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QUASISTATIC INDENTATION OF A RUBBER-COVERED
ROLL BY A RIGID ROLL

R. C. BATRA
Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, U.S.A.

SUMMARY

The nonlinear elastic problem involving the indentation of a slightly compressible rubber-like layer
bonded to a rigid cylinder and indented by another rigid cylinder is analysed by the finite element
method. Both the geometric and material nonlinearities are accounted for. The finite element formulation
of the problem is based upon a variational principle recently proposed by Cescotto and Fonder, and 1s
valid for both slightly compressible and incompressible materials. The results computed and presented
graphically include the shape of the indented surface, the pressure distribution over the contact surface,
and the stress distribution at the bond surface. For the same contact width, the results for the compressible
material are found to differ significantly from those for the case when the rubber-like layer is assumed
to be incompressible.

INTRODUCTION

Traction in vehicles, the nip action in cylindrical rolls in the paper-making process and 1n the
textile industry, and friction drives are some examples of the kind of problem studied herein.
Each of these problems involves indentation, by a steel or granite cylinder, of a rubber-like
layer bonded to a cylindrical core made also of steel or granite. Such a problem has been
solved by Batra et al.' by using the finite element method and the assumption that the
rubber-like layer is made of a linear viscoelastic material. Hahn and Levinson” used the Airy
stress function to solve the linear elastic problem. In order to explore the effects of material
and geometric nonlinearities, Batra® recently studied the problem in which the rubber-like
layer is assumed to be made of a homogeneous Mooney-Rivlin material. Even though results
presented here and in References 1 and 3 are for one specific geometry of the rolls, the
formulation of the problem and the method of solution is applicable to all possible geometries,
i.e. the thickness of the rubber-like layer is small/large as compared to the roll diameter, and
the mating cylinders are of comparable or widely different diameters. Experimental work
involving varying thickness of the rubber-like layer and different combinations of the diameters
of mating cylinders has been done by Spengos.4 However, the only materiai property listed
for the rubber is the durometer hardness. For the linear elastic problem involving incompress-
ible material, the durometer hardness is enough to find Young’s modulus and hence solve the
problem. Since the reported values of maximum strain and also those encountered in practice
far exceed the usually accepted range of validity of the linear theory, the nonlinear analysis
is necessary. For literature on related problems, we refer the reader to works cited in References
1-4.

Whereas in the earlier study of the nonlinear problem the rubber-like layer is assumed to
be incompressible, in the present work the layer is taken to be made of a slightly compressible
material. That the compressibility of the material has a noticeable effect on the pressure
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distribution at the contact surface and the stress distribution at the bond surface is evidenced
by the work of Hahn and Levinson® and Meijers,’ and is also confirmed by results obtained
herein. Both Hahn and Levinson and Meijers assume that the deformations are small and the
linear theory applies. Other factors motivating the present study are that real rubbers are
slightly compressible and finite element analysis of nonlinear problems involving nearly
incompressible materials is quite different from that involving either compressible or perfectly
incompressible materials. Also, it is hoped that the improved understanding of the stress
distribution within the covering layer and at the bond surface and the deformed shape of the
layer will lead to design standards which, if followed, would result in longer covering layer life.

In formulating a problem for nearly incompressible material, Skala® models rubber-like
solids by the constitutive equation

W=Cilli—1:-2)+ Ca(\/(fs)_ 1)2

in which W is the strain energy density, C, and C; are material constants and I, I, are first
and third invariants of the right Cauchy—Green strain tensor. Using the minimum energy
principle and 8-node isoparametric element, the problem of inflation of a cylindrical pressure
vessel 1s solved. Although reduced numerical integration technique as suggested by Naylor’
was used, some oscillations in the calculated stresses as the material became more incompress-
ible were noticed. In Reference 8, Hughes et al. use as constitutive law

W = %/\ (h‘l ‘\/13)2 + rE,-j-Eﬂ-

where A and r are material constants, E;; is the strain tensor defined below and the summation
convention i1s used. For nearly incompressible materials, A is taken to be large.

