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SUMMARY

Equations governing the thermomechanical deformations of a block made of a viscoplastic material, and
undergoing overall stmple shearing deformations, are stiff in the sense that time scales associated with the
heat conduction, viscous effects, strain hardening and strain-rate hardening may differ by several orders of
magnitude as localization of the deformation initiates and proceeds. Because of the presence of high spatial
gradients within the region of localization of the deformation, we also consider a viscoplasticity theory in
which the strain gradient is taken as a kinematic variable. The Galerkin approximation of the pertinent
initial-boundary-value problem yields an initial-value problem involving a set of coupled non-linear
ordinary diflerential equations. The solution of these equations by the Crank—Nicolson, Adams—Moulton
and the Gear methods reveals that the three methods give qualitatively similar results. However, quantitat-
- 1vely the results by the three methods differ somewhat, the difference being more for the dipolar theory.

INTRODUCTION

Adiabatic shear banding refers to the localization of deformation into a narrow band of intense
straining that occurs during high rate plastic deformation such as machining, explosive forming
and ballistic penetration. Practical interest in the phenomenon derives from the fact that once
a shear band has formed, subsequent deformations of the body are concentrated within these
narrow regions with the rest of the body not deforming at all. Thus, shear bands act as precursors
to shear fracture.

Since the time Zener and Hollomon' observed these shear bands in a steel plate punched
by a standard die, there have been numerous analytical,”?”® experimental® ° and numerical
studies'® ~ '* aimed at delineating factors that enhance or inhibit the initiation and subsequent
growth of shear bands. Numerical computations of Wright and Walter!? reveal that the shear
stress collapses as the shear band begins to grow, and those of Batra and Kim?!? indicate that, as
the shear stress drops rapidly, an unloading elastic shear wave emanates outwards from the
severely deforming region.

The atorementioned numerical works and experimental observations’ indicate that the peak
strain gradients reach 0-2 per um or higher within the shear band. It, therefore, seems reasonable
to include the strain gradient as an independent kinematic variable. Dillon and Kratochvil!® have
suggested that one way to account for the interaction among dislocations is to include strain
gradients and dipolar stresses in equations governing the plastic deformations of a body. Wright
and Batra,'® Batra'* and Batra and Kim'> have considered these dipolar effects. Their numerical
solutions of the dynamic thermomechanical problem show that dipolar effects delay the initiation
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of shear bands and retard their growth compared to simple materials. Coleman and Hodgdon'’
and Zbib and Aifantis'® have studied quasistatic deformations of rigid perfectly plastic materials
and assumed that the yield stress in shear depends upon higher order gradients of the shear strain.
Consideration of these non-local constitutive relations'*~'® introduces an additional length scale
that is characteristic of the material. For rate-dependent heat conducting solids, other length
scales are introduced by viscous and thermal effects. Previous investigations'” seem to suggest
that the length scale associated with non-local effects plays a dominant role in determining the
final width of the band. Batra and Kim?® recently found that the predictions from the dipolar
theory based on the Litonski law as modified by Wright and Batra’® are in closer agreement with
the experimental observations of Marchand and Duffy? than those of other flow rules not
incorporating the dipolar eflects.

As has been vividly shown by Needleman,?! computed results for problems involving the
localization of deformation show strong dependence upon the mesh used. In dynamic problems,
the numerical technique used to integrate the governing equations also influences the results
significantly. Here we report our experience with Gear’s stiff method,?? the Adams—Moulton
method?? and the Crank—Nicolson method?# for solving the adiabatic shear banding problem for
non-polar and dipolar materials. The results obtained by using the three methods on the same
spatial mesh differed very little until the deformation began to localize. Once localization
occurred, the deformations within the shear band were obtained more accurately by using Gear’s
method. The time step size needed to compute stable results with the desired accuracy was

different for each method.

1

FORMULATION OF THE PROBLEM

We study the simple shearing deformations of an 1sotropic, viscoplastic and homogeneous block
of material that exhibits strain and strain-rate hardening and thermal softening. In terms of
non-dimensional variables the governing equations are

