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The finite element method and a cohesive zone model are used to analyze plane strain interfacial debond- 

ing of an elastomeric layer from an overhanging deformable plate when it is peeled off by applying a 

normal displacement at the edge of the overhang. The commercial software, ABAQUS, is employed in this 

work that is focused on understanding the collective role of the following two non-dimensional param- 

eters: (i) the confinement parameter, α, defined in terms of the flexural rigidity of the plate, and the 

modulus and the thickness of the interlayer, and (ii) the adhesion parameter, φ, defined in terms of the 

cohesive zone parameters and the modulus to thickness ratio of the interlayer. The interfacial adhesion is 

characterized by a bilinear traction-separation (TS) relation. Numerical experiments reveal that when α is 

greater than αc , damage initiates at an interior point on the interface and at the interface corner on the 

traction-free edge irrespective of the value of φ. However, φ must be greater than φc for the debonding 

to become wavy/undulatory. The critical value, φc , of the adhesion parameter agrees with the necessary 

condition found in our previous work on debonding of an elastomeric layer from a rigid block when it is 

uniformly pulled outward. For α < αc , damage/debonding initiates only from the interface corner, and no 

wavy debonding ensues. The peak peeling force prior to the initiation of an internal debond is found to 

be a monotonically increasing function of φ/ α, suggesting its potential use as a design variable and as a 

guide for determining the TS parameters. Results of a few additional numerical experiments in which the 

elastomeric layer can debond from both adherends provide insights into designing a demolding process 

for a sandwiched elastomeric layer. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

A soft elastomeric interlayer sandwiched between two ad-

erends is encountered in a wide variety of engineering applica-

ions such as manufacturing of bio-implants, micro-printing pro-

esses, and modern bio-inspired adhesive systems. The require-

ent of controlling interfacial separation of the confined interlayer

n such applications necessitates understanding collective roles of

he geometric, the material, and the interfacial adhesion parame-

ers on the initiation and propagation of interfacial debonding of

he interlayer from the adherend(s). 

It is well known that the lateral constraint imposed by the geo-

etric confinement plays a crucial role in the adhesion/debonding

haracteristics of a sandwiched interlayer. An often studied prob-

em in this context is the debonding of a rigid cylindrical ad-

erend from a deformable interlayer attached to a fixed base,

hown schematically in Fig. 1 a. It has been shown ( Messner, 1963 ;
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rosby et al., 20 0 0 ) that the ratio, a / h , of the adherend radius ( a )

o the interlayer thickness ( h ) and the compressibility ( Lai et al.,

992 ; Gent, 1994 ) of the interlayer material quantify confinement

nd determine the traction distribution at the interface. For small

alues of a / h ( < ∼1), the singularity at the corner (edge) on the

raction-free edge dominates the distribution of the normal trac-

ion (peel stress) at the interface. Therefore, for axisymmetric de-

ormations a crack initiates at the edge and propagates towards

he center. However, for larger values of a / h ( > ∼1) and a near-

ncompressible interlayer, the peel stress has a peak value at the

enter with a small singularity-dominant region at the edge, and

he debonding initiates from an interior point. Experimental inves-

igations by Webber et al. (2003) and Anderson et al. (1974) sup-

ort these statements. 

Peeling of a flexible plate from an elastomeric interlayer ( Fig.

 b) is another problem of practical interest in which the con-

nement has been shown to play a major role in the debonding

rocess ( Lefebvre et al., 1988 ; Adda-Bedia and Mahadevan, 2006 ;

hatak, 2006 ). Even when stresses in the external edge region

ecome high because of the peeling action, the interlayer con-

nement and the internal debonding control the failure process.
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Fig. 1. Schematic sketches of (a) a probe-tack configuration, and (b) a flexible plate peeled from a thin elastomeric layer bonded to a fixed rigid base (Colored figures in the 

web version only). 
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occur. 
It has been suggested that the ratio of the lengths, ( D p / μ) 1/3 and

h describes the geometric confinement. Here D p is the flexural

rigidity of the deformable plate, and μ the shear modulus of the

interlayer. A large confinement is found to be relieved by the

nucleation of debonding at a location away from the edge ( Ghatak

and Chaudhury, 2003 ). 

While the geometric confinement significantly affects the ad-

hesive debonding mechanisms of a sandwiched layer, its intri-

cate coupling with the interfacial adhesion must be understood

to delineate the debonding process. For example, in the debond-

ing phase of a probe tact test ( Fig. 1 a), the geometric confinement,

a / h , and the dimensionless descriptor of adhesion, G c /μa , where

G c is the critical strain energy release rate of the interface, collec-

tively govern the debonding behavior. For a large value of G c / μa

dictated by the degree of confinement ( Creton and Lakrout, 20 0 0 ;

Crosby et al., 20 0 0 ; Creton et al., 2001 ) cavities have been ob-

served to initiate within the bulk interlayer. For highly confined

films and relatively weak interfaces, the internal adhesive debond-

ing often involved nucleation of multiple cavities at the interface

and their eventual coalescence into a crack ( Creton and Lakrout,

20 0 0 ; Yamaguchi et al., 2007 ). Even though these internal debonds

were initially thought to have initiated from local defects. The

analyses of Ghatak et al. (20 0 0) , Mönch and Herminghaus (2001) ,

and Shenoy and Sharma (2001) suggested that they are adhesion-

induced instabilities that occur when the interfacial effects dom-

inate over elastic deformations of the interlayer. This determines

spacing between the cavities that scales with the thickness of the

interlayer. An approximate analysis showed that the coalescence

behavior of the adjacent cavities is governed by G c / μa and its large

value impedes lateral propagation of the interfacial cracks and re-

sults in fibrillation ( Creton et al., 2001 ). When a flexible plate is

peeled from an elastomeric layer ( Fig. 1 b), the adhesion-induced

instability initiating and growing over the stressed zone results

in fingerlike debonding ( Ghatak and Chaudhury, 2003 ; Vilmin et

al., 2009 ). The spacing between two adjacent fingers scales with

the interlayer thickness and their length in the peeling direction

with ( D p / μ) 1/3 . Adda-Bedia and Mahadevan (2006) and Ghatak

(2006) have proposed that the spacing between two adjacent fin-

gers does not depend on the interfacial adhesion. However, the

coupling between the geometric confinement and the adhesion on

debonding for this problem has not been thoroughly studied. Here

we attempt to address this coupling by numerical simulations of

the peeling problem. 

A frequently used technique for studying debonding employs

a cohesive zone model (CZM) ( Dugdale, 1960 ; Barenblatt, 1962 ;

Ungsuwarungsri and Knauss, 1987 ; Xu and Needleman, 1995 ). In

a CZM the interaction of adjoining points at an interface is phe-
omenologically represented by a spring of zero-length that soft-

ns after it has been extended by a prescribed value (reached a

eak traction) and breaks at a pre-specified value of the extension

when the fracture energy criterion is met). It involves prescrib-

ng a-priori a relation between the surface traction and the corre-

ponding separation/displacement-jump (relative displacement of

wo adjoining points) at the interface. For a given mode of debond-

ng, two parameters, namely the fracture energy ( G c ) and the peak

raction ( T c ) characterize commonly used traction-separation (TS)

elations ( Dugdale, 1960 ; Ungsuwarungsri and Knauss, 1987 ; Xu

nd Needleman, 1995 ; Geubelle and Baylor, 1998 ). With a CZM

oth the nucleation of debonding and its propagation can be

imulated. The CZM bridges the gap between the classical linear

lastic fracture mechanics (LEFM) and the stress-based approach

 Anderson, 2005 ) of predicting failure. Whereas G c can be deduced

rom the test data ( Kaelble, 1965 ; Ghatak et al., 2005 ), it is not

asy to estimate values of other parameters in the TS relation

or a given interface. An iterative (brute-force) approach ( Li et al.,

005 ; Turon et al., 2007 ; Tsai et al., 2014 ) is often used to find the

S relation which, when used in numerical simulations, predicts

ell the experimental load-displacement curve. Digital image cor-

elation ( Shen and Paulino, 2011 ), interferometry ( Gowrishankar et

l., 2012 ), and molecular dynamics simulations ( Zhou et al., 2008 ;

inko and Keten, 2015 ) have been used to extract values of param-

ters in the TS relation. 

