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We use the freely available software, LAMMPS, and the Tersoff potential to find the mode-I stress
intensity factor during crack propagation in an edge-cracked single layer graphene sheet deformed at a
constant axial strain rate. The axial stress and the stress intensity factor (SIF) at atoms’ locations are com-
puted by using, respectively, the Virial theorem and either the stress at the atom located at the crack-tip
or the average axial stress in the sheet. It is found that the two values of the SIF differ from each other by
about 8%, and agree with those reported in the literature derived either analytically or from test data. The
method proposed and used herein can be applied to find the SIF in any nanostructure.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Single layer graphene sheets (SLGSs) and nano-composites with
graphene sheets as reinforcements have generally superior specific
mechanical [1], thermal [2], and electronic [3] properties than
many other monolithic and composite materials, and have poten-
tial applications in nano-electronic devices [4,5]. Needless to say,
the fracture of SLGSs plays a significant role in designing
graphene-based materials and structures. One parameter used to
determine the fracture of a SLGS is the stress intensity factor (SIF).

Several continuum fracture mechanics concepts in conjunction
with atomistic simulations have been explored to investigate frac-
ture of graphene sheets. Some authors [6–8] have used the defini-
tion of the energy release rate, i.e., the negative of the derivative of
the potential energy with respect to the crack surface area, to find
fracture toughness of a graphene sheet using results of molecular
dynamics (MD) simulations. Xu et al. [9] have used the crack-tip
displacement field and a coupled quantum mechanics (QM)/con-
tinuum mechanics analysis and reported values, 3.71 and
4.21 MPa

ffiffiffiffiffi
m

p
, of the SIF in the armchair and the zigzag directions,

respectively. The well-known relation, Eq. (1), between the critical
SIF, the fracture stress, and the initial crack length has been used to
interpret fracture toughness tests [10,11] of polycrystalline
graphene and in theoretically predicting the SIF in single layer
crystalline graphene [12]:

KIc ¼ rf
ffiffiffiffiffiffiffiffi
pa0

p
: ð1Þ
Here KIc, rf and a0 are, respectively, the critical mode-I SIF, the frac-
ture stress, and the half initial crack length of a centered crack.
Nakatani et al. [13] proposed an atomic version of the J-integral,
that has been applied to study fracture of graphene sheets [14,15].

Most of the above-cited approaches are limited to predicting
the critical SIF at failure (fracture toughness) of graphene and do
not allow the evaluation of the SIF for a propagating crack. It
should be noted that Nakatani et al.’s [13] atomic version of the
J-integral could be used in principle to compute the SIF during
crack propagation. However, its implementation is complicated
and the method is difficult to use for branching cracks. Recently,
using the definition of the J-integral, Le and Batra [16,17] evaluated
its value for SLGSs deformed in simple tension. However, this
method seems ambiguous for propagating cracks because during
crack propagation not only a broken bond that updates the crack
length but also the internal relaxation affect the potential energy
of a SLGS.

Evaluations of the SIF during crack propagation in nanostruc-
tures such as a SLGS, a polycrystalline graphene, and other nano-
materials is still an open issue. The determination of the SIF for a
crack propagating in a nanostructure is challenging due to the dis-
creteness of the atomic system and crack branching. Here we pro-
pose a simple method based on the crack-tip stress field to
compute the SIF during the entire fracture process. In principle,
this method can be applied to any nanostructure. However, numer-
ical results are only provided here for a SLGS with cracks propagat-
ing from one edge in either the armchair or the zigzag direction.
Effects of the initial crack length and three values of the average
axial strain rate on the SIF value have been delineated.
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2. Computational setup

2.1. Interatomic potentials

The potential energy, E, in the Tersoff potential used to model
the interatomic interactions [18] is given by

E ¼
X
i

Ei ¼ 1
2

X
i;j;i–j

V ij; Vij ¼ f CðrijÞbf RðrijÞ þ bijf AðrijÞc; ð2aÞ

f RðrijÞ ¼ Aij exp �kIijrij
� �

; f AðrijÞ ¼ �Bij exp �kIIij rij
� �

; ð2bÞ

f CðrijÞ ¼
1; rij 6 Rij;

