus studied crack initiation and propagation in
plane strain deformations of an inhomogeneous plate deformed in
either tension or shear. Batra and Lear [36] had employed a
similar procedure to study crack initiation and propagation in a
prenotched steel plate impacted on the notched side, and found
computed results to be in reasonable qualitative agreement with
those observed experimentally. Hassan and Batra [44] used a
similar procedure to study delamination between adjoining layers
in a laminated composite plate.

Both the cohesive zone technique and the nodal release
method assume that fracture initiates instantaneously once the
respective failure criterion has been satisfied at a point. Whereas
in the cohesive zone procedure the rate of decrease to zero of
surface tractions depends on the rate of increase of the crack
opening displacement d, in the nodal release technique it is
decided empirically. In both methods surface tractions are
decreased gradually to keep the numerical algorithm stable and
mitigate effects of shock waves being released from the crack
faces. The mode-mixity of deformations near a crack-tip is
approximately accounted for in the cohesive zone failure
equations (5) and (6) through the parameter b, it is not considered
in the nodal release technique employed in [39,36]. Note that b
cannot be assigned either an extremely large or a very small
value; otherwise the computational algorithm becomes unstable.

The postulate that the critical traction drops with temperature
(see Eq. (8)) was chosen because it allows for fracture in the high
temperature regions produced by ASBs. This assumption, how-
ever, is not unique-analyses that utilized a critical strain to failure
were conducted and the results were qualitatively similar to those
given by the temperature dependent traction. In reality, the
cohesive zone relation should depend on several state variables,
particularly the strain rate and the temperature. This dependence
is still an open area of research and published data on it is not
available in the open literature.
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Here we have employed the Johnson–Cook relation to model
the thermo-visco-elasto-plastic response of the particulate and
the matrix. It is shown in [45,46] that even when different
constitutive relations have been calibrated to give identical shear
stress versus shear strain curve at one nominal strain rate, they do
not predict the same ASB initiation time and the post-localization
response.
6. Conclusions

We have studied the plane strain transient thermomechanical
deformations of a particulate composite with the finite element
method. Various representative volume elements comprised of
approximately 31% metallic particulates dispersed in a metallic
matrix were subjected to plane strain compression at an axial
nominal strain rate of 10,000/s. Effects of heat conduction, strain
and strain-rate hardening, thermal softening, and debonding at
interfaces and fracture in each material have been incorporated in
the analysis. Computed results for various values of the interface
strength parameter have indicated that the interface strength
noticeably influences the shear band susceptibility and the load
carrying capacity of the composite. Furthermore, debonding
between the particulates and the matrix does not deter the
formation and the propagation of adiabatic shear bands.

The present work suggests that additional studies are needed
to find reasonable values for the critical traction tcrit and the
mode-mixity parameter b in the cohesive zone relation. Further-
more, the cohesive zone relation should also take into account the
strains, strain-rates, and temperatures experienced by the body;
here we have used a tcrit that is invariant with respect to strain
and strain-rate and has a presumed affine softening due to
temperature. Experimental investigation into the strength of
these interfaces in both mode I and mode II would allow this
type of analysis to give results that compare well with experi-
mental findings and then could be used to help predict the onset
of adiabatic shear bands in particulate composites, and appro-
priately design interfaces and composites. The present work
suggests that strong interfaces delay the adiabatic shear band
initiation.
Acknowledgments

BML’s work was supported by the Weapons and Materials
Research Directorate, US Army Research Laboratory, and RCB’s
work was partially supported by the Office of Naval Research
grant N00014-06-1-0576 to Virginia Polytechnic Institute and
State University with Dr. Y.D.S. Rajapakse as the program
manager, RCB’s work was also sponsored by the Army Research
Laboratory and was accomplished under Cooperative Agreement
Number W911NF-06-2-0014. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the US
Government. The US Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon. Computational resources were pro-
vided by the Army High Performance Computing Center.

References

[1] Magness L, Farrand T. Deformation behavior and its relationship to the
penetration performance of high-density KE penetrator materials. In:
Proceedings of the 1990 army science conference, West Point, NY, 1990.

[2] Tresca H. On further application to the flow of solids. Proc Inst Mech Eng
1878;30:301–45.
[3] Massey H. The flow of metal during forging. Proc Manchester Assoc Eng
1928:21–6.

[4] Zener C, Holloman J. Effect of strain rate upon plastic flow. J Appl Phys
1944;15:22–32.

[5] Clifton R. Adiabatic shear banding. In: Material response to ultra-high loading
rates, Washington, DC, NMAB-365, 1980.

[6] Bai Y. Thermoplastic instability in simple shear. J Mech Phys Solids 1982;30:
195–207.

[7] Wright T, Walter J. On stress collapse in adiabatic shear bands. J Mech Phys
Solids 1987;85:701–20.

[8] Wright T, Batra R. The initiation and growth of adiabatic shear bands. Int J
Plasticity 1985;1:205–12.

[9] Marchand A, Duffy J. An experimental study of the formation process of
adiabatic shear bands in a structural steel. J Mech Phys Solids 1988;36:
251–83.