Here we use the finite element method (FEM), the CZM and a

ilinear TS relation, to study debonding of a flexible plate from an

lastomeric layer that is assumed not to debond from a rigid base,

.g., see the configuration shown in Fig. 1 b. The commercial FE

oftware, ABAQUS, and the CZM already imbedded in it is used to

nalyze the problem. Mukherjee et al. (2016a) have recently ana-

yzed with the CZM and a bilinear TS relation wavy debonding dur-

ng plane strain deformations of an infinitely wide confined elas-

omeric layer from a rigid adherend pulled upwards using a config-

ration similar to that shown in Fig. 1 a. They found that the large

eeling traction over the central region induced a damage (cohe-

ive) zone over which wavy/undulatory debonding ensues due to

ompetition between the interfacial softening and the elastic de-

ormations of the interlayer. A necessary condition for homoge-

eous deformations of the incompressible interlayer to become un-

table (undulatory debonding/adhesion-induced instability) is that

he parameter φ = T c 
2 h / E G c exceed approximately 4.15, where E

 3 μ is Young’s modulus of the interlayer material. This condition

mplies that for a given adhesion and interlayer material, its thick-

ess must exceed a critical value for an interfacial instability to
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Fig. 2. Schematic sketch of the problem studied. 
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2 The maximum computed strain, except possibly at points near the edges where 

singularities may occur, in our simulations is 6%. Thus it is reasonable to assume 

the interlayer material to be linear elastic. 
3 As will be shown later, a plane strain deformation cannot accurately predict 
During peeling of an overhanging flexible plate from an elas-

omeric layer with the displacement applied at the edge of the

verhang, the bending of the plate results in a stressed zone

f characteristic length ( D p / μ) 1/3 near the traction free edge

f the interlayer. Results of Ghatak and Chaudhury (2003) and

dda-Bedia and Mahadevan (2006) for peeling of a flexible plate

uggest that the interlayer thickness must be smaller than a

ritical value dictated by the length ( D p / μ) 1/3 for an undu-

atory debonding to ensue. This and the aforementioned nec-

ssary condition, h > 4.15 E G c / T c 2 , determine whether or not

ebonding will be undulatory. This reiterates the importance

f coupling between confinement and adhesion when study-

ng debonding in this problem. The analysis of the peeling

f an overhanging plate from an elastomeric layer by us-

ng a TS relation for the interface enables us to probe this

oupling. 

The text in this paragraph was suggested by an anonymous

eviewer. We note that the problem of peeling of a plate from

n elastomeric layer constrained to a rigid base ( Fig. 1 b) is in-

erently mixed-mode. In the absence of an interlayer (which de-

nes the global mode-mixity), this configuration involves a phase

ngle of −36 ° ( Li et al., 2004 ). Considering an infinitely thin in-

erlayer makes the phase angle even more negative ( Suo and

utchinson, 1989 ), with the extent depending on the Dundurs pa-

ameter between the plate and the interlayer. Thicker interlayers

an generally be expected to return the mode-mixity towards the

lobal value but not beyond it. In our analysis of interfacial dam-

ge/debonding, we will assume that the interface fails dominantly

n tension (peel stress). 

Results of numerical experiments for studying the collective ef-

ect of confinement and adhesion reported here advance our cur-

ent understanding of the peeling phenomenon, help in developing

redictive models for complex manufacturing processes involving

eparation of confined elastomeric layers, shed light on the global

ehavior such as the pull-off force as a function of the geomet-

ic confinement and interfacial adhesion and its transition from a

trength-dominated regime to a fracture-energy dominated regime,

nd may help in determining the TS parameters for the interface

etween an elastomeric layer and a stiff adherend. 

The rest of the paper is organized as follows. We describe in

ection 2 the problem studied, outline in Section 3 the numeri-

al approach used to solve the problem, and present and discuss

n Section 4 results obtained by the FEM that relate the dam-

ge growth and debonding to the confinement and the interfacial

dhesion. The findings are summarized in Section 5 . The Appen-

ices include mesh refinement studies, energy balance for one ex-

mple problem, results of some three-dimensional (3-D) problems

hat support conclusions drawn from the analysis of 2-D problems,

omputed peel stress distribution for an example problem in which

he shear interaction is considered, and the sensitivity of results to

light compressibility of the elastomeric layer. 

. Formulation of the problem 

A schematic sketch of the problem studied is shown in Fig. 2 .

he domain of interest consists of an elastomeric layer sandwiched

etween a deformable plate and a fixed rigid base. It is assumed

hat debonding occurs only at the interface between the plate and

he interlayer. Neglecting body and inertia forces 1 , equations of

otion in the rectangular Cartesian coordinate axes ( x, y, z or x 1 ,
1 Since the time of interest is much larger than the time taken for an elastic wave 

o traverse the elastomeric layer thickness several times, inertia terms are neglected 

n the equations of motion. 

d

a

T

f

l

 2 , x 3 shown in Fig. 2 ) are 

∂ σi j 

∂ x j 
= 0 , i = 1 , 3 , (1)

here σ ij is the stress tensor and a repeated index implies sum-

ation over the range of values of the index. The plate and the

nterlayer materials are assumed to be homogeneous, isotropic and

ookean 

2 , and the elastomeric layer is also assumed to be incom-

ressible. Constitutive equations are 

lexible plate : σij = 

2 μp νp 

( 1 − 2 νp ) 
ε kk δij + 2 μp ε ij , (2) 

nterlayer : σi j = −p δi j + 2 με i j (3) 

Here μp and νp are, respectively, the shear modulus and Pois-

on’s ratio of the flexible plate, μ the shear modulus of the elas-

omeric interlayer, p the hydrostatic pressure in the elastomeric

ayer arising due to the incompressibility constraint, δij the Kro-

ecker delta, and ε ij the strain tensor for infinitesimal deforma-

ions defined as ε i j = 

1 
2 ( 

∂ u i 
∂ x j 

+ 

∂ u j 
∂ x i 

) , where u i is the displacement

long the x i -axis. 

The system is assumed to be very wide in the y- direction so

hat a plane strain state of deformation prevails 3 in the xz - (or x 1 x 3 
) plane, i.e., u y = 0 and the deformation is uniform along the y-

irection. All displacement components at points on the lower sur-

ace, z = 0, of the interlayer are assumed to be zero to simulate no

ebonding at its interface with the stationary rigid base. A mono-

onically increasing vertical peeling displacement 4 , δA , is applied at

he tip point, A, of the flexible plate. These displacement boundary

onditions are written as 

ower surface (z = 0) of the interlayer : u x = u z = 0 (4) 

oint A : u z = δA (5) 

The remaining bounding regions that include the overhang AB

of length a 0 ) of the plate and the right edge of the system are

ssumed to be traction-free, i.e., 

 i = σi j n j = 0 (6) 

here n j denotes the j th component of the unit outward normal at

 point on the bounding surface. 
etails of debonding after an interfacial instability has set in. A three-dimensional 

nalysis is needed for finding these details. 
4 In linear elasticity one should apply displacements on a surface of finite area. 

hus our applying vertical displacement δA at points on the edge of the lower sur- 

ace of the flexible plate is an approximation. In the numerical solution of the prob- 

em, one can easily satisfy this boundary condition. 
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Fig. 3. For pure mode-I and mode-II deformations, bilinear traction-separation relations (a) between the interfacial normal traction and the jump (contact-opening) in the 

interface normal displacement and (b) between the interfacial tangential traction and the displacement jump in the tangential direction (sliding). 
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The interaction at the interface between the plate and the inter-

layer is modelled by a TS relation that relates the interfacial trac-

tion components to the displacement jump components. Bilinear

TS relations ( Geubelle and Baylor, 1998 ) for pure modes I and II

shown in Fig. 3 are given by 

T n ( δn ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

K Ie δn ( δn ≤ δIc ) 

T Ic 
δIf − δIc 

(
δIf − δn 

) (
δIc ≤ δn ≤ δIf 

)

0 

(
δIf ≤ δn 

)

T s ( δs ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

K IIe δs ( −δIIc ≤ δs ≤ δIIc ) 

T IIc 
δIIf − δIIc 

(
δIIf − δs 

) (
δIIc ≤ δs ≤ δIIf 

)

T IIc 
δIIf − δIIc 

(
−δIIf − δs 

) (
−δIIf ≤ δs ≤ −δIIc 

)

0 

(
δIIf ≤ δs , δs ≤ −δIIc 

)

(7)

Fig. 3 a and b depict, respectively, the TS relations for the pure

opening mode (mode-I) and the pure sliding mode (mode-II). The

normal traction, T n , (tangential traction, T s ) increases linearly with

the interfacial normal (sliding) displacement jump/opening, δn ,

( δs ), along the line OE (OG). The slope is denoted as K Ie ( K IIe ). 