1
2 þ 1

2 cos p rij�Rij
Sij�Rij

� �
; Rij 6 rij 6 Sij;

0; rij P Sij;

8>><
>>: ð2cÞ

bij ¼ vijð1þ bni
i f

ni
ij Þ

�1=2ni ; fij ¼
X
k–i�j

f CðrikÞxikgðhijkÞ;

gðhijkÞ ¼ 1þ c2i =d
2
i � c2i =½d2

i þ ðhi � cos hijkÞ2� ð2dÞ
The lower case Latin indices i, j and k are labels for atoms in the

system. The three indices i, j and k on a symbol imply that the
interaction between atoms i and j is modified by the atom k. rij is
the distance between atoms i and j, fA and fR are the attractive
and the repulsive pairwise terms, fC is a cutoff function to ensure
the nearest-neighbor interactions and economize on the computa-
tional cost, Rij and Sij denote, respectively, the small and the large
cutoff distances, and bij is a bond-order parameter that depends
on local coordinates of atoms around atom i. Values of the force
field parameters in Eq. (2), taken from [18,19] for C–C interactions,
are listed in Table 1.

2.2. Cutoff function

It is well known that the overestimation of the maximum force
needed to break an interatomic bond is caused by the cutoff func-
tion, Eq. (2c), e.g., see [20]. Consequently, it leads to overestimation
of stresses and strains in atomic structures simulated with the Ter-
soff–Brenner [20–22] and the REBO [23] potentials. In order to
avoid this, many authors have used the small cutoff distance given
by Rij = Sij, e.g., see [22–25]. It should be noted that when the small
cutoff distance is extended to the large one, the cutoff function
allows, before failure, bond strains of about 46% and 44% for C–C
interactions with the Tersoff [18] and the REBO potentials [26],
respectively. Belytschko et al. [20] have reported that the cutoff
function affects the fracture behavior even when bond strains of
100% are considered.

In the present study, the cut-off function is not considered.
Instead, as suggested by Shenderova et al. [21] and later adopted
by several authors [14,27,28], a bond list is created for the initial
system and used during the entire simulation.

2.3. Molecular dynamics (MD) simulations

MD simulations were carried out using the freely available soft-
ware LAMMPS [29] in a micro-canonical (NVE) ensemble with the
temperature kept at 0.001 K using the Langevin dynamics [30].
Table 1
Parameters of the Tersoff potential for C–C interaction [18,19].

A (eV) B (eV) kI (Å�1) kII (Å�1) n

1393.6 430.0 3.4879 2.2119 0.72751
Periodic boundary conditions are used in the direction of tensile
loading, and these atoms are restrained from moving in the lateral
direction. Atoms on the specimen edges parallel to the tensile
direction are free, i.e., no external force is applied on them. After
relaxation for 50 ps (pico-seconds), the specimen was deformed
in the armchair and the zigzag directions as indicated in Fig. 1 by
applying a constant strain rate in the tensile direction. Most simu-
lations were carried out at an axial strain rate of 2.5 � 108 s�1 with
additional simulations at axial strain rates of 2.5 � 107 s�1 and
2.5 � 106 s�1.

Pristine SLGSs of 58,880 atoms when relaxed at 0.001 K had C–C
bond length of 1.44 Å with �397.1 Å (�397.4 Å) length in the
zigzag (armchair) direction. A single edge pre-crack initially per-
pendicular to the tensile loading direction is created by removing
a group of atoms as schematically illustrated in Fig. 1.