po=(s—-1o ), —-lT<y<l (1)
0=k0,, +sj,+ad, —1<y<]I (2)
supplemented by the constitutive relations
S=p(vy —7p) (3)
d = pullv,, — cfp) (4)
o A
y =(s7, +ady)/ |1 (5)
Vo
j,=As, d =Ac (6)
and
A=0 ’cé(ll l’0)(1—“-:::;{6?) (7)
Vo
otherwise
d/ n 1/m
A=[{r/(1+)(1——cx9)} —1:|/b'r (8)
Vo
where
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Equations (1) and (2) express, respectively, the balance of linear momentum and the balance of
internal energy. Here p 1s the mass density, v the x-velocity of a matenal particle, s the shear stress,
¢ the dipolar stress associated with the strain gradient, a superimposed dot indicates the material
time derivative, a comma followed by y signifies the partial derivative with respect to y, 6 s the
temperature change from that in the reference configuration, k 1s the thermal diffusivity, y 15 the
plastic part of the strain-rate, and d  is the plastic part of the strain-rate gradient. The constitutive
relations (3) and (4) are essentially Hooke’s law written in terms of rates wherein u 1s the shear
modulus and ! a material characteristic length. We note that | = 0 for non-polar materials and 1s
positive for dipolar materials. The work hardening parameter ¢ has a rate of evolution that is
a function of the rate of plastic work done and describes the work hardening of the matenal. By
following an argument advanced by Green et al.,”> Wright and Batra'® derived equations (6) for
the plastic part of the strain-rate and its gradient. Equation (7) implies that the plastic strain-rate
and the plastic strain-rate gradient vanish whenever the effective stress 7 is inside or on the

loading surface,

= (1 + l/%)"(l ) (10)

and A 1s positive whenever the effective stress lhies outside the loading surface defined by (10). The
foregoing 1s one version of the viscoplasticity theory; some other constitutive relations proposed
for y, have been summarized by Batra and Kim.*° Substitution for 7, and cfp from (6) into
equations (2)-(4) gives five evolution equations for the five unknowns v, 8, s, ¢ and .

For the boundary conditions, we take

(£1,0=+1, 0,(+1,0=0, o(+1,6)=0 (11)

That is, the body is placed in a perfectly insulated hard loading device in the sense that the
velocity 1s prescribed at the top and bottom surfaces. Also, the dipolar stress 1s presumed to be
zero at the top and bottom surfaces. The boundary conditions for ¢ are needed because of the
term o ,, in equation (1). For homogeneous simple shearing deformations of the body,
d =v ,, = 0, and hence ¢ vanishes throughout the body. Since we are interested in studying the
localization of the deformation and have assumed the body to be homogeneous, we must give
non-uniform initial conditions. Accordingly we take

0(y,0) = 0-1(1 —y*)°’ e ", v(y,0) =y
a(y,0) =0, s(y,0)=10, ¥(y,0)=0

That 1s, the transient effects are presumed to have died out, the shear stress everywhere equals the
yield stress in a quasistatic, isothermal simple shear test on the material of the block and the body
1S given a temperature perturbation symmetric around the centre line y = 0. Both the amplitude
and the width of the temperature perturbation affect the time of initiation of the localization of
the deformation. The temperature perturbation models a material inhomogeneity or flaw in the
body and the amplitude 0-1 of the perturbation represents, in some sense, the strength of the
defect.

(12)

FINITE ELEMENT FORMULATION OF THE PROBLEM

As we have done in the past,'?'!* we obtain a semidiscrete formulation, by using the Galerkin

method (e.g. see Hughes?®), of the balance laws (1) and (2) and the constitutive relations (3) to (5).
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We note that y and d ; can be eliminated by using equations (6). The result 1s a system of coupled
non-linear ordinary differential equations

= f(u, Y, u,mn,a b (13)

Here u 1s a vector of nodal values of the velocity, temperature, shear stress, dipolar stress and the
work hardening parameter. The total number of unknowns or the number of components of
u cquals five times the number of nodes. The vector valued function f 1s a non-linear function of
u and of the material parameters u, ¥,, m, n, « and b. From the initial conditions (12) one can
deduce the initial conditions on u. Batra and Wright?’ have demonstrated that the integration of
these equations by the Crank—Nicolson method and the forward difference method gives virtually
identical results for non-polar materials for which [ = 0 and shghtly different results for dipolar
materials with [ = 0-01 and applied strain-rate j, = 1000 s~ '. Here we solve these equations by
using the:

(i) Crank—Nicolson method;**
(ii) Adams-Moulton method;?? and
(i1i) Gear stiff method.??

