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The propagation of axial stress waves in Boron-Nitride nanotubes of different chirality and length under
adiabatic conditions has been studied using molecular dynamics (MD) simulations. The velocities of the
axial stress waves are found using three methods - (i) direct MD simulations, (ii) harmonic approximation
of the nanotubes, and (iii) one-dimensional (1-D) wave equation. The MD simulation results indicate a
small dependence of the wave velocities on the nanotube chirality and the excitation frequency – in arm-
chair and zigzag nanotubes waves travel faster than that in chiral nanotubes, and wave velocities
decrease with an increase in the frequency of excitation. The wave speed obtained from the harmonic
approximations is � 20—25% higher than that found from the MD simulations. Likewise, the frequencies
of vibrations from the two approaches differ by 15–20% for most of the cases. The computation of the
wave speed from 1-D equation requires a prior knowledge of the elastic modulus and the nanotube wall
thickness. The values of these parameters are found from MD simulation results – axial tensile tests pro-
vide an estimate of the wall thickness scaled elastic modulus and the transverse vibration data relates the
standard deviation of the tip displacement with material properties of the nanotube. The wave speed pre-
dicted from the 1-D wave equation agrees with that obtained from the MD simulations at low excitation
frequencies. The contribution of the anharmonicity to the dynamics during wave propagation is found by
matching the response of the anharmonic Fermi-Pasta-Ulam chain with the MD simulation results.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The discovery of nanotubes, both Boron-Nitride (BNNT) and
Carbon (CNT), has been one of the most promising findings in nan-
otechnology. These nanotubes possess exceptional specific
mechanical strength [1,2], chemical properties [3], thermal stabil-
ity [4] and electronic properties [5]. Experimental investigations
with electric field induced resonance [6], X-ray scattering mea-
surements [7] and bending tests using high-resolution transmis-
sion electron microscope [8] have revealed that Young’s modulus
of a BNNT is �722 GPa to 1.22 TPa, orders of magnitude higher
than that of steel when the mass density is considered.

By using different analytical and simulation tools – classical
molecular dynamics (MD) [9–13], ab initio [14] and tight-binding
[15] MD, and first principles based study [16], it has been found
that the elastic and the shear moduli of BNNTs depend upon their
chirality and aspect ratio [17]. The chirality also significantly influ-
ences the torsional response of the nanotubes. The MD studies
indicate that BNNTs are thermally stable up to �3700 K [9]. Thus
BNNTs have been used in several interesting applications such as
protective shields for nanomaterials [18], adsorption of gases
[19], hydrogen storage [20], water purification [21] and nanome-
chanical sensors [22].

While the aforementioned computational methods are power-
ful, they require large computational resources. Researchers have,
therefore, used structural mechanics and combined finite-
element modeling to develop the atomic scale finite-element mod-
els (AFEM) [23,24]. Utilizing AFEM, Tao et al. [25] studied elastic
properties of BNNTs, and evaluated buckling characteristics and
Young’s modulus by assuming the wall thickness of 0.34 nm. The
stiffness matrix was formed by numerically displacing the atoms
from their equilibrium positions. Similarly, Giannopoulos et al.
[26,27] investigated the free vibration response of BNNTs and the
tensile fracture behavior of Boron-Nitride nanoribbons along with
the boundary conditions, the length and the diameter dependence
of elastic properties, assuming the wall thickness to be 0.333 nm.
Chowdhury et al. [28] used molecular mechanics (MM) simula-
tions for finding optimized structures of BNNTs and their vibra-
tional behaviors. Using the Euler-Bernoulli beam theory and MM,
Chowdhury and Adhikari [29] modeled BNNT resonators. Jiang
and Guo [30] developed an analytical model using MM to evaluate
the size dependent elastic properties of BNNTs. The development
of these models has enabled the bridging of scales through
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equivalent continuum structures (ECSs) [31]. However, the under-
standing of the BNNTs deformations significantly depends on the
assumed material properties like the wall thickness and Poisson’s
ratio [28,32,33]. For example, the wall thickness of the nanotubes
has been assumed to vary from 0.065 nm [33] to 0.34 nm [23].
Likewise, the Poisson’s ratio varies from being negative [34] to pos-
itive [35]. It must be noted that MM and other related techniques
do not account for thermal fluctuations present in the nanotube.