The strain energy, U, due to deformation of the structure is
determined by subtracting the energy of the relaxed structure
(the energy at zero strain) from that of the loaded structure (the
energy at a given strain). The conventional axial stress (average
axial stress in the sheet), r, and Young’s modulus, Y, of the sheet
are defined as

r ¼ 1
V0

@U
@e

;Y ¼ 1
V0

@2U
@e2

�����
e¼0

; ð3Þ

where V0 is the initial volume of the structure. Note that V0 = S0t,
where S0 is the initial surface area of the structure and t the sheet’s
thickness. The 2D stress, r2D, and the 2D Young’s modulus (or the
in-plane stiffness), Ys, defined below are computed.

r2D ¼ rt ¼ 1
S0

@U
@e

;Ys ¼ Yt ¼ 1
S0

@2U
@e2

�����
e¼0

: ð4Þ

Here, we set t = 3.4 Å for comparing our results with those avail-
able in the literature. We note that Gupta and Batra [31] studied
vibrations of free single layer zigzag and armchair graphene sheets
by using molecular mechanics simulations with the MM3 poten-
tial, equated frequencies so found with those of a continuous struc-
ture of the same size as the graphene sheet and found t varying
between 0.82 and 1.0 Å. Using different techniques other authors
had found t between 0.618 and 3.4 Å. For example, for a single wall
carbon nanotube usually considered to be formed by rolling a SLGS,
Batra and Gupta [32] found the wall thickness to be 1 Å.

The Virial theorem [33,34] gives the following expression for
the atomic stress tensor.

rðaÞ ¼ 1
V ðaÞ �mðaÞvðaÞ � vðaÞ þ 1

2

X
a–b

rðabÞ � fðabÞ
" #

: ð5Þ

In Eq. (5) V(a) is the volume occupied by atom a,m(a) and v(a) are,
respectively, the mass and the velocity vector of atom a, the sym-
bol � denotes the tensor product between two vectors, r(a) denotes
the position vector of atom a, rðabÞ ¼ rðbÞ � rðaÞ is the position vector
of atom b relative to that of atom a, and f(ab) is the interatomic force

exerted on atom a by atom b, where fðabÞ ¼ @E
@rðabÞ

rðabÞ
rðabÞ , E is the energy

of the atomic ensemble and is given by Eq. (2). For a SLGS, V(a) =
S(a)t, where S(a) is the surface area occupied by atom a.
b c d h

1.5724E�7 38,049 4.3484 �0.93
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Fig. 1. Schematic illustration of a single edge pre-crack (top) in an armchair
graphene sheet under uniaxial tension in the armchair direction, and (bottom) in a
zigzag graphene sheet under uniaxial tension in the zigzag direction. Initial crack is
created by removing atoms.
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Fig. 2. Evolution of (top) strain energy per unit surface area and (bottom) axial
stress versus axial strain for the pristine graphene sheet under uniaxial tension in
the armchair and the zigzag directions.

Table 2
Mechanical properties of pristine graphene sheets.

Reference In-plane
stiffness
Ys (N/m)

Maximum
in-plane
stress (N/m)

Axial strain
at the
maximum
stress (%)

Present study 358 (zigzag)
350 (armchair)

43.0 (zigzag)
37.9 (armchair)

24 (zigzag)
19.3 (armchair)

DFT (Liu et al. [35]) 351 40.4 (zigzag)
36.7 (armchair)

26.6 (zigzag)
19.4 (armchair)

Hyperelastic model &
DFT (Xu et al. [36])

350 40.0 (zigzag)
36.4 (armchair)

24 (zigzag)
19 (armchair)

Experiments
(Lee et al. [1])

340 ± 50 42 ± 4 25%
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3. General considerations

The evolution with the axial strain of the strain energy per unit
surface area, namely the surface strain energy density, and the
axial stress is plotted in Fig. 2 for the pristine SLGS. Mechanical
properties of the pristine graphene sheet derived from our MD
simulations and listed in Table 2 agree well with those from previ-
ous DFT calculations [35,36] and with that found from test data [1].