For the first two methods, the time increment At 1s kept fixed, and for the Gear method, the
IMSL subroutine LSODE adjusts it adaptively till a solution of the non-linear equations (13) can
be computed to the prescribed degree of accuracy. Of the three methods, the Gear method has
been found to be the most efficient one as far as the CPU time required to integrate these
equations 1s concerned. |

COMPUTATION AND DISCUSSION OF RESULTS

In order to compute numerical results, we took the following values of various material
parameters:

m=0025 n=007, b=5x10", a=0358

(14)
u=24024, p=23928 x 1073, k=23978 x 10™%, y, = 0017

Except for the value of o, values of other parameters are for a typical hard steel, y, = 5000s~' and
the height of the block = 5:16 mm. The presumed value of « equals nearly five times the actual
value and implies that the material melts at 8 = 2-793. This rather large value of « should enhance
the mmitiation and possibly subsequent development of the shear band. However, the precise
values of various parameters should not affect the relative performance of the different integration
schemes.

For non-polar materials (1.e. { = 0-0), it 1s reasonable to assume

o —y,t)= —oy ), 00—y, t)=00t),s(~y,t)=s(y1), Yy(— y,t) =Yy t) (15)

and hence reduce the problem to the one for the domain [0, 1]. For dipolar matenials (1.e. [ > 0-0),
Batra®® has shown that a(y, t) is antisymmetric with respect to y, o( — y, t) = — a(y, t). Loosely
speaking, the antisymmetry of ¢ follows from its affine dependence upon v ,, and v satisfies (15), .
It follows that (0, t) = 0, while the field variables v, 6, s and  satisfy (15). Thus, the problem for

both non-polar and dipolar materials can be solved over the domain [0, 1] and the boundary
conditions (11) replaced by

0(0,1) =0, 0,0,0)=0, a0, =0

(16)
ol,y=1, 8,(1,)=0, o(l,f)=0
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Results presented below are for a fixed non-uniform finite element mesh with 100 linear
elements. The y-co-ordinate of nodal points 1s given by

n—1\°
yo=| o)y =12, 100 (17)

Thus, the mesh used is very fine near the centre of the block where significant deformations are
expected to occur. For Crank—Nicolson and Adams-Moulton methods fixed At = 5 x 107° was
used, but for the Gear stiff method the size of the time step is adjusted adaptively in the subroutine

LSODE.

Results for Non-polar materials (I = 0-0)

Figure 1 depicts the evolution of the plastic strain-rate, the temperature and the shear stress at
the centre of the block as computed by the three methods. In order to magnify any differences, the
results are plotted for portions of the problem’s time span. The results computed by the three
methods agree with each other qualitatively. The results obtained by using the Crank—Nicolson
method and the Adams—Moulton method agree with each other but are delayed as compared to
the results obtained by using Gear’s stiff method. A reason for this seems to be that the Gear
method gives a slightly higher temperature at the centre as compared to that computed with the
other two methods. Plastic straining produces heating which, by raising temperature, has
a softening effect that promotes a higher plastic strain-rate. This may cause an instability, the
localization of plastic deformation. We note that the convergence criterion, used for the
Crank—Nicolson and the Adams-Moulton methods, was the same but that used in the IMSL
subroutine LSODE, based on the Gear method, could be different. In the former case, the
solution of algebraic equations obtained from (13) was assumed to have converged if at each node

point
Avl |As| |AG] |Ay

—| + |— 1 - iAg| < 0-001 18
v+s+9 \/ ’ (19)

and with the Gear method, absolute and relative tolerances were prescribed to be 0-0001 and
0-0001 respectively. We note that the Crank—-Nicolson and the Adams—Moulton methods become
unstable soon after the deformation localizes.

Figure 2 shows how the shear stress, work hardening parameter, plastic strain-rate and
temperature evolve in the block as computed by the Gear method. The shear stress stays uniform
throughout the block. It initially rises because of the hardening of the material due to plastic
working and strain-rate effects. The temperature increases slowly owing to the heat generated
because of plastic working and the assumption of insulated boundaries. When the softening
caused by the heating of the material overcomes the hardening due to plastic strain and plastic
strain-rate effects, the shear stress begins to drop. Subsequently the deformation begins to localize
and the temperature at points near the centre of the block rises sharply, accompanied by a steep
drop in the shear stress. The plots of the plastic strain-rate, temperature rise and the work
hardening parameter in Figure 2 show the severely deforming region i1s progressively getting
narrower. The waviness in the spatial variation of the shear stress and the work hardening
parameter suggests that calculations have started to become unstable, and they were discon-
tinued.