Bridging the nano- and the continuum scales in an ECS requires
an in-depth analysis of differences in behaviors of the nano- and
the continuummodels. Here we focus on studying the propagation
of axial stress waves in BNNTs. While the propagation of thermal
waves has been extensively studied [36,37], only a few studies
exist regarding the propagation of stress waves in BNNTs. Stress
waves have been found to fracture nanotubes under excessive ten-
sile loadings upon the release of the accumulated elastic energy
[38]. In this work, the stress wave propagation results from MD
simulations are compared with those obtained from the harmonic
approximations (HAs). The method of obtaining the HA equivalent
structure is similar to that of the AFEM from the MM. Specifically,
the speed of the axial stress waves and the frequencies of vibration
are compared to assess the suitability of the HAs in solving nanos-
cale problems. While the wave speeds through MD simulations
show frequency dependence, they are frequency-independent
from the HAs. Additionally, the wave speeds and frequencies are
found to vary by 15–25%. The contribution of the anharmonicity
to the dynamics is �20%, obtained by matching the response of
an anharmonic Fermi-Pasta-Ulam chain with that from the MD
simulations. Results of transverse vibrations and axial tensile tests
are utilized to find the wall thickness and the elastic modulus of
the BNNTs by handshaking MD results with the vibration proper-
ties of a beam. Using these thickness and elastic modulus values,
the wave speed obtained from the continuum 1-D wave equation
is found to agree well with that from the MD simulations at low
excitation frequencies.

2. Simulations and analysis

2.1. Modeling the system

A BNNT may be imagined to be obtained by rolling a hexagonal
Boron-Nitride sheet comprised of hexagonal rings in which every
Boron atom is covalently bonded to three other Nitrogen atoms
(and vice versa), with the nearest BN bond length, a = 1.4457 Å
[39]. A typical BNNT is characterized by three parameters - the
length (l), and the chiral indices (n;m) that determine the rolling
direction of the hexagonal sheet. The diameter, D, and the chiral
angle, h, of a nanotube in terms of the chiral indices are given by:

D ¼ a
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 m2 þmnþ n2ð Þ

q
ð1Þ

h ¼ tan�1

ffiffiffi
3

p
m
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 !
ð2Þ

Depending upon values of m and n, one gets three different types of
nanotubes: (i) m ¼ n gives an armchair nanotube, (ii) m ¼ 0; n > 0
gives a zigzag nanotube, and (iii) 0 < m < n gives a chiral nanotube.
It is evident that the chiral angle h is in the range ½0;30��. Nanotubes
of 4 different chiralities: ð10;10Þ; ð12;8Þ; ð15;4Þ and (17,0), and
three different lengths, l ¼ 70 nm;140 nm and 210 nm, have been
investigated in this study. The nanotubes have been chosen such
that each has D � 1:38 nm. The three different lengths help us iden-
tify essential features of the stress wave propagation, and the inter-
action between the incident and the reflected waves. The atoms of
an BNNT interact with each other through the three-body Tersoff
type potential [40]. Details of the potential function are given in
Ref. [41]. Several different Tersoff parameters have been proposed
for the Boron-Nitride interactions. Here, values of parameters given
by Sevik et al. [41] that have been shown to provide good agree-
ment between experimental and computational results are used.

All MD simulations have been performed by using the open-
source software, LAMMPS [42]. The simulation begins with a con-
jugate gradient energy minimization. The simulation domain is
then divided into three regions along the axial (z) direction - the
1 nm long leftmost region, the 1 nm long rightmost region, and
the middle region comprised of the rest of the nanotube. Only
the rightmost region is kept fixed for the remainder of the simula-
tions. Subsequently, the MD simulations are conducted at the con-
stant temperature of 0.01 K using the Langevin thermostat for
40,000 time steps with an integration time-step of 1.0 fs.

2.2. Computing wave speeds from MD simulations

A stress wave is imposed on the nanotube by axially displacing
atoms of the leftmost region in a sinusoidal manner:

z tð Þ ¼ z 0ð Þ þ 0:5 sin xf t
� �

; ð3Þ

and the frequencyxf is varied systematically from 0.5 THz to 5 THz
in 10 simulation runs. The boundary conditions imposed at the two
end faces of the BNNT are shown in Fig. 1. While atoms on the right-
most boundary are kept fixed, those on the leftmost boundary are
allowed to move only in the axial direction. As mentioned above,
atoms in the middle region are un-constrained. Furthermore, the
Langevin thermostat is removed and simulations are performed at
a constant energy ensemble.