[10] Batra R. Effect of material parameters on the initiation and growth of
adiabatic shear bands. Int J Solids Struct 1987;23:1435–46.

[11] Bai Y, Dodd B. Adiabatic shear localization: occurrence, theories, and
applications. Oxford: Pergamon Press; 1992.

[12] Perzyna P, editor. Localization and fracture phenomenon in inelastic solids.
Berlin: Springer; 1998.

[13] Tomita Y. Simulation of plastic instabilities in solid mechanics. Appl Mech
Rev 1994;47:171–205.

[14] Wright T. The physics and mathematics of adiabatic shear bands. Cambridge:
Cambridge University Press; 2002.

[15] Zhou M, Needleman A, Clifton R. Finite-element simulation of shear
localization in plate impact. J Mech Phys Solids 1994;42:423–58.

[16] Zhou M. The growth of shear bands in composite microstructures. Int J
Plasticity 1998;14:733–54.

[17] Batra R, Wilson N. Adiabatic shear bands in plane strain deformations of a
wha. Int J Plasticity 1998;14:43–60.

[18] Batra R, Love B. Mesoscale analysis of shear bands in high strain rate
deformations of tungsten/nickel–iron composites. J Thermal Stresses
2005;28:747–82.

[19] Batra R, Love B. Consideration of microstructural effects in the analysis of
adiabatic shear bands in a tungsten heavy alloy. Int J Plasticity 2006;22:
1858–78.

[20] Charalambakis N, Baxevanis T. Adiabatic shearing of non-homogenous
thermoviscoplastic materials. Int J Plasticity 2004;20:899–914.

[21] Zhu Z, Batra R. Analysis of shear banding in plane strain compression of a
bimetallic thermally softening viscoplastic body containing an elliptical void.
J Eng Mater Technol 1991;113:382–95.

[22] Batra R, Kwon Y. Adiabatic shear banding in a bimetallic body. Acta Mech
1989;77:281–97.

[23] Dugdale D. Yielding of steel sheets containing slits. J Mech Phys Solids
1960;8:100–4.

[24] Barrenblatt G. The mathematical theory of equilibrium of cracks in brittle
fracture. Adv Appl Mech 1962;7:55–129.

[25] Xu X-P, Needleman A. Numerical simulations of fast crack growth in brittle
solids. J Mech Phys Solids 1994;42:1397–434.

[26] Camacho G, Ortiz M. Computational modeling of impact damage in brittle
materials. Int J Solids Structures 1996;33:2899–938.

[27] Johnson G, Cook W. A constitutive model for metals subjected to
large strains, high strain-rates, and high temperatures. In: Procee-
dings of the seventh international symposium on ballistics, 1983.
p. 541–7.

[28] Truesdell C, Noll W. The nonlinear field theories of mechanics. Berlin:
Springer; 1965.

[29] Batra R. Elements of continuum mechanics. Reston, VA: American Institute of
Aeronautics and Astronomy; 2005.

[30] Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements
for three-dimensional crack-propagation analysis. Int J Numer Meth Eng
1999;44:1267–82.

[31] Molinari J, Gazonas G, Raghupathy R, Rusinek A, Zhou F. The cohesive
element approach to dynamic fragmentation: the question of energy
convergence. Int J Numer Meth Eng 2007;69:484–503.

[32] Pandolfi A, Guduru P, Ortiz M, Rosakis A. Three dimensional cohesive-
element analysis and experiments of dynamic fracture in c300 steel. Int J
Solids Struct 2000;37:3733–60.

[33] Chen W, Ravichandran G. Dynamic compressive behavior of ceramics under
lateral confinement. J Phys IV 1994;4:177–82.

[34] Chen W, Ravichandran G. Static and dynamic compressive behavior of
aluminum nitride under moderate confinement. J Am Ceramic Soc 1996;79:
579–84.

[35] Batra R, Kim C. Analysis of shear banding in twelve materials. Int J Plasticity
1992;8:425–52.

[36] Batra R, Lear M. Adiabatic shear banding in plane strain tensile deformations
of eleven thermoelastoviscoplastic materials with finite thermal wave speed.
Int J Plasticity 2005;21:1521–45.

[37] Batra R, Ravisankar M. Three-dimensional numerical simulation of the
Kalthoff experiment. Int J Fracture 2000;105:161–86.

[38] Batra R, Romano R. Failure of dynamically loaded thermoelastoviscoplastic
rectangular plate. AIAA J 2007;45:2015–23.

[39] Batra R, Love B. Crack propagation due to brittle and ductile failures in
microporous thermoelastoviscoplastic functionally graded materials. Eng
Fracture Mech 2005;72:1954–79.



ARTICLE IN PRESS

B.M. Love, R.C. Batra / International Journal of Mechanical Sciences 52 (2010) 386–397 397
[40] Onate E, Rojek J, Taylor R, Zienkiewicz O. Non-linear dynamic analysis of
solids using linear triangles and tetrahedra. In: Onate E, Owen D, editors.
Proceedings of the VII international conference on computational plasticity,
Barcelona, 2003.

[41] Courant R, Friedrichs K, Lewy H. Über die partiellen differenzendlei-
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