During mixed-mode deformations, damage/softening initiates at

an interfacial point when 

〈 T n 〉 2 
T Ic 

2 
+ 

T s 
2 

T I I c 
2 

= 1 , (8)

where the Macaulay bracket, 〈 〉 , signifies that the normal traction,

when tensile, contributes to damage initiation, and T Ic ( T IIc ) is the

prescribed peak value of T n ( T s ). After reaching its peak value T Ic 
( T IIc ), the normal (tangential) traction decreases affinely with an

increase in the normal (sliding) displacement until the plate sepa-

rates from (slides on) the interlayer at δIf ( δIIf ). 
The debonding initiates at an interfacial point when 

G I 
G Ic 

+ 

G II 
G IIc 

= 1 , (9)

here G I = 

∫ δn 
0 T n d δn and G II = 

∫ δs 
0 T s d δs are the energy release

ates (ERRs) for modes I and II, respectively, and G Ic = 

1 
2 T Ic δIf and

 IIc = 

1 
2 T IIc δIIf are the corresponding critical ERRs equal to areas of

riangles OEF and OGH, respectively. Should unloading occur for

ormal (sliding) displacement values between those for points E

nd F (G and H), the normal (tangential) traction decreases follow-

ng the path RO (SOS / ). Subsequent reloading causes the traction

o follow the path OR (S / OS). 

The total energy of separation at the initiation of debonding

t a point is given by G = G I + G II . In terms of phase-angle of

ode-mixity, defined as ϕ = tan 

−1 ( 
√ 

G II / G I ) , and using Eq. (9) ,

ne can write G/ G Ic = (1 + tan 

2 ϕ) / (1 + tan 

2 ϕ(G Ic / G I I c )) . A com-

lete description of the CZM and the TS relations for mixed-mode

oading including paths followed during unloading and reloading is

iven in Camanho et al. (2003) . Xiao and Batra (2014) adopted Ca-

anho et al.’s approach to study delamination in a sandwich struc-

ure subjected to water slamming loads. 

Following Maugis (1992 ) and Tang and Hui (2005 ), we assume

hat the interface fails in tension; thus we set T Ic << T IIc and G Ic 
< G I I c . Under this assumption, damage initiates when the peel

tress exceeds T Ic and debonding occurs when G I = G Ic . Henceforth,

e use symbols δf , δc , G c , and T c for δIf , δIc , G Ic , and T Ic , respec-

ively. Results computed for one case with T Ic = T IIc and G Ic = G I I c 
re included in Appendix D . 

In general, values of the initial slopes K Ie and K IIe must be suf-

ciently large ( Song et al., 2006 ) to minimize the artificial com-

liance introduced into the system and to avoid inter-penetration

nder compression. Very large values of K Ie and K IIe can make

he system matrices ill-conditioned when the problem is ana-

yzed by the FEM. We set K Ie = K IIe = K e in the remainder of

he paper. 
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Fig. 4. The FE mesh and the boundary conditions on the region whose plane-strain 

deformations are analyzed. 
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7 In order to understand the length scale of (cf. Fig. 4 ) singularity oscillations 

(near corner B) in the interfacial tractions , we recall that the solution is of the 

form sin ( 1 
2 π ln 1 −βD 

1+ βD 
ln r ) where r is the radial distance from point B, and βD = 
At an interfacial point where the displacement jump exceeds δc ,

he ratio of the ERR to the total fracture energy, D = 1 − ( δ f −δ) 2 

δ f ( δ f −δc ) 

 (area of portion OERS)/(area of triangle OEF), is termed as the

extent of damage’ when discussing results. 

Eqs. (1) –( 9 ) define the boundary value problem (BVP) analyzed

n this work. The possibility of debonding at a priori unknown

oints on the interface makes the BVP challenging. 

. Numerical solution of the problem 

.1. Approach 

The commercial FE software ABAQUS/Standard (version 6.11–2) 5 

 Hibbitt and Sorensen, 2012 ) is used to numerically analyze the

VP by employing 4-node square/rectangular elements in the FE

esh shown in Fig. 4 . In the ABAQUS terminology we use CPE4

plane strain, 4-point integration) elements for the plate and the

PE4H (H stands for hybrid formulation appropriate for incom-

ressible materials in which both displacements and the pressure

re taken as unknowns) elements for the interlayer. Sensitivities of

he computed peel stress distributions and the load-displacement

ariations to the FE mesh are reported in Appendix A . The vertical

isplacement δA of point A in Figs. 2 and 4 , is gradually increased.

 surface-based cohesive contact interaction ( Hibbitt and Sorensen,

012 ) is used for the interface between the flexible plate and the

nterlayer 6 . We have not captured a converged value of the order of

ingularity ( Bogy, 1968 ; Dundurs, 1969 ; Chadegani and Batra, 2011 )

t the initial debond tip ( x = 0). However, key findings reported

erein are found to be insensitive to further refining the FE mesh

see Appendix A ). In order to alleviate numerical instabilities and

ssociated convergence difficulties, the “Damage Stabilization” op-

ion (viscous regularization) in ABAQUS is used. Unless otherwise

entioned, the value of the stabilization parameter was chosen to

e 10 −7 ; using a lower value was found not to affect the computed

esults but significantly increased the computation time. 

. Results and discussion 

.1. Choice of parameters 

When a 0 is held constant and bending is assumed as the domi-

ant mode of deformation of the plate, there are the following four
5 The computed results satisfied energy balance with ∼8% discrepancy between 

he external work and the sum of the strain energy, the dissipation due to interfa- 

ial damage, and the dissipation due to viscous regularization ( Appendix B ). 
6 In ABAQUS terminology it means that the plate surface is defined as the ‘mas- 

er’ surface and the interlayer surface as the ‘slave’ surface. While computing the 

isplacement jump at a slave node, the displacement of the closest point on the 

aster surface is computed by interpolating the displacements of neighboring 

odes. 

fl

ν

c

t

T

n

0

ndependent length scales 7 : 

, ( D p /μ) 
1 / 3 

, δ f , G c μ/ T c 
2 

The flexural rigidity of the plate, D p , is given by D p =
 p t 

3 / 12(1 − νp 
2 ) where E p is Young’s modulus of the plate ma-

erial, νp Poisson’s ratio and t the plate thickness ( νp and t are

eld constant in our analysis). The geometric mean, 

√ 

h ( D p /μ) 1 / 3 ,

f the listed first two lengths quantifies the characteristic stress

ecay distance ( Dillard, 1989 ; Ghatak et al., 2005 ) from the edge,

nd their ratio, α = ( D p / μh 3 ) 1/3 , signifies confinement ( Ghatak,

006 ) of the interlayer. The ratio of h and the CZM length scale

 c μ/ T c 
2 yields the parameter φ = T c 

2 h / G c E (note that E = 3 μ for

he incompressible elastomeric layer) that determines the neces-

ary condition for the onset of contact instability ( Mukherjee et al.,

016a ) during plane strain deformations of the elastomeric layer

andwiched between two rigid blocks and one rigid block pulled

way from it and the other kept stationary. Following Adda-Bedia

nd Mahadevan (2006), Ghatak (2006), Vilmin et al. (2009) , we

all α the confinement parameter and following Mukherjee et al.

2016a) φ the CZM/adhesion parameter. 

Besides α and φ, the nondimensional parameters defined below

re used in the presentation of results. 

 i = 

T i 
T c 

, 
A = 

δA 

δ f 

, P A = 

P A 
D 

p β3 δ f 

, X = xβ, A 0 = a 0 β

here T i stands for either the normal ( T n ) or the tangential trac-

ion ( T s ) at the interface, P A is the reaction force at point A and β
 (12 μ/ D p h 

3 ) 1/6 . 

Our objective is to explore effects of α and φ on the debond-

ng process. We achieve this by setting, unless otherwise specified,
− 1 = 1 mm, μ = 5MPa, νp = 0.3, t = 1 mm, a 0 = 2.83 mm,

he plate length = 50 mm , T c = 1.265 MPa and K e = 10 6 N/mm 

3 .

or desired values of α and φ, we set h = 12 1/6 β− 1 α1/2 , D p =
2 1/2 μβ− 3 α3/2 , and G c = T c 

2 h /3 φμ. 