In this paper, the variational principle proposed recently by Cescotto and Fonder is used
in the finite element formulation of the problem. In this approach, the displacements at each
nodal point and the dilation within each element are assumed to be unknown. Necessary
equations to solve for these unknowns are obtained by seeking the extremum of a functional
involving the strain energy density and the work done by applied loads. The 4-node
1Isoparametric quadrilateral elements with 2 X 2 Gaussian integration rule are used. The dilation
1s assumed to be constant within each element. Since this formulation is valid for both
compressible and incompressible materials, the accuracy of the developed code is established
by solving two finite strain problems, namely, inflation of a thick-wall pressure vessel and the
contact problem for the roll cover, assuming in each case that the rubber-like material is
incompressible. The computed results agreed very well with those obtained from the analytic
solution'’ for the pressure vessel problem and those obtained earlier’ for the roll cover
problem. A pressure vessel problem for compressible materials and involving infinitesimal
strains was also solved and results were found to compare well with the analytical solution.

For the roll cover problem, the computed results show that, for the same value of contact
width 1n the reference configuration, the indentation is 10 per cent more for the case when
Poisson’s ratio in the undeformed state for the rubber-like layer is 0-45 than when it is made
of an incompressible material. Also considerably less load is needed to cause the same contact
width in the compressible case.

FORMULATION OF THE PROBLEM

As shown in Figure 1, we use a fixed set of rectangular Cartesian axes with origin at the centre
ot the roll cover with the rubber-like layer and denote the position of a material particle in
the reference configuration by X and the position of the same material particle in the deformed
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Figure 1. System to be studied

state by x;. Thus x; = x;(X", t) gives the current position, at time ¢, of the material particle that
occupied place X" in the reference configuration. If £ = 0 when the particle is in the reference
configuration, then x;(X°, 0)=X"8,,. Here §,, is the Kronecker delta.

Since the core and the indentor are usually made of a material considerably harder than
rubber, we regard these as being rigid and study only the mechanical deformations of the
rubber-like layer. Neglecting the effect of body forces such as gravity, equations governing
its deformations are

e, det Eu — Po Erx — axi/aXa =Xia

) (1)
PX; = nrx,a

In (1), p 1s the present mass density, po is the mass density in the reference configuration, T,
1s the first Piola—-Kirchhoft stress tensor, a superimposed dot indicates material time derivative,
and the usual summation convention is used. Equation (1), is the continuity equation in the
referential description. The first Piola—Kirchhoff stress tensor and the Cauchy stress tensor o,
are related by

0ij = L ﬂaF}a (2)
£o
Equation (1) is to be supplemented by constitutive relation for 7., and side conditions such
as boundary conditions. Before we state these, we give the assumptions made to simplify the
problem.

We assume that the contact between the indentor and the roll cover is frictionless, and the
effect of all dynamic forces on the deformations of the roll cover is negligible. The latter
assumption is justified because the mass density of rubber is quite low, being comparable to
that of water. Therefore, for practical geometries and speeds in the range of 500 r.p.m., the
effect of centrifugal force on the stress distribution is very small. Following Cescotto and
Fonder,” we assume that the rubber-like layer 1s made of a homogeneous material for which
the strain energy density W is given by

W=Ci(I1—I;-2)+ Cy(I,—2I3— 1) +3C5(I; - 1)? (3)

In equation (3), Ci, C; and C; are material constants, and I, I, I are, respectively, first,
second and third invariants of the right Cauchy—Green strain tensor C,5 = F, . F;z or equivalently
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of the left Cauchy—-Green tensor B;; = F,,F,,. We note that for incompressible materials, I3 =1
and equation (3) reduces to that for Mooney—Rivlin materials.
The constitutive assumption (3) implies that for infinitesimal deformations from the un-

deformed state,

Ho— 2(C1 + Cz) (4)
205 —

e (5)
4C3—po

in which w, is the shear modulus and v is Poisson’s ratio. Thus C5 may be regarded as a bulk

modulus.
Under the aforementioned assumptions, the indentation problem becomes quasi-static and

equation (1) is replaced by
p det F;, =po (6)
0=Ta (7)
(F YuTig = Sup =2(8ug — I;Cap )C1+ 21180 — Cag —213C 25 )C2 + 2C515C o5 (I3 — 1) (8)
=85 +2C1:C o5 (I3 1)

in which S,z is the second Piola-Kirchhoft stress tensor. faﬁ can be thought of as a deviatoric

stress tensor.
In practice the length of the cylindrical rollers is significantly larger than their diameters so

that it is reasonable to presume that plane strain state of deformation prevails. Thus x; = §;,.X"
and equation (7) for i =3 is identically satisfied. Furthermore, the deformations of the roll
cover are symmetrical about the line joining the centres of the rollers. Because of this symmetry,
we study the deformations of the upper half of the roll cover.