Figure 3 depicts the differences in the spatial variation of the plastic strain-rate, the temperat-
ure and the shear stress as computed by the three methods. In each case, the results are plotted for
the solution just before it becomes unstable. For the plot of the plastic strain-rate, the spatial
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distance covered is very small in order to show the area where localization of deformation occurs.
If one were to plot the spatial variation of the plastic strain-rate as computed by the
Crank—Nicolson method, the width of the severely deformed region would be considerably larger
than that obtained with the other two methods. This is mainly due to the fact that the solution
becomes unstable soon after the deformation begins to localize. During the growth of the shear
band, the width of the severely deforming region decreases rapidly. This also explains the
difference between the results computed with the Gear and the Adams-Moulton methods.
However, the three methods seem to give qualitatively similar results.

Results for dipolar materials (I = 0-005)

The evolution of the plastic strain-rate, the temperature and the shear stress at the centre of the
specimen as computed by the three methods is plotted in Figure 4. Unlike for non-polar
materials, the Adams—Moulton method gives slightly higher values of the temperature than the
other two methods. The temperature computed by the Gear method is between the values found
by using the other two methods. However, the Gear method gives values of the shear stress which
are lower than those given by the other two methods except when they start to drop. Then the
Gear method and the Adams—Moulton method give virtually identical values of the shear stress.
As with non-polar materials, the Crank—Nicolson method becomes unstable first, during the time
the shear band is growing. We note that the gradients of the strain-rate act as a stabilizing factor.

A comparison of these results with those in Figure 1 establishes the previously'® noted result
that the consideration of dipolar effects delays the initiation and the rate of growth of the
adiabatic shear band. The latter follows from the fact that the rate of rise of the plastic strain-rate
subsequent to the initiation of the localization of the deformation is less for dipolar materials as
than that for non-polar materials. Both the delay in the initiation and development of the shear
band depend upon the value of the material characteristic length [. Figure 5 shows the variation of
the temperature, shear stress, dipolar stress and the plastic strain-rate within the specimen at
different values of time as computed by the Gear method. Until the time the deformation begins
to localize, the shear stress stays uniform throughout the specimen. When the localization of the
deformation is in progress the shear stress drops gradually. It first stays uniform throughout the
specimen but soon becomes non-uniform, with the smallest value occurring at a slight distance
from the centre. At the same time the dipolar stress g, which equalled zero until the shear stress
started becoming non-uniform, begins to increase in magnitude. Its highest value occurs close to
the point where the shear stress takes on the smallest value. Note that (s — lo ) acts as a flux for
the linear momentum and, as pointed out in Reference 13, it decreases gradually, remains uniform
with respect to y and is positive even when s is negative. It is the effective stress 7 rather than s or
o that determines whether a material point is deforming plastically or not, and in the former case
determines the plastic strain-rate. The plots of the plastic strain-rate and the temperature in
Figure 5 reveal the gradual decrease in the thickness of the severely deforming region. The
temperature and the plastic strain-rate at points near the centre of the specimen rise sharply at the
initiation of the localization of the deformation. Their rate of rise is less than that of non-polar
materials. When the shear stress has dropped to nearly zero value, the rate of temperature
increase slows down but that of plastic strain-rate goes up significantly. The maximum temperat-
ure equalled 99-5 per cent of the presumed melting temperature of the material. The shear bands
for dipolar materials are wider than those for non-polar materials.

Figure 6 shows the spatial variation of the plastic strain-rate, the temperature and the shear
stress as computed by the three methods. The values of the nominal strain y,,, at which these
curves are plotted are not the same for the three methods. The three methods give qualitatively
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similar results. The computations with the Gear method were stopped when the shear stress s at
any point became zero. The computations remain stable and could be carried further if desired.

CONCLUSIONS

For both non-polar and dipolar materials, the three methods give qualitatively similar results.
However, they exhibit different delay characteristics as far as the evolution of the field variables at
the centre of the specimen is concerned. For non-polar materials, the Crank—Nicolson and the
Adams—Moulton methods delay the initiation of the localization process, defined as the instant
when the rate of increase of the plastic strain-rate is extremely high. The Gear method gave stable
results while the other two methods became unstable soon after the deformations began to
localize. For dipolar materials with | = 0-005, the initiation of the shear band with the Gear
method was delayed slightly compared to the resuits using the Adams-Moulton method, and the
Crank—Nicolson method caused the band to initiate at an even larger value of y,,,. The
Adams-Moulton and the Crank—Nicolson methods gave stable results even when the locahz-
ation of the deformation was in progress, but became unstable prior to the time when the shear
stress at any point became zero or negative. Results obtained with the Gear method remained
stable throughout the development of the shear band.
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