.2. Analysis of interfacial tractions with no damage allowed at the 

nterface 

In this sub-section, we report interfacial tractions as a function

f the confinement when the flexible plate is peeled away from

he interlayer but no separation is allowed to occur at the inter-

ace. Results are computed for constant vertical displacement, δA 

 1 μm, at different values of the confinement parameter, α8 . A

ery large value is assigned to T c so that damage does not initiate

or δA = 1 μm and the FE mesh used 

9 . 

The distributions (nodal values) of T n (peel stress) and T s 
tangential/shear stress) are plotted in Fig. 5 as a function of the

istance x from the corner point B. With an increase in α, the peel

tress, in addition to the large value exhibited at corner B, has

 local maximum (secondary/internal peak) where the tangential

tress is nearly zero. One can note that the hydrostatic pressure, p ,

lotted for α = 8, significantly contributes to the normal stresses
1 
2 

μp (1 −2 ν) −μ(1 −2 νp ) 

μp (1 −ν)+ μ(1 −νp ) 
is Dundurs parameter, where μp is the shear modulus of the 

exible plate and ν Poisson’s ratio of the interlayer. For materials of interest here, 

≈ 0 . 5 , νp ≈ 0 . 3 − 0 . 4 , μ/μp ≈ 10 −5 , we get βD ≈ 0. 
8 The FE height was adjusted as the interlayer thickness was modified to vary 

onfinement, however, at least 10 elements were placed through the interlayer 

hickness. Rectangular elements had aspect ratio less than 4. 
9 One example is μ = 5 MPa, h = 0.67 mm, t = 1 mm, E p = 2.115 GPa, νp = 0.3, 

 c = 10 MPa and K e = 10 6 N/mm 

3 . For these values of parameters, the damage does 

ot initiate when elements of dimensions 0.0125 mm × 0.0125 mm and 0.1 mm ×
.1 mm are used to discretize the interlayer and the flexible plate, respectively. 
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Fig. 5. (a) A schematic sketch of the deformed shape of the specimen; the com- 

puted (b) interfacial normal traction ( T n ) and (c) the interfacial tangential traction 

( T s ) as functions of the distance x from the corner point B for different levels of con- 

finement, α. These results correspond to a very high value of the interfacial strength 

to prevent debonding at the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Comparison of the present results with those from the literature for 

α = 3 and 5. These results correspond to a very high value of the interfacial 

strength to prevent debonding at the interface. 

Fig. 7. Non-dimensional location of the internal peak as a function of the confine- 

ment level. These results correspond to very high value of the interfacial strength 

to prevent debonding at the interface. 
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including the peel stress and accounts for the large difference be-

tween the normal and the tangential stresses. For low confinement

(e.g., α = 3), the local maximum of peel stress is not exhibited,

though evidence of a shoulder remains. 

The computed distribution of the interfacial peel stress is com-

pared in Fig. 6 with that from approximate ‘mechanics of materials’

(MoM) solutions of other investigators. The approximate solution

of Ghatak et al. (2005) captures qualitatively the interfacial normal

traction distribution for low values of α. The solution of Ghatak et

al. (2004) , who enforced a boundary condition of zero peel stress

at point B, captures the location of the secondary peak for con-

fined interlayers. In a subsequent work Ghatak et al. (2005) as-

sumed that the peel stress had a local maximum at point B. As

shown by Adda-Bedia and Mahadevan (2006) , a MoM solution fails

to capture details of interfacial tractions near the edge. 

The non-dimensional distance, b β , from point B where the lo-

cal maximum in T n occurs for sufficiently confined interlayers, is

computed for a range of values of α and β , and plotted in Fig. 7

as a function of α. It can be seen that b β becomes relatively in-

sensitive to the confinement level for large values of α. For the

experimental set-up of Ghatak et al. (2004) , α > 15, our prediction
f this distance lies between the experimentally measured, b β ≈
.1, and the approximate theoretical prediction, b β ≈ 0.74 ( Ghatak

t al., 2004 ). The assumption b β ≈ constant leads to the relation, b

 ( E p / E ) 
1/6 ( t ) 1/2 ( h ) 1/2 , which is similar to the characteristic lag dis-

ance l shear-lag ∝ ( E p / E ) 
1/2 ( t ) 1/2 ( h ) 1/2 found from Volkersen’s shear

ag analysis ( Anderson et al., 1977 ). This correlation is understand-

ble in that the internal peak in the peel stress occurs because

hear stresses at the interface transfer load into the elastomer in-

erlayer through shear lag but in a decreasing traction field; e.g.,

ee the analysis of a beam on an elastic foundation (6 th order dif-

erential equation ( Dillard, 1989 )). 

As pointed out by an anonymous reviewer of an earlier version

f this paper, a slight departure from incompressibility of the in-

erlayer may significantly affect distributions of the interfacial trac-

ions ( Lai et al., 1992 ; Tizard et al., 2012 ). Results of some numeri-

al experiments addressing this are included in Appendix E . 

.3. Analysis of damage growth and debonding 

In the CZM, damage initiates at an interfacial point when the

eel stress there just exceeds the prescribed peak traction, T c . A

urther increase in the applied displacement δ causes the peel
A 
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Fig. 8. For α = 3, φ = 0.1, distributions of the non-dimensional normal traction ( ̄T n = T n / T c ) and the extent of damage ( D ) at the interface as a function of the non- 

dimensional distance ( X ) measured from point B at increasing values of the non-dimensional applied displacement ( 
A ). The deformed configurations, shown on the left, 

have been exaggerated by a factor of 5. This is an example of type-1 debonding mechanism shown in Fig. 13 . Note that the CZ ( δc < δn < δf , 0 < D < 1) is a partially 

damaged region and is not traction-free. Two adjoining surfaces of the CZ can be thought of as being held by stretched springs, as shown in the inset. 
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tress at that point to follow the softening segment EF of the TS

elation in Fig. 3 . The region where softening (sometimes called

amage) has occurred in the TS relation is henceforth referred to

s the cohesive zone (CZ). It is conjectured that for large values of

the damage/softening initiation at the corner point B is accom-

anied by the initiation of damage at an interior point situated at a

istance b (analogous to the shear-lag distance) from point B due

o the local peak peel stress there increasing with α. The litera-

ure results ( Bao and Suo, 1992 ; Hill et al., 2003 ; Mukherjee et al.,

016a ) suggest that the post-damage response will be influenced

y the value of parameter φ. In order to delineate the collective

ole of α and φ on the damage/debonding behavior, we simulate

rogressive debonding with a gradual increase of δA . 

.3.1. Damage and debonding mechanisms 

Fig. 8 exhibits the evolution of the peel stress and the extent of

amage with a monotonic increase in the applied displacement δA 

hen α = 3 and φ = 0.1 10 . With increasing δA applied at the plate

dge 11 , damage initiates at the corner B and forms a CZ accompa-

ied by a redistribution of the stress. Note that the peel stress at
10 It has been checked that the computed results are stable with respect to varia- 

ions in the TS parameters. For example, α = 100, φ = 4, β− 1 = 1 mm, μ = 5 MPa, 

 e = 10 6 N/mm 

3 , T c = 1.265 MPa, and 
A = 0.7, the maximum % changes in nodal 

alues of the peel stress over the internal CZ were found to be 0.02% and 4.58% 

hen T c = 1.266265 MPa and K e = 10 8 N/mm 

3 were used, respectively. 
11 An infinitesimal displacement should cause a CZ to initiate at point B since lin- 

ar elasticity theory implies a singular traction at point B. However, in an FE simu- 

ation using a CZM, the value of the applied displacement required to initiate a CZ 

p  

t  

t  

i  

t  

a

e

oint B is now limited by the peak traction T c in the TS bilinear

elation. With continued loading the contact opening at point B

eaches the ultimate value δf , the peel stress vanishes and the

late is debonded there from the elastomer. The further increase in

A results in the propagation of this debond with a CZ at its front.

his edge debonding, named type-1 for later reference, has been

tudied by a semi-analytical method using a CZM by Mukherjee

t al. (2016c) who extended techniques of Dillard (1989) and

hatak et al. (2005) . Their results reveal that the CZ size increases

ith an increase in the quantity α/ φ. For small values of α/ φ,

he CZ size becomes vanishingly small and the edge debonding

rocess can be analyzed by the LEFM approach, e.g., see Ghatak et

l. (2005) . 