Equation (6) and the two non-trivial equations obtained by substituting (8) into (7) are
three equations for three unknown fields p, x; and x;. These equations are to be solved under
the following boundary conditions. At the inner surface X, X, = R,

u;=x,-—5;&Xa=0 (9)
at the outer surface X, X, = Ry,

€foaNa = () (10)

X
nT.N. =0, if §=arctan —> 6,
X1

X |
= f(0), 1ifarc tan — < B0 (11)
X
f(90) =0

and at the plane thrc 1gh the centre line of rollers,

U = O
(12)

T12 - 0

In equations (9)-(12), N, is an outward unit normal to the surface in the reference configuration,
e; is a unit tangent vector to the surface in the current configuration, and »; is a unit outward
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normal to the surface in the current configuration. The boundary condition (9) implies that
there is perfect bonding between the core and the rubber-like layer, and the boundary
conditions (10) and (11) signify that the part of the roll cover not in contact with the indentor
is traction free whereas that in contact with the indentor has a normal pressure acting on it.
Note that 6, defines half nip width in the reference configuration. The boundary condition
(11); ensures that a contact problem rather than a punch problem is being solved.

We note that the half nip width 8, and the pressure f(#) at the contact surface are unknown
and are to be determined as a part of the solution. These two should assume values such that
the deformed surface of the rubber-like layer matches with the profile of the indentor. In
practice the load P, given by

Yo

P——-ZJ. f(6)de (13)

pressing the two rolls together is specified. However for ease in computation, we prescribe 6,
and find the required load. Of course one could equally well prescribe the indentation u,, as
is done in Reference 11, between the two rolls and compute the necessary load. Specification
of P and then finding 6, and the indentation u,, though feasible, results in significantly more
computing time. The indentation u,, shown in Figure 1, equals the distance through which
the two rolls move closer when loaded and is the value of the radial displacement of that
point on the outermost surface of the roll cover that lies on the centre line of the rollers.

The problem as just formulated is too difficult to solve analytically, so we solve it by the
finite element method.

BRIEF DESCRIPTION OF THE FINITE-ELEMENT FORMULATION

We use the total Lagrangian formulation and the variational principle proposed by Cescotto
and Fonder.” That is, the functional

H = j (Ca[d(Is—1) =361+ W, )} dV—j hou, dA (14)
where
p=I—1 (15)
Wl I,)=Cy(I,=3)+ Cy(I,—3) (16)
L=I,-(I;-1) (17)
L=01,-2(I-1) (18)

takes an extremum value for all admissible displacements that satisfy the displacement boun-
dary condition. In (14), h, is the surface traction acting on a unit area in the reference
configuration. Note that in taking the variation of H, both ¢ and u are taken as independent
variables. 6H =0 gives

J(I;,—l——qb)ﬁd.: dV =0 (19)

I (S +2C3I3¢C g )E s AV — J hodt, dA =0 (20)
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in which
E.g=(Cag—8ap)/2

We assume that the load f(6) at the contact surface is applied in M equal increments and
denote the incremental change in the value of say u caused by the (N + 1)st load step by Au,
1.€.

u =u"+Au, EVT'=EV+AE, ¢V '=¢"+Ae. (21)
From equations (9),, (21), and the expression for C in terms of F, we obtain

AE,3=A€us +ANag  ANag = 30U, oAl 2
Aeﬂ,g = %(Aumg + AHB,Q -+ H:HALI%B + Hiﬁ AM%&)

Recalling that AI; =2(C") .gAE.s, we obtain from (8),
AS.s = —4(Cy+2C)(CM) s (CN) g AE s ~ 21N (CN) . HCN ) sAAE, 51+ 8 C[AE, 8.5 — AE.5]

(23)

Setting 6E,g = 6 AE 5, 6u, = 8Au, and 8¢ =5A¢ in (19) and (20) we obtain
J{Iﬁf +213 (CM)gAE s —1—d™ —APY6AS dV =0 (24)

J [(Sap +A8.)+2Ca(¢™ +Ad)TY + AL)CN) 2,
(25)
—2(C™) oy (CM) g5 AE 516 AE, 5 dV-——J Wy t'8Au, dA=0

We now make the assumption that the increment in the load is small so that
AS. 6 AE.s =AS. .8 Ae.s (26)
(C™)agAE.s =(C")oshe.s  etc (27)

Aig is obtained from AS,; by replacing AE, s in (23) by Ae,g. Equations (24) and (25) are
approximated by the following:

I I3 (CM)ghez8Ad dV = —-%J (In —1-¢™)6A¢p dV (28)

J‘ Aﬁaﬁﬁﬁeaﬁ dV"‘J‘ S{INBSA’)?HB dV+2C3 j I?(CN);L};AQ{)(SAE&B dV
(29)
=J he '6Au, dA —J SoadAens dV

Equilibrium iterations,'* i.e. iterations within a load step, are used to ensure that equilibrium
equations (28) and (29) are satisfied within a prescribed error.