The displacement is imposed for 600,000 time steps where each
integration time step equals 0.1 fs. In order to compute the wave
speeds, we find the distance through which the first peak of the
wave propagates since the beginning of the simulation by closely
studying snapshots of the wave at 10 different times. If the dis-
tance travelled by the wave in time tk is dk, then the average wave
speed is computed as:

hci ¼
P10

k¼2
dðtkÞ�dðt1Þ

tk�t1

9
: ð4Þ

The entire procedure is shown in Fig. 2. Alternatively, the speed
may be obtained from the time at which the wave crosses a fixed
location of the nanotube [43].

2.3. Wave speed using the harmonic approximations

At very low temperatures, the dynamics of the nanotubes is
harmonic [44]. We thus numerically compute the Hessian matrix.
As schematically shown in Fig. 3, for the post minimization and
equilibration runs, each ring of a nanotube is treated as a single
particle with its z-coordinate equal to the axial location of the ring.
The boundary conditions considered are the same as those shown
in Fig. 1. The distance between two adjacent particles is
� 0:125 nm. Thus, for a 70 nm long nanotube there are 560 parti-
cles. A particle is first displaced by D ¼ 0:001 nm in the positive z
direction, and forces on all particles are computed. Similarly, the
particle is displaced by �D along the z direction and the resulting
forces are obtained. Stiffness terms are then computed using the
relation:

Kij ¼ � FijðDÞ � Fijð�DÞ
2D

; ð5Þ

where Fij denotes the force on the equivalent particle j when the
particle i is displaced. To ensure real eigenvalues, the matrix ½K� is



Fig. 1. Boundary conditions imposed for studying the axial stress wave propagation: atoms on the rightmost boundary are kept fixed, atoms of the leftmost boundary are
axially displaced in a sinusoidal manner, and those in the middle region evolve without applying any constraints.
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Fig. 2. Determination of the wave speed fromMD simulations. The figure shows the
snapshot of a traveling wave at three different times (t1; t2; t3). The distance,
(dðt1Þ;dðt2Þ; dðt3Þ), travelled by the first peak of the wave is determined at the three
times. For simplicity snapshots at only three time are shown. In actual evaluation,
10 such time snapshots are used, and the speed is calculated from Eq. (4).
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Fig. 3. For determining the stiffness elements of the nanotube along the axial
direction, each nanotube ring (black dots) is represented by an equivalent particle
(red dots). Each equivalent particle is then displaced from its equilibrium position
by �D, and the forces on all particles are computed. Elements of the stiffness matrix
are determined using the central-difference method. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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symmetrized. The forced vibration response of the equivalent
particle-based structure is governed by the equation:

½M�f€zg þ ½K�fzg ¼ F; ð6Þ
where ½M� is a diagonal matrix denoting the mass of each equivalent
particle and F is the forcing vector whose only nonzero element is
the first element: F1 ¼ 1:0 sinðxf tÞ. As before, xf varies from 0.5
to 5 THz. The coupled equations of motion are decoupled by using
the normal modal analysis [45]. The steady state system response
is given by:

fziðtÞg ¼
XN
j¼1

UjU
T
j FiðtÞ

Mjjðx2
j �x2

f Þ
; ð7Þ

where Uj is the jth eigenvector corresponding to the jth natural fre-
quencyxj. The steady-state solution corresponds to standing waves
with the distance between two consecutive nodes equalling k=2.
The wave speed is then determined using:

c ¼ xf

k
; ð8Þ
2.4. Contribution of anharmonicity

During the MD simulations the temperature of the system rises
because of the continuous work added due to the displacement
imposed on atoms at the left edge. Thus anharmonic effects may
influence the system dynamics. In order to quantify the effects of
anharmonicity, we consider the Fermi-Pasta-Ulam [46,47] chain
comprised of N spring mass systems and the Hamiltonian:
H ¼
XN
n¼1