In Figs. 9–11 we have plotted for φ = 4, 5, and 50, respectively,

omputed evolutions of the interfacial peel stress and the extent

f damage, D , for a very high level of confinement, α = 100.

esults shown in Fig. 9 reveal that the damage initiation and the

oncomitant CZ formation over a negligibly small region at the

dge are accompanied by the damage initiating internally at a

istance 0.85 (consistent with the results shown in Fig. 7 ) from

oint B and spreading of a CZ due to the local peak peel stress

here. As δA is increased further, the internal CZ coalesces with

he edge CZ, and the resulting debond propagates with one CZ at

ts front. This qualitatively agrees with the experimental finding

hat debonds initiate internally and eventually coalesce with
t point B depends upon the FE mesh used because the singular peel stress cannot 

xceed T c . 
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Fig. 9. For α = 100, φ = 4, distributions of the non-dimensional normal traction ( ̄T n ) and the extent of damage ( D ) at the interface as a function of the non-dimensional 

distance ( X ) measured from point B at increasing values of the non-dimensional applied displacement ( 
A ). The deformed configurations, shown on the left, have been 

exaggerated by a factor of 25. This is an example of type-2 debonding mechanism exhibited in Fig. 13 . Note that the CZ ( δc < δn < δf , 0 < D < 1) is a partially damaged 

region and is not traction-free. 
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the edge debond, and the resulting debond front propagates on

continued loading ( Ghatak et al., 2004 ). However, our plane strain

analysis implies long tunnel-like debond with no undulations in

the out-of-plane direction. An FE analysis of 3-D deformations by

Mukherjee et al. (2016a) indicated that the internal debonding

process became undulatory (wavy) when the softening stiffness of

the TS relation (slope of line EF in Fig. 3 ) was large in comparison

with the modulus to the thickness ratio of the elastomeric layer.

Recalling that the spacing ( λ) between the adjacent undulation

peaks ( Mönch and Herminghaus, 2001 ; Sarkar et al., 2005 ; Ghatak,

2006 ) is expected to be ≈ 3 h , the size of the CZ in a plane strain

analysis must be >> 3 h to capture the undulatory debonding phe-

nomenon. Our numerical experiments reveal that the size of this

CZ decreases with an increase in φ and a decrease in α. However,
s φ is increased, if the CZ size is several times the interlayer

hickness determined by the combined values of both α and φ,

he peel stress begins to oscillate with amplitudes large enough

o cause wavy debonding. An example of such wavy debonding is

llustrated in Fig. 10 for φ = 5. Multiple debonds initiate over the

Z resulting in traction-free regions separated by portions of the

amaged interface. The average spacing between these debonds is

pproximately 3 h, which agrees with the results of the interfacial

nstability ( Mönch and Herminghaus, 2001 ; Sarkar et al., 2005 ;

hatak, 2006 ). A comparison of our computed results for φ =
 and φ = 5 suggests that the threshold value, ( φc ), of φ is in

he range (4, 5). This agrees with φc ≈ 4.15 found ( Mukherjee

t al., 2016a ) for debonding of an infinitely confined elastomeric

nterlayer from a rigid block pulled outwards; however, we have
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Fig. 10. For α = 100, φ = 5, distributions of the non-dimensional normal traction ( ̄T n ) and the extent of damage ( D ) at the interface as a function of the non-dimensional 

distance ( X ) measured from point B at increasing values of the non-dimensional applied displacement ( 
A ). The deformed configurations, shown on the left, have been 

exaggerated by a factor of 25. This is an example of type-3 debonding mechanism displayed in Fig. 13 . Note that the CZ ( δc < δn < δf , 0 < D < 1) is a partially damaged 

region and is not traction-free. 
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ot conducted sufficient number of simulations to extract the

recise value of φc . The internal debonding process without wavy

ebonding is named type-2 and that with the softening-induced

ndulations is named type-3. Note that if φ is very large, the

Z formed at the internal peak location does not spread; instead

ebonding occurs and the local peel stress vanishes as illustrated

n Fig. 11 . The redistributed peel stress exhibits a peak at a shear-

ag distance from this debond. Continued loading causes nucleation

f a second internal debond which, in turn, leads to a third in-

ernal debond. This debonding mechanism is named type-4. The

verage spacing between the type-4 debonds is greater than 3 h as

vident from the plots of Fig. 12 . A type-4 debonding mechanism

iffers from a type-3 mechanism in that the CZ sizes adjacent to

he debonds are vanishingly small. Consequently, the predicted

ebonding evolution becomes sensitive to the FE mesh at large
alues of φ ( Mukherjee et al., 2016a ). However, findings regarding

he mechanisms of damage/debonding remain unaffected. 

Presently computed predictions of the aforementioned four

ypes of damage growth/debonding mechanisms are plotted in the

φ−plane in Fig. 13 . These results suggest that there is a threshold

onfinement, αc , above which the peak peel stress at an interior

oint begins to initiate and spread damage internally. This can be

xplained as follows. The reduction in the load carrying capacity

ue to damage at the location of the internal peak begins to out-

eigh that due to the edge peel stress when the confinement is

ufficiently large. We note that even though the peel stress has a

ocal peak at an interior point for confinements greater than 4, the

hreshold confinement level, αc , beyond which a CZ forms inter-

ally lies between 8 and 9. For the edge initiated debonding mech-

nism that occurs for α < αc , the interfacial instability is not found
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Fig. 11. For α = 100, φ = 50, distributions of the non-dimensional normal traction ( ̄T n ) and the extent of damage ( D ) at the interface as a function of the non-dimensional 

distance ( X ) measured from point B at increasing values of the non-dimensional applied displacement ( 
A ). The deformed configurations, shown on the left, have been 

exaggerated by a factor of 25. This is an example of type-4 debonding mechanism evinced in Fig. 13 . 

Fig. 12. On a semi-log plot, computed average spacing between the the two con- 

secutive internal debonds normalized by the interlayer thickness as a function of φ

when α = 100. 

Fig. 13. Computed mechanisms of damage growth/debonding in the αφ−plane. 

t  
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o occur. Results from a semi-analytical model for such debond-

ng ( Mukherjee et al., 2016c ) show that the CZ size, d , normalized

y the characteristic wavelength of undulation ( λ ∼ 3 h ), scales as

( d/λ) ∼ ( α/ 
√ 

φ) , and at α = αc and φ = φc , d / λ < 1. An increase
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Fig. 14. Non-dimensional load vs. non-dimensional displacement for φ/ α = 1. 
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n the confinement changes the debonding initiation mechanism

nd an increase in φ reduces the size of the CZ that is too small

o accommodate undulations that may ensue due to the softening

nduced instability. This qualitatively agrees with the experimental

nding of Ghatak and Chaudhury (2003) in that the confinement

ust exceed approximately 18 for the appearance of a fingerlike

onvoluted crack front. The underestimation by our analysis may

e due to the assumption of plane strain deformations, and the

ack of knowledge of contact conditions between the glass cover

lates and the Polydimethylsiloxane (PDMS) layer used in the ex-

eriments. 

.3.2. Load-displacement curves 

In terms of our normalization, the load-displacement (LD) rela-

ion found using an LEFM approach by Ghatak et al. (2005) is 

 A = 

P A 
D p β3 δ f 

= 

6
A (
6 + 12 A + 9 A 

2 + 2 A 

3 
)

here the non-dimensional length, A , of a propagating crack is

ound from the relation 

( 6+12 A +9 A 2 +2 A 3 ) 
3 

( 12+46 A +72 A 2 +56 A 3 +21 A 4 +3 A 5 ) 
= 83 . 9 
A 

2 α
φ

,

nd P A is the reaction force (per unit width of the plate) at point

 corresponding to the crack length A. In Fig. 14 we have plotted

he computed P̄ A vs. 
A from this relation as well as that from our

E analysis of the debonding problem for φ = 1, 3, 25, and 60,

/ α = 1, and A 0 = 2.83. With increasing values of applied 
A , P̄ A 
ncreases up to a peak value and then decreases. The nonlineari-

ies, if any, in the initial ascending portions of these curves are at-

ributed to the formation of the CZ near point B. For type-1 (edge

nitiation) debonding ( φ = 1 and 3), the descending portions of

he LD curves are smooth. As suggested by an approximate semi-

nalytical model for type-1 debonding process ( Mukherjee et al.,

016c ), the LD curves for such debonding process depend only on

he ratio φ/α for a given value of A 0 . The LD data computed for

/α = 1 and A 0 = 2 . 83 using the semi-analytical model is included

n Fig. 14 . The other two computed LD curves plotted in Fig. 14 cor-

espond to type-4 internal debonding (curves with similar features

re obtained for type-2 and type-3 internal debonding). These LD

istories exhibit a saw-tooth behavior which becomes more pro-

ounced with an increase in φ. The LD plots for α = 100 and φ
 250, 500, and 10 0 0, and the corresponding deformed shapes

re exhibited in Fig. 15 a. These results reveal that values of δA 

orresponding to local drops in the saw-tooth behavior correlate

ell with those for the nucleation of internal debonds. The subse-

uent increase of the load with the increase in δA until the nucle-

tion of the next debond is due to the retardation of the internal
ebond(s) in the presence of the adjacent debond. This is remi-

iscent of the experimental observations of Ghatak et al. (2004 )

nd Chung and Chaudhury (2005 ), during the peeling of a flexible

late from an elastomeric layer containing incisions. They observed

rapping of nucleated debonds near the incisions. Our results sug-

est that higher values of φ at a given level of confinement corre-

pond to slower propagation of debonding as evidenced by plots in

ig. 15 b of the non-dimensional X- coordinate of the debond tip(s)

s a function of 
A for φ = 250 and 10 0 0. The approximate growth

ate of the 1 st internal debond between its nucleation ( p ) and co-

lescence ( q ) with the 2 nd internal debond is estimated as ( X q −
 p )/(( 
A ) q − ( 
A ) p ) = 0.0016 for φ = 1000. For φ = 250, the cor-

esponding growth rate from p ′ to q ′ equals approximately 0.0045.