A finite element computer program based on equations (28) and (29) and employing 4-node
isoparametric quadrilateral elements with 2 X2 Gaussian integration rule has been written.
The dilatation ¢ is assumed to be constant within each element. The pressure load between
two surtace nodal points a and b is replaced by lumped nodal loads given by

h?=h?=f(9*)€3ﬁ(x?—x?)/2 (30)



QUASISTATIC INDENTATION 1829

Here ¢;; is the permutation symbol and it equals 1 or —1 according as i, j, kK form an even
or an odd permutation of 1, 2 and 3 and is zero otherwise, and 6* is the value of 8 for the
midpoint of the line joining nodes a and b. The loads for the (N + 1)th load step are calculated
based upon the positions of the nodes after the Nth load step.

The accuracy of the developed finite element code has been established by comparing
computed results with those obtained from the analytical solution for the pressure vessel
problem. When the material of the pressure vessel is incompressible, the finite strain problem
was studied, whereas the infiinitesimal strain problem was analysed when the pressure vessel
is made of a compressible material.

COMPUTATION AND DISCUSSION OF RESULTS

In order to solve the title problem by the finite element method, we consider the quarter of
the roll cover in the first quadrant and explore the effect of boundary conditions on the vertical
plane. The two sets of results obtained first with the vertical plane taken as traction free and
then constrained not to move horizontally were virtually indistinguishable. This is so because
both the stresses and displacements decay rather rapidly with the distance from the contact
region. This was found to be true in the previous studies'  and is confirmed by the results
obtained herein. The quarter of the roll cover is divided into quadrilateral elements as shown
in Figure 2. The mesh is finer within approximately one and a half times the contact width.
Half nip width 6, and the form of the function f(6) are assumed. The presumed load 1s
divided into 20 equal steps and within each load step up to 15 equilibrium 1terations are
performed to ensure that displacements are accurate to within 1 per cent of their values. The
deformed surface of the roll cover is calculated and a check is made to ensure that the deformed
surface in the assumed contact zone matches, within a specified tolerance, with the circular
profile of the indentor and that the nodal point just outside the presumed contact area has
not penetrated into the indentor. If the second condition is not satisfied implying thereby that

BOND SURFACE &‘f‘

Figure 2. Finite element grid
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the assumed contact width is too small, either the value of 8, 1s increased or the total load is
decreased. However, if the second condition is satisfied but the first is not, the form of f(6)
is suitably modified until both preceding conditions are simultaneously met. The deformed
surface of the roll cover is taken to match with the profile of the indentor if the distance ot
each nodal point on the contact surface from the indentor is within 1 per cent of the indentation
uo. Usually, with a little experience, one can make pretty good estimates of 6, and f(8) so
that the entire process converges in four or five iterations.

In the results presented and discussed below, the value of 6,, the semi-contact width in the
reference configuration, is kept constant. For results obtained by using a linear theory, the
entire load is applied in one step on the undeformed surface. Also the strain-displacement
relation and the stress—strain relations are linear. In the nonlinear theory, the problem is
solved incrementally and each increment in load is applied on the surface deformed up to the
application of that load increment. Results for the compressible case are computed by setting
Poisson’s ratio, v, in the undeformed state equal to 0-45. Both for compressible and incom-
pressible cases, Cy=13-79 N/ cm?, C, =345 N/cm”, and the value of C; is determined from
equation (5). To model the rubber as an incompressible material, Cs is set equal to 4320 N/ cm”.
The values of various geometric parameters correspond to those for run number 30 of Spengos.”
Thatis Ry =472 mm, R, =60-7 mm, R =762 mm. The results presented for the incompress-
ible case in which the rubber-like layer is modelled as a Mooney-Rivlin material are taken
from Reference 3.