p2
n

2mc
þ
XN
n¼1

1
2
k1 znþ1 � zn � d0ð Þ2

þ
XN
n¼1

1
4
k2 znþ1 � zn � deq
� �4

: ð9Þ

The chain consists of N particles each interacting with its nearest
neighbors by a harmonic potential (second term in Eq. (9)) and a
tethering anharmonic potential (the third term in Eq. (9)). Here,
pn and zn denote the momentum and the position of the nth particle,
respectively. Equilibrium position of the nth particle is given by its
initial z-coordinate (¼ n). For simplicity we assume that each parti-
cle is of mass mc . The equilibrium distance between two adjacent
particles is given by deq, and k1 and k2 denote, respectively,
strengths of the harmonic and the anharmonic potentials. Here
we take mc ¼ 1; deq ¼ 1. The rightmost particle is kept fixed while
the leftmost particle is given a forced sinusoidal displacement sim-
ilar to that deduced from Eq. (3). Because of the forced vibration, a
standing wave forms within the chain. The value of k2 is iterated
upon to get a response resembling the standing wave patterns
obtained from the MD simulations. The equations of motion derived
from Eq. (9) are solved using the 4th order Runge-Kutta algorithm
with an incremental time step of 10�5 for a total of 107 time steps.

2.5. Evaluation of wall-thickness

The evaluation of the wall-thickness requires proper handshak-
ing between the continuum and the atomic scales using the
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Fig. 4. The average speed and the error bars of the axial stress waves (in nm/fs) for
the four BNNTs. There is a marginal dependence of wave speeds on both the circular
excitation frequency and the tube chirality. With increasing x wave speeds reach a
saturated value. The wave speed is higher in the zigzag and the armchair nanotubes
than that in the chiral nanotubes.
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approach of Refs. [48,49]. Assuming that the nanotube with the
boundary conditions shown in Fig. 1 can be modeled as an equiv-
alent cantilever beam, the tip vibration of the nanotube from sta-
tistical mechanical theory is correlated with that from the MD
simulations. For evaluating the wall-thickness of the nanotube,
natural (free) vibrations are sufficient. Since the free vibration
response is dominated by the transverse displacement, the tip
vibration (or bending vibrations) in the lateral direction is
considered.

Referring the reader to Krishnan et al. [49] for the detailed
derivation, the solution of the transverse vibration equation of
the beam is used to deduce the natural frequencies, xj, and the
corresponding modal elastic energy. For the tip displacement,
yðtÞ, at a particular time, and the beam vibrating at the natural fre-
quency xj, the conditional distribution function of yðtÞ; f ðyðtÞjxjÞ,
is obtained. Statistical mechanics is then invoked to find the prob-
ability density of the system to vibrate at xj. Lastly the marginal
probability density of y is obtained by the convolution:
f ðyÞ ¼ R f ðyðtÞjxjÞf ðxjÞdxj. It is found that the probability density
function of the tip vibration is normally distributed. Thus, the vari-
ance of y can be related to the standard deviation of the distribu-
tion function by:

hy2i ¼ 0:8488l3kBT

EqD3ð1þ ðq=DÞ2Þ
; ð10Þ

where E is the elastic modulus, q the wall thickness of the nanotube,
D the tube mean-diameter, kB the Boltzmann constant, and T the
Table 1
Speed of waves (in nm/fs) for different frequencies obtained from the harmonic appro
independent of the excitation frequency. The wave speed decreases with an increase in the

xf (in THz) (10,10) (12

1 0.0203 0.0
2 0.0202 0.0
3 0.0204 0.0
4 0.0204 0.0
5 0.0203 0.0

Average 0.0203 0.0
temperature of the system. Since two unknowns (E; q) are present
in Eq. (10), another equation is needed for obtaining q. This is
derived by performing a separate set of simulations involving uni-
axial tensile extension of the nanotubes. The change in the elastic
energy, U, due to the applied loading can be related to E and q
through:

Eq ¼ 1
pDl

@2U
@�2

; ð11Þ

where � represents the axial strain, and q is assumed to be much
smaller than D.

We now describe the two simulation strategies employed for
computing q from Eqs. (10) and (11). The convergence of hy2i
requires analyzing the nanotube dynamics for a long time-
duration. In order to keep the CPU time reasonable, the tube length
l is shortened to 20 nm for this set of simulations. A constant tem-
perature environment of 100 K is imposed by using the Langevin
thermostat for post-equilibration (see Section 2.1) simulations.
Each nanotube ring is considered as an equivalent single beam par-
ticle (similar to that shown in Fig. 3) and the transverse displace-
ment of the free end is found. A separate set of