In Fig. 3 we have exhibited the axial stress distribution around
the crack tip in pre-cracked SLGSs deformed in uniaxial tension in
the armchair and the zigzag directions. It is found from results
plotted in Figs. 3–5 that the peak stress occurs at the crack-tip.
Behind the crack-tip, the stress drops, the stress rapidly decreases
ahead of the crack-tip, and is essentially constant relatively far
(>3 times the crack length) from the crack-tip. We note that irre-
spective of the initial crack length the atom with the highest ten-
sile axial stress is the crack-tip, and the axial stress at an atom
bonded to the one at the crack-tip reaches the peak value when
the bond strain equals about 106–110% and 119–123% in the arm-
chair and the zigzag directions, respectively. Hence, when the axial
stress at an atom bonded to the atom at the crack-tip reaches its
peak value the bond is broken and the crack is elongated. This cri-
terion is equivalent to using the bond strain of about 100% for
breaking the bond as was assumed in our earlier work [16,17].

As should be clear from the results exhibited in Fig. 5 the loca-
tion of the crack-tip shifts from one atom to another atom as the
crack propagates. The evolution of the tensile axial stress at the
first and the second atoms along the crack path versus the bond
strain at the initial crack-tip is shown in Fig. 4 for the two pre-
cracked graphene sheets. This bond contains the first atom
(or the initial crack-tip) and the adjoining atom where the axial
tensile stress reaches its peak value next. It is clear that the atomic
stress at the initial crack-tip reaches its peak value when the axial
strain in the bond equals about 21–22% and 20–21% for tensile
loading in the armchair and the zigzag directions, respectively, is
nearly independent of the initial crack length, and the maximum
difference in its peak values is less than 3% for a wide range of ini-
tial crack lengths considered here. The axial tensile stress at the
adjoining atom in the crack path slightly depends on the initial
crack length. In Fig. 6 we have plotted the evolution of the conven-
tional axial stress in the sheet and the atomic stress for the atom at
the initial crack-tip. The average axial stress in the sheet and the
Virial stress at the atom located at the initial crack-tip reach their
maximum values at about the same values of the axial strain.

For each strain rate, with monotonically increasing load the
crack propagates straight ahead in the armchair direction as shown



Fig. 3. Axial stresses at atoms around the initial crack-tip just before the crack
begins to propagate in the graphene sheet at axial strain (top) e = 7.75525%,
a0 = 3.5d (a0/w = 0.022) under tension in the armchair direction, (bottom)
e = 8.4455%, a0 = 5r (a0/w = 0.018), under tension in the zigzag direction, r is the
bond length, d is the lattice constant and w is the sheet width.
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Fig. 4. Evolution of the tensile axial stress at the first (solid curve) and the second
(dashed curve) atoms along the crack path versus the bond strain at the initial crack
tip (this bond has the first atom and is first broken) in single layer graphene sheets
with a single edge pre-crack under uniaxial tension in the (top) armchair and
(bottom) the zigzag directions.

254 M.-Q. Le, R.C. Batra / Computational Materials Science 118 (2016) 251–258
in Fig. 7, and the crack path in the armchair SLGSs is independent
of the nominal strain rate. However, under tensile stress in the
zigzag direction, the crack kinks and branches as clearly seen in
plots of Fig. 8, and the fracture pattern weakly depends on the
strain rate. In the problem for which results are shown in Fig. 8,
the number of broken bonds equal 208, 211, 210 for strain rates
of 2.5 � 106 s�1, 2.5 � 107 s�1 and 2.5 � 108 s�1, respectively.
While the number of broken bonds is virtually the same for the
three strain rates, the fracture patterns for strain rates of
2.5 � 107 s�1 and 2.5 � 108 s�1 are different, but those for strain
rates of 2.5 � 106 s�1 and 2.5 � 107 s�1 are almost identical to each
other. The fractured shape of this sheet for the strain rate of
2.5 � 106 s�1 is not shown in Fig. 8 due to its similarity with that
for the strain rate of 2.5 � 107 s�1.

4. Stress intensity factor

4.1. Methods

In linear elastic fracture mechanics (LEFM), the mode-I SIF is
defined by Eq. (6) [37]:

KI ¼ 1
f ðhÞ limq!0

rYY

ffiffiffiffiffiffiffiffiffiffi
2pq

p
; ð6Þ
f ðhÞ ¼ cos
h
2

� �
1þ sin

h
2

� �
sin

3h
2

� �� 	
: ð7Þ

In Eqs. (6) and (7), (X,Y) is a local coordinate system with origin
at the crack-tip, e.g., see Fig. 9 and the Y-axis is along the tensile
direction (the x and y-direction, respectively, for tension in the
zigzag and the armchair direction), (q,h) are polar coordinates of
a point with origin at the crack-tip with the angle h measured
counter-clockwise from the X-axis.