he increase in resistance to debond growth with increasing φ
grees with the saw-tooth behavior becoming more pronounced

ith an increase in φ. The growth of one debond in the presence

f another adjacent internal debond controlled by the parameter φ
as also been reported by Hill et al. (2003) in their investigation of

he growth of a wedge-driven external crack in the presence of an

nternal void behind the crack tip. The load-displacement results

egin to become mesh-sensitive for type-4 debonding mechanism

wing to the CZ sizes adjacent to the debonds being vanishingly

mall. 

In order to probe the scaling of the maximum reaction force

pull off force), numerous numerical simulations have been con-

ucted by varying α and φ. The non-dimensional maximum pull-

ff force, P̄ max 
A 

, is plotted in Fig. 16 as a function of φ/ α. For small

alues of φ/ α all data collapse on the same line for types-1, 2 and

 debonding and agree well with predictions of a semi-analytical

odel of Mukherjee et al. (2016c) for type-1 debonding. The least

quares fit to the data for φ/ α < ∼2 reveals that for types-1, 2

nd 3 debonding, P̄ max 
A 

∝ ( φ/α) 0 . 8 (exponent approximate) with

he constant of proportionality ( ∼0.13 when A 0 = 2.83) dictated

ossibly by the non-dimensional initial overhang length, A 0 . For

arger values of φ/ α ( > ∼2), it is found that the data for the edge-

nitiated debonding (type-1) satisfy the scaling P̄ max 
A 

∝ φ/α0 . 5 
(con-

tant of proportionality ∼0.5) which is also obtained from an LEFM

nalysis ( Ghatak et al., 2005 ). 

Our computed results suggest that for type-4 debonding the

aximum pull-off force begins to increase linearly for φ/ α >

2, i.e., P̄ max 
A 

∝ φ/α (constant of proportionality ∼ 0.7 when A 0 

 2.83), although the computed data points at different confine-

ent levels suggest additional weak dependence on α. We have

ummarized in Table 1 the collective role of the confinement and

he interfacial adhesion on the non-dimensional pull-off force (in

ur numerical experiments the confinement was varied within the

ange 1 < α < 100 and the adhesion parameter within 0.01 < φ <

00). For ease of interpretation, the dependence of the dimensional

orce on the plate flexural rigidity, the interlayer thickness, the in-

erlayer modulus, the peak traction ( T c ) and the fracture energy

 G c ) is also included. These results suggest that the pull-off force

epends on T c more strongly than on other parameters for small

alues of the adhesion parameter. For small values of the confine-

ent and large values of the adhesion parameter, (small confine-

ent (adhesion) is defined as one for which α < ∼9 ( φ/ α < ∼2))

he results can be described by the LEFM - based analysis; the pull-

ff force then strongly depends on the geometric and the material

arameters, and on G c but does not depend on the peak traction.

or large value of the confinement and large values of the adhe-

ion parameter, the pull off force scales with T c , shows weak de-

endence on the plate rigidity, and depends on the thickness and

he modulus of the interlayer in a way opposite to that for less

onfined interlayers and exhibits no dependence on the fracture

nergy. These dependencies can potentially be used to find values

f the TS parameters from the pull-off force data obtained in suit-

bly designed experiments. 
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Fig. 15. (a) Non-dimensional load versus non-dimensional tip-displacement plots for α = 100 and three values of φ. Deformed shapes (exaggerated by a factor of 20) 

corresponding to points a, b, c and d are included in the right figure; (b) Plots of X- coordinate of the debond tip as a function of the applied non-dimensional tip-displacement 

for φ = 250 and 10 0 0. 

Table 1 

Effect of confinement and adhesion on the pull-off force. 

Confinement, α Adhesion, φ Classification of 

damage/debonding initiation 

The non-dimensional pull off

force, P̄ , is proportional to 

The dimensional pull off force, P , is 

proportional to 

Small Small Type-1 (φ/α) 0 . 8 D p 
7 

30 μ− 1 
30 h 

1 
10 G c 

1 
5 T c 

3 
5 (exponents approximate) 

Large Small Type-2,3 

Small Large Type-1 (φ/α) 0 . 5 D p 
1 
3 μ

1 
6 h −

1 
2 G c 

1 
2 

Large Large Type-4 φ/ α D p 
1 
6 μ− 1 

6 h 
1 
2 T c (exponents approximate) 
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4.3.3. Limitations 

Experimental findings ( Ghatak and Chaudhury, 2003 ; Ghatak

et al., 2004 ) and simulations of 3-D deformations ( Biggins et al.,

2013 ; Mukherjee et al., 2016a ) suggest that the adhesion-induced

instability triggers oscillations in the out-of-plane (the y- ) direction

resulting in a fingerlike debonding front. However, the assumption

of plane strain deformations, and hence no variation in the out-of-

plane direction, forces the instability to develop in the x -direction.

Instabilities in both the x - and the y - directions have been
xperimentally observed for very large values of the confinement

 α = 67) by Ghatak et al. (20 0 0) . A plane-strain assumption, in

eneral, fails to predict details of pattern formation during the

ebonding process because the inhomogeneity in the out-of-plane

raction distribution due to the presence of traction-free surfaces

nd anticlastic bending of the plate lead to (i) undulatory debond-

ng in the y- direction and (ii) multiple debonds rather than a

unnel-like debond assumed for plane-strain deformations. This

s confirmed by comparing results of analyzing 3-D deformations
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Fig. 16. Dependence of the non-dimensional pull-off force on the non-dimensional 

number φ/ α. 
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Fig. 17. (a) The configuration analyzed; snapshots (exaggerated by a factor of 100) 

of the interfacial debonding for (b) α = 8, (c) α = 2 and (d) α = 10, and the same 

values of the TS parameters at both interfaces corresponding to T c = 0.04 MPa and 

φ = 4 when vertical displacement is monotonically increased at point A. The thick- 

ness and the total length of each plate in the numerical simulations are taken to be 

1 mm and 50 mm , respectively. Both adherends have Poisson’s ratio of 0.3. Values 

of other parameters are: a 0 = 2.83 mm, β− 1 = 1 mm and K e = 10 6 N/mm 

3 . 

e  

w  
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s  
ith and without restraining the y- displacement of points on the

ateral surfaces of the plate. Nevertheless, results presented here

re useful for predicting the onset of different types of debonding

n a semi-infinite geometry as a function of the confinement and

he CZM parameters. Results for a few 3-D problems included in

ppendix C support conclusions drawn from the analysis of plane

train deformations. 

Recalling that the present problem involves a mixed-mode

oading ( Suo and Hutchinson, 1989 ; Hutchinson and Suo, 1991 ; Li

t al., 2004 ), one restricting assumption of the present work is that

f the interfacial interaction being much weaker in the normal

irection than that in the tangential direction. However, as sup-

orted by results of an example problem included in Appendix D ,

he debonding mechanisms are qualitatively unchanged even when

imilar interaction is considered in both the normal and the tan-

ential directions. 

.4. Debonding at both interfaces of the interlayer 

Industrial fabrication of soft bio-implants such as ophthalmic

enses often involves the release of an elastomeric interlayer sand-

iched between two molds from a desired mold interface by me-

hanically prying open one of the molds ( Larsen, 1987 ). A potential

roblem, when the interfaces have identical adhesion, is the occur-

ence of debonding at the undesirable interface and/or at both in-

erfaces, resulting possibly in a bridge of the interlayer suspended

etween the two molds. This renders the interlayer susceptible to

earing failure. Computed results of some additional numerical ex-

eriments are presented that may help design potential strategies

or engineering a desired release mechanism. 