Figure 3 depicts the pressure profile at the contact surface for various cases. As expected,
considerably less load is required to indent the compressible layer than an incompressible
one. For the particular situation under consideration, the ioad required for the compressible
case is 77 per cent of that required when the rubber-like covering layer 1s assumed to be
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Figure 3. Stress distribution at the contact surface



QUASISTATIC INDENTATION 1831

N
/

INCOMPRESSIBLE MAT. 8. = 209

4 — " %rr

STRESS/ _
[s(c rc, )1+ Re /RY]

—
—‘ﬁ—_

1.5 2 2.5
8

6

Figure 4. Stress distribution at the bond surface

incompressible. The contact width in the deformed shape for the compressible layer is 92 per
cent of that for the incompressible layer. We remark that the pressure profile at the contact
surface represents the non-dimensionalized Cauchy stress.

Results presented in Figure 4 verify the assumption that stresses decay rapidly at points
away from the contact zone. The magnitudes of developed shear stresses at the bond surface
seem to indicate that the glued joint will hold better when the rubber-like layer 1s made of a
compressible material.

In Figure 5 is shown half of the deformed surface of the roll cover; also, due to different
scales along the horizontal and vertical axes, the undeformed and deformed roll cover as well
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Figure 5. Deformed surface of the rubber-like layer
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as the indentor plot as ellipses. The radius of curvature of the deformed surface near the point
where rubber leaves the indentor is different in the two cases. In certain applications, for
example, paper industry, this can play a major role in the design of roll covers. Finally, in
Figure 6 the computed non-dimensionalized pressure profile on the contact surface is compared
with that obtained experimentally by Spengos. Computed results are those obtained by using
the nonlinear theory. From the results presented in Figure 6, it seems that the rubber used
by Spengos in his experimental set up was incompressible. The difference between the
calculated results and experimental ones is possibly due to the fact that the assumption of
plane strain state of deformation made in the analysis is not quite valid for Spengos’ experi-
mental set up wherein the length to diameter ratio of rollers was of the order of one. In Figure
6, a denotes the semicontact width in the current configuration.

F.E SOLUTION({INCOM., 8,=.209)
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Figure 6. Stress distribution at the contact surface: comparison of experimental and numerical resuits

REMARKS

Upon writing equation (8) explicitly for the plane strain case, we see that the values of S,
52> and §1; and hence of 11, 02, and o, depend upon the material constants C; and C, only
through their sum. Since for plane strain case S33 does not contribute to the strain-energy
density, hence the values of displacements also depend upon C, and C; only through C; + C,.
Thus results presented herein are valid for all values of C,/C, so long as the sum C;+ C, is
kept constant. The value of the stress o33 normal to the plane of deformation does depend
upon C;/C5 even when C; + C, is kept fixed.
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We solve the contact problem by first presuming the contact width and estimating a pressure
profile on it and then verifying that the assumed contact width is indeed correct. Hung and
de Saxce'’ incorporate the condition that the normal pressure on the contact surface be
positive into the variational principle and reduce the elastic contact problem to a special case
of the mathematical programming technique. Their analysis applies to infinitesimal deforma-
tions of a linear elastic body in contact with another linear elastic body.

A finite element computer program based on equations (28) and (29) and employing 8-node
iIsoparametric elements was also written. The dilatation was assumed to be constant within
each element. Both 3 X3 and 2 X2 Gaussian integration rules were used. For the thick-wall
pressure vessel problem this computer code gave accurate values of the displacement but the
stresses oscillated considerably from one Gauss point to another Gauss point within an element
and from one element to the adjoining element. It seems that the assumption that the dilatation
1S constant within an element is not valid for the 8-node isoparametric element. The case
when the dilatation is assumed to vary linearly within the 8-node 1soparametric element has
not been incorporated into the computer code yet.

CONCLUSIONS

Results presented in Figure 3 reveal that, for the problem studied herein, the compressibility
of rubber has more effect on the pressure at the contact surface than the material and geometric
nonlinearities. The maximum principal strain for the nonlinear problem was 40 per cent and
2275 per cent according as the rubber was modelled as an incompressible material or a
compressible material with vo = 0-45. Note that the contact width in the reference configuration
1s kept fixed in the two cases. Also for the same value of the contact width in the reference
configuration, the indentation is 10 per cent more and the load required is 23 per cent less
for the compressible rubber-like layer with v, = 0:45 as compared to that for the incompressible
layer.
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