In contrast to the stress state at a crack-tip in a linear elastic
continuous body, the atomic stress at a crack-tip in the graphene
sheet being studied does not tend to infinity. Stresses at the
crack-tip stay finite as the crack propagates through the sheet as
shown in Figs. 3–5. Thus, Eq. (6) cannot be applied directly to
atoms in the graphene sheet, and we propose the following
approximation of Eq. (6) for estimating the SIF.

KI � 1
f ðhÞr

	
YY

ffiffiffiffiffiffiffiffiffiffiffiffi
2pq	

p
: ð8Þ

To use Eq. (8), we focus on 2 atoms. The first one is the actual
crack-tip identified as the atom in the crack path with the highest
axial stress amongst all neighboring atoms around it. The second
atom is the next atom in the crack path that will subsequently
become the crack-tip and its associated bond will break in subse-
quent tensile loading. The tensile stress r	

YY is for this second atom,
and q⁄ is the distance between these two atoms. This method
allows us to compute the SIF as a crack propagates in the graphene
sheet.

It should be emphasized that during monotonic loading, the
stresses at atoms along the crack path monotonically increase,
reach their maximum values, and then decrease as clearly seen
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Fig. 7. Fracture of a single layer graphene sheet with a single edge pre-crack of
length a0 = 3.5d (a0/w = 0.022) under uniaxial tension in the armchair direction (the
vertical direction in this figure). The fracture pattern is independent of the strain
rate.
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in the plots of Figs. 4 and 5. The decrease in the atomic stress is due
to the elongation of the bond associated with the atom at the
crack-tip. Graphene exhibits brittle fracture with rapid fracture
propagation and a drop in the axial stress–axial strain curve as
found in our previous works [16,17] and clearly seen in results
displayed in Fig. 6. The conventional axial stress in the sheet and
the atomic stress of the initial crack-tip reach their maximum
values approximately at the same axial strain as indicated in
Fig. 6. Therefore, the critical value of the SIF is estimated when
the axial stress at the atom located at the initial crack-tip reaches
its maximum value. Just beyond this point, the average axial stress
in the sheet reaches its maximum value, and the local rupture and
the subsequent drop in the load supported by the sheet occur.

The SIF can also be estimated from the following LEFM equation
[37] instead of Eq. (6):

KI ¼ 1:12r
ffiffiffiffiffiffiffiffi
pa0

p
; ð9Þ

where a0 is the initial crack length, and r the average axial stress in
the sheet.

4.2. SIF results

The evolution of the SIF versus the average axial tensile stress
before the crack begins to propagate is plotted in Fig. 10 with the
final point in each curve corresponding to the critical SIF. It should
be emphasized that KIc from Eq. (8) with the crack-tip stress field is
computed when the axial stress at the atom located at the initial
crack-tip reaches its maximum value, while KIc from Eq. (9) which
uses the global stress is calculated at the maximum value of the
average stress in the sheet. The difference in the axial tensile
strains corresponding to these two points is very small, of the order
of 0.001%. According to Eq. (9), the SIF increases linearly with an
increase in the average axial stress. For tensile loading in the
armchair direction, the SIF computed from Eq. (8) also increases
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linearly with an increase in the axial stress. However, for tensile
loading in the zigzag direction, the SIF computed using Eq. (8)
increases linearly with increasing axial stress for relatively small
initial crack lengths (small value of a0/w), but for large initial crack
lengths, it first increases linearly and then approaches the curve
computed using Eq. (9). This is due to the way the atomic stress
is computed and displacements of atoms along the crack path.
The following three factors affect the evolution of the SIF. First,
for tensile loading in the zigzag direction, the crack is not straight.
Bonds along the crack path are not parallel to the tensile loading
direction, allowing more transverse displacements of atoms along
the crack path than that for loading in the armchair direction. Sec-
ond, at low value of the tensile force, the internal relaxation may
play a larger role than that at high tensile force. Third, a relatively
large initial crack length allows more internal relaxation due to a
large number of initial broken bonds.