The configuration analyzed is schematically shown in Fig. 17 a,

nd values of various parameters are given in the Figure legend. It

s similar to that depicted in Fig. 4 except that the lower adherend

s also made of an isotropic and homogeneous linear elastic mate-

ial and the two adherends have the same overhang length of 2.83

m 

12 . Referring to Fig. 17 a, the edge of the upper flexible plate is

onotonically displaced upwards and the three displacement com-

onents of points on the bottom surface of the lower plate are set
12 4-node square elements of dimensions 0.1 mm × 0.1 mm and 0.025 mm ×
.025 mm have been used to discretize the molds (CPE4 elements) and the inter- 

ayer (CPE4H elements), respectively. 

o  

s  

t  

s  
qual to zero to simulate the fixed base. To be consistent with the

ork reported in the previous section, we assume that the inter-

aces damage dominantly in tension. 

As the upper plate is loaded, the asymmetry of materials, load-

ng and boundary conditions on the two adherends causes a shear-

ng bias at point B in Fig. 17 a, that results in opening at the upper

nterface near point B due to peeling-shearing coupling. We recall

hat when the lower interface has infinite strength, the confine-

ent has to exceed a threshold value for debonding to initiate at

n interior point due to the peak stress there. Before damage initi-

tion the computed distributions of the peel stress at the two in-

erfaces reveal that the peel stresses are nearly identical at the two

nterfaces except at points close to the corners. Due to the open-

ng bias at point B, it is speculated that a lower threshold confine-

ent level is needed for the internal debonding to ensue at the

ower interface than that at the upper interface. When the two in-

erfaces have the same strength, the simulation results shown in

ig. 17 b −d indicate that there is a range of confinement values for

hich internal debonding initiates at the lower interface with the

dge crack initiated at the upper interface. For α = 8 the inter-

al debond does not nucleate at the upper interface but nucleates

nd grows at the lower interface thereby causing an undesirable

ridge of the interlayer suspended between the two adherends as

hown in Fig. 17 b. One way to mitigate this is to reduce the level

f confinement so that the peak peel stress at interior points is

mall. The simulation results for α = 2 plotted in Fig. 17 c support

his. However, for sufficiently confined interlayers, such as that

hown in Fig. 17 d for α = 10, damage may occur at interior points
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Fig. 18. Snapshots of debond growth (exaggerated by a factor of 100) when the 

assembly is pre-cooled homothermally by − 2 o C followed by a vertical displace- 

ment applied at point A while the displacement components at the bottom surface 

of the lower mold equal zero. The coefficients of thermal expansion are assumed 

to be 7 × 10 − 5 / o C and 6 × 10 − 4 / o C for the two molds and the interlayer mate- 

rials, respectively. The pre-cooling stage is simulated by inputting 
T = −2 o C and 

no thermal effects are simulated for the mechanical loading stage. These results are 

for the confinement α = 8 and equal values of the TS parameters at both inter- 

faces corresponding to T c = 0.04 MPa and φ = 4. Both adherends have Poisson’s 

ratio of 0.3. Values of other parameters are: a 0 = 2.83 mm, β− 1 = 1 mm and 

K e = 10 6 N/mm 

3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1. For α = 8, sensitivity to the FE mesh of (a) distribution of the peel stress 

at the interface yet to damage when δA = 1 μm, and (b) distribution of the contact 

opening when φ = 4, 
A = 3.634. The inset shows the exaggerated (by a factor of 

20) deformed configuration. 
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on both interfaces at locations of peak stresses. Continued load-

ing causes the lower interface CZ to become shielded ( Hutchinson,

1987 ) by the growth of the CZ on the upper interface. These obser-

vations suggest that an improper level of confinement may result

in an erratic debonding process. In practical situations, however,

the choice of tailoring the confinement by tuning the mold flexi-

bilities may be limited. As was suggested by Feurer (1983) , ther-

mal pre-conditioning can be used to bias debonding to a desired

interface. For example, pre-cooling (values listed in the Figure leg-

end) the assembly before mechanically pulling the upper mold for

α = 8 causes the internal debond to initiate and grow at the up-

per interface as can be seen from the results exhibited in Fig. 18 .

Due to the mismatch in the coefficients of thermal expansion of

the molds and the interlayer and the associated bending of the

flexible upper mold, the peel stress is compressive near the upper

interface corner point B and tensile at the lower interface corner

point M. As a result of the opening bias at the lower interface cor-

ner, the edge debond initiates at M and the internal debonding nu-

cleates and grows at the upper interface. These debonding charac-

teristics remain unchanged upon refining the FE mesh. Since shear

interaction may play an important role in determining preferential

debonding when two interfaces in a three-layer sandwich structure

are equally weak, only mode-I debonding considered here may not

have provided an accurate assessment of the tearing phenomenon.

A more detailed investigation ( Mukherjee, 2016 ) of tailoring the

confinement, the ratio of the elastic moduli of the two adherends,

and the thermal pre-conditioning to cause preferential debonding

will be reported elsewhere ( Mukherjee et al., 2016d ). 
. Conclusions 

We have studied interfacial debonding of a flexible plate from

n elastomeric layer firmly bonded to a rigid substrate by using a

ohesive zone model (CZM) and analyzing plane strain infinitesi-

al deformations of the linear elastic flexible plate and the elas-

omeric layer by using the finite element commercial software,

BAQUS/Standard. The effects of the following two dimensional

arameters have been investigated 

(i) Confinement parameter, α = ( D p / μh 3 ) 1/3 , relating the flexural

rigidity, D p , of the plate and the shear modulus, μ ( = (Young’s

modulus, E )/3), and thickness, h , of the interlayer. This param-

eter was shown to be important by Ghatak and Chaudhury

(2003 ), Adda-Bedia and Mahadevan (2006 ) and Vilmin et al.

(2009 ). 

ii) CZM/adhesion parameter, φ = T c 
2 h / G c E, relating the peak trac-

tion T c for damage initiation at an interface point and the frac-

ture energy G c in the CZM traction-separation (TS) relation.
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Fig. A2. For α = 100 and φ = 4, sensitivity to the FE mesh of (a) the non-dimensional peel stress distribution for 
A = 0.7, and (b) the non-dimensional load-displacement 

variation until 
A = 0.7. This represents a type-2 debonding as illustrated in Fig. 9. 

Fig. A3. For α = 100 and φ = 5, sensitivity to the FE mesh of (a) the non-dimensional peel stress distribution for 
A = 1.2, and (b) the non-dimensional load-displacement 

variation until 
A = 1.2. This represents type-3 debonding as illustrated in Fig. 10 . 

Fig. A4. For α = 100 and φ = 50, sensitivity to the FE mesh of (a) the non-dimensional peel stress distribution for 
A = 8.5, and (b) the non-dimensional load-displacement 

variation until 
A = 8.5. This represents a type-4 debonding as illustrated in Fig. 11 . As discussed in Section 4 , the dip in the load-displacement plot corresponds to the 

initiation of internal debonding. 
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Mukherjee et al. (2016a) have elucidated the importance of this

parameter for wavy interfacial debonding of a rigid adherend

pulled outwards from an elastomeric interlayer. 

Results of numerical simulations have been plotted on the

αφ–plane to identify values of α and φ for four different interfa-

cial debonding types. For confinement levels less than a threshold

value ( ∼ 9), damage at the interface between the interlayer and

the deformable plate initiates at the edge, forms a cohesive zone

(CZ), and leads to debonding which propagates with a CZ at its

front. When confinement exceeds the threshold value, the damage

in addition to occurring at the edge initiates at an internal inter-

face point located at dimensionless distance β−1 ∼ ( μ/ D p h 
3 ) −1 / 6 

from the edge, which is proportional to the characteristic stress de-

cay distance (one can also think of this as a shear-lag distance). For

such interlayers a wavy debonding occurs when the adhesion pa-

rameter exceeds a critical value. However, for large values of φ dic-

tated by the confinement two adjacent nucleated debonds are sep-

arated by a perfectly bonded region rather than by a portion of the

damaged interface. The spacing, λ, between the internal debonds

scales with the interlayer thickness. 

The non-dimensional pull-off force is found to increase with the

quantity φ/ α and depend on the debonding type. 