Effects of strain rate on the evolution of the SIF during crack
propagation are shown in Figs. 11 and 12 for sheets pulled in the
armchair and the zigzag directions, respectively. It is found that
the critical SIF does not depend on strain rates for the range of
strain rates examined in this work. For loading in the armchair
direction at nominal axial strain rates of 2.5 � 106 and
2.5 � 107 s�1, the SIFs are essentially the same, and at the nominal
axial strain rate of 2.5 � 108 s�1 the SIF also equals that for the
other two strain rates during the early stages of crack propagation,
and is slightly higher as the crack gets longer with the maximum
difference in the SIF at strain rates of 2.5 � 106 s�1 and
2.5 � 108 s�1 equaling only �2% at the final fracture stage; e.g.,
see Fig. 10-top for a0 = 3.5d, a0/w = 0.022.

For tensile loading in the zigzag direction, the SIFs are also
unchanged for the three strain rates studied until the crack propa-
gates to about 10% of the sheet’s length in the direction perpendic-
ular to the loading direction as shown in Fig. 12 for a0 = 5r,
a0/w = 0.018. For longer cracks, due to crack branching shown in
Fig. 8, the SIF fluctuates between 2.8 and 5.8 MPa

ffiffiffiffiffi
m

p
(3.4 and

4.5 MPa
ffiffiffiffiffi
m

p
) at the strain rate of 2.5 � 108 s�1 (2.5 � 106 s�1 and

2.5 � 107 s�1). Smooth segments of the SIF curves during crack
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propagation marked by numbers 1,2,3. . . in Fig. 12 correspond to
smooth shapes of the crack face also marked by numbers 1,2,3. . .
in Fig. 8.

The effect of the initial crack length on the SIF is depicted in
Fig. 11 (bottom) and Fig. 13. The critical SIF computed using
Eq. (8) slightly decreases with an increase in the initial crack length
for both armchair (variation is about 17% between the maximum
and the minimum values) and zigzag (variation is about 5%
between the maximum and the minimum values) directions. In
contrast, using Eq. (9), the critical SIF is nearly constant for loading
in the armchair direction, and slightly increases with an increase in
the initial crack length for tension in the zigzag direction (variation
is about 11% between the maximum and the minimum values).
Differences in the critical SIFs computed by Eqs. (8) and (9) are
about ±8%. The mean values of the critical SIF and the standard
deviation (DV) computed using Eqs. (8) and (9) along with results
from the literature are listed in Table 3. The mean and the standard
deviation values of the critical SIFs computed using Eq. (8) are
(3.8 MPa

ffiffiffiffiffi
m

p
, 0.17) and (4.1 MPa

ffiffiffiffiffi
m

p
, 0.07) for the armchair and

the zigzag directions, respectively; the corresponding values from
Eq. (9) are (4.0 MPa

ffiffiffiffiffi
m

p
, 0.03) and (4.2 MPa

ffiffiffiffiffi
m

p
, 0.14). The SIF cal-

culated using Eq. (8) becomes nearly independent of the initial
crack length when it exceeds about 5% of the sheet width.

Our results for KIc agree well with those from a coupled
QM/molecular mechanics study of Khare et al. [14] who found
the critical SIF = 3.3–4.0 MPa

ffiffiffiffiffi
m

p
for an armchair monolayer

graphene sheet, 3.71 (armchair) and 4.21 MPa
ffiffiffiffiffi
m

p
(zigzag) for a

monolayer graphene computed by Xu et al. [9] using the QM/con-
tinuum mechanics approach, and Zhang et al.’s [11] experimental
value of 4.0 ± 0.6 MPa
ffiffiffiffiffi
m

p
for a monolayer, a bilayer, and a few-

layered graphene sheet. We note that KIc was also found to be
10.7 ± 3.3 MPa

ffiffiffiffiffi
m

p
for a SLGS [10], and 12.0 ± 3.9 MPa

ffiffiffiffiffi
m

p
for a

multilayer graphene sheet [38]. Samples used in experiments were
polycrystalline graphene [10,11,38] while theoretical/computa-
tional studies have mostly simulated defect-free (except for a
pre-crack) SLGSs. In a polycrystalline graphene sheet, the crack
propagation direction changes as a crack propagates across a grain
boundary [11]. The disordered layer stacking of multilayer gra-
phene sheets also caused crack meandering [38] that was found