For an elastomeric layer sandwiched between a flexible ad-

herend and a rigid substrate with the two interfaces having iden-

tical TS relations, it was found that for confinement not in the ap-

propriate range separation can occur at both interfaces resulting in

an erratic release process and leading to bridging which can result

in undesirable tearing of the interlayer. 
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Appendix A 

Included here are the sensitivities of the interfacial normal trac-

tion and the load-displacement plots to four FE meshes listed in

Table A1 . In Fig. A1 a, we have plotted the distribution of the peel

stress at the interface which is yet to damage. It is clear that the

peel stress distribution is insensitive to the FE mesh used except

for the discretization close to the corner point B. However, the in-

terfacial damage type is unaltered as evinced by the plot of the

contact opening shown in Fig. A1 b. Figs. A2–A4 show distributions

of the non-dimensional peel stress upon damage initiation at the

interface (a) and the non-dimensional load-displacement variations
Table A1 

The FE meshes used a . 

FE meshes Dimensions in mm of an element 

of the interlayer 

Dimensions in mm of an 

element of the plate 

Mesh-1 0.025 × 0.025 0.1 × 0.1 

Mesh-2 0.0125 × 0.0125 0.1 × 0.1 

Mesh-3 Height: 0.0125, width: graded from 

0.05 at the farthest end to 0.005 

near point B. 

0.1 × 0.1 

Mesh-4 0.025 × 0.025 0.05 × 0.05 

a Results reported in this paper were obtained with FE mesh-2, unless mentioned 

otherwise. 

F

d

c

a

δ

b) for the debonding types-2, 3 and 4, respectively. As was re-

orted in Mukherjee et al. (2016a) , one can observe that the re-

ults are more sensitive to the changes in the FE mesh for a large

alue of φ as compared to those for a small value of φ. Nonethe-

ess, our conclusions about the type of debonding and the scaling

f the pull-off force remain unaffected on refining further the FE

esh 2. The load-displacement curves depicted in Fig. A4 are close

o each other for FE meshes 3 and 4 but differ slightly from that

or FE mesh 2 for which results are reported in the paper. 

ppendix B 

The work done by the external force should equal the sum of

he increase in the strain energy of the system, the energy lost

ue to interfacial damage/debonding, and the energy loss due to

he damage stabilization (viscous regularization) option used in

BAQUS. For one example problem for which values of variables

re listed in the Figure label, the evolutions of these energies are

lotted in Fig. B1 a. It is clear that the energy balance is satisfied

ith the maximum error of ∼6%. Also included in Fig. B1 b are

lots of the interfacial traction components at δ = 15 μm. 
ig. B1. (a) Computed energy histories for α = 100 and φ = 5. The out-of-plane 

imension (width) is taken to be 1 mm when computing the total energy. As dis- 

ussed in Section 4 , the dip in the load-displacement plot corresponds to the initi- 

tion of internal debonding, (b) Distributions of interfacial traction components at 

A = 15 μm. 
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Fig. C1. Snapshots of the interfacial dimensionless contact opening for φ = 4 and 5 and confinement α = 25 and 2, when the lateral surfaces of the interlayer are prevented 

to deform in the y-direction but those of the plate are free. The bottom right figure corresponds to α = 25 and φ = 5 when the lateral surfaces of both the plate and the 

interlayer are restrained in the y-direction. 

Fig. D1. Distributions of the interfacial peel stress for α = 100, φ = 5 and 
A 

= 1.2 when the normal interaction is much weaker than the shear interaction and 

when both interactions are equally weak. The deformed shape is exaggerated by a 

factor of 20 for visualization. 
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Fig. E1. Distributions of the interfacial peel stress for α = 100 and four indicated 

values of Poisson’s ratio of the interlayer when the applied displacement is 1 μm. 

These results are for an undamaged interface. 
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The computed energy dissipation due to damage for δA =
5 μm differed by ∼6% from that found using the equation, DE =
 c a + 

∫ 
l CZ 

( G c − T c 
2 

4 G c ( 
2 G c 
T c 

− δ(x ) ) 
2 
) dx . Here the integrand represents,

or K e > > 1, the area under the portion of the TS curve traced by

 point in the CZ up to the contact opening of δ ( > δc and < δf )

nd the integral is computed using the Trapezoidal rule, a is the

otal length of the interfacial debond, l CZ the total length of the CZ,

nd δ( x ) the contact opening at a point in the CZ. It ensures that

E is computed well in ABAQUS. 
ppendix C 

Three-dimensional (3-D) deformations have been studied for

our cases to check if predictions of the debonding types on the

φ-plane from analysis of plane strain deformations agree with

hose from the analysis of 3-D deformations. The out-of-plane

idth (y-direction) and the length (x-direction) of the assembly

re assumed to be 5 mm and 12.83 mm, respectively, and the

hickness is chosen to get the desired degree of confinement. In

BAQUS terminology, the plate and the interlayer are discretized

sing C3D8R and C3D8H elements, respectively. Brick elements

f dimensions 0.025 mm × 0.025 mm × 0.025 mm, and ( h /5)

thickness) × l (length) × 0.025 mm (width) are used to discretize

he plate and the interlayer, respectively, where l is the element

ength decreasing from 0.075 mm at the farthest end (x = 12.83
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Fig. E2. Distributions of the dimensionless contact opening for α = 100, φ = 10 and at 
A = 3.45 for (a) ν = 0.5, (b) ν = 0.49, and (c) ν = 0.48. The deformed shapes are 

exaggerated by a factor of 200 for visualization. 
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mm) of the interlayer to 0.03 mm near the free edge. Results

of simulations of 3-D deformations are depicted in Fig. C1 . For

α = 25, multiple internal openings appear (type-3) along the

y-direction for φ = 5 whereas only a tunnel-like opening (type-2)

occurs for φ = 4. For α = 2, debonding initiates from the edge

and undulations are not found to occur for both values of φ
(type-1). These simulations support the conclusions drawn from

the analysis of plane strain deformations in the xz −plane. The

above simulations of 3D deformations were conducted by setting

to zero the y-displacements of nodes on the lateral surfaces of

the elastomeric layer but not those of the plate. The bottom right

figure exhibits a snapshot of the computed contact opening for α
= 25 and φ = 5 when the lateral surfaces of the plate were also

restrained in the y-direction. With no y-direction variations in the

deformations, a tunnel-like debonding was predicted. 

Appendix D 

Here we include one example problem in which the interface is

considered to be equally weak in both normal and tangential direc-

tions. Fig. D1 shows distribution of the interfacial peel stress and

tangential traction for a highly confined interlayer, α = 100, and

for the adhesion parameter, φ = 5. Similar to what is predicted un-

der the assumption of relatively much stronger shear interaction, a

type-3 debonding mechanism is predicted. 

Following the suggestion made by an anonymous reviewer, we

checked the computed energy balance for this problem. A discrep-

ancy of ∼6% was found for both cases: dominant normal interac-

tion and equal interactions in both normal and tangential direc-

tions. This finding rules out the likelihood of our assumption of

dominant normal interaction causing the discrepancy in the energy

balance. 
ppendix E 

As suggested by a reviewer, we include here computed results

or some additional numerical experiments conducted to probe

ensitivity of our predictions to small deviations from incompress-

bility of the interlayer. CPE4 elements were used to mesh the in-

erlayer. Distributions of the peel stresses at an undamaged inter-

ace, at the same level of confinement, α = 100, and applied dis-

lacement, 1 μm are shown in Fig. E1 for four values of Poisson’s

atio of the interlayer. These results suggest that the internal peak

tress and the area over which it is distributed decrease with an

ncrease in the compressibility of the interlayer. 

Fig. E2 shows the distributions of the dimensionless contact

pening when damage is allowed to occur at the interface for α =
00, and ν = 0.5, 0.49 and 0.48, with the TS parameters so chosen

hat φ = 10. The results are plotted at the dimensionless applied

isplacement 
A = 3.45. While internal debonding is predicted for

ll three cases due to sufficiently large confinement, the number

f internal debonds (type-4) is largest for the perfectly incompress-

ble case. These results suggest that the introduction of slight com-

ressibility of the interlayer relieves the constraint imposed on the

nterlayer and therefore, the internal damage decreases. 

These results and the findings of Shenoy and Sharma

2001) about the interfacial pattern formation for compressible

lms suggest that the predicted map of debonding mechanisms

such as that shown in Fig. 13 ) is affected by the compressibility of

he interlayer. A detailed analysis is not undertaken in the present

ork. 
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