Table 3
Critical stress intensity factor KIc in MPa

ffiffiffiffiffi
m

p
(graphene sheet thickness t is assumed to

be 3.4 Å for comparing present results with those in the literature, the abbreviation
DV is used for standard deviation).

Reference Fracture toughness (MPa
ffiffiffiffiffi
m

p
)

Present study (average value), Eq. (8) 3.8 (armchair, DV = 0.17)
4.1 (zigzag, DV = 0.07)

Present study (average value), Eq. (9) 4.0 (armchair, DV = 0.03)
4.2 (zigzag, DV = 0.14)

Coupled QM/MM, Khare et al. [14] 3.3–4.0 (armchair)
Coupled QM/continuum mechanics,

Xu et al. [9]
3.71 (armchair)
4.21 (zigzag)

Experiments, Zhang et al. [11] 4.0 ± 0.6
Experiments, Hwangbo et al. [10] 10.7 ± 3.3
Experiments, Wei et al. [38] 12.0 ± 3.9
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to increase the fracture toughness value to twice of the estimated
value. Other main reasons for differences between the values from
simulations and experiments may be crack blunting [11] and crack
branching [10,38]. Compared with the atomically sharp crack-tip,
the blunt notch reduces the local stress concentration, leading to
an increase in the far-field fracture stress [11]. Crack branching
could multiply the crack length by several times when the crack
follows a complex path, and could significantly increase the frac-
ture toughness of the monolayer and the multilayered graphene
sheets [10,38].

5. Conclusions

We have studied through MD simulations and the Tersoff
potential the fracture of an edge-cracked single layer graphene
sheet. Main findings are summarized below.


 A simple method based on the crack-tip stress field is proposed
to compute the SIF during crack propagation in a nano-
structure.


 During the early stages of crack propagation, the computed crit-
ical SIF is essentially the same for strain rates of 2.5 � 106 s�1,
2.5 � 107 s�1 and 2.5 � 108 s�1. For the first two values of the
axial strain rate, the SIFs during crack propagation are almost
identical under tensile loading in the armchair direction, and
different for tensile loading in the zigzag direction. For loading
in the armchair direction, the SIF at a strain rate of
2.5 � 108 s�1 is slightly higher than that at the other two strain
rates when the crack has noticeably elongated.


 For tensile loading in the zigzag direction, the SIF fluctuates due
to crack branching, the corresponding crack faces are not
smooth, and these fluctuations increase with an increase in
the applied strain rate. The SIF varies between 2.8 and
5.8 MPa

ffiffiffiffiffi
m

p
for the strain rate of 2.5 � 108 s�1, and between

3.4 and 4.5 MPa
ffiffiffiffiffi
m

p
for the other two strain rates.


 The critical SIF computed with the crack-tip stress field differs
by about ±8% from that found using the global axial stress.
Using the crack-tip stress field, the SIF varied with the initial
crack length by about 17% and 5% for tensile loading in the arm-
chair and the zigzag directions, respectively. However, when
the global axial stress is used to compute the SIF, it is essentially
independent of the initial crack length for loading in the arm-
chair direction, and vary by about 11% for loading in the zigzag
direction. The mean values of the critical SIF are 3.8 (armchair)
and 4.1 MPa

ffiffiffiffiffi
m

p
(zigzag) from the crack-tip stress field, and 4.0

(armchair) and 4.2 MPa
ffiffiffiffiffi
m

p
(zigzag) from the average stress

field. These values agree well with the literature theoretical
[9,14] and experimental [11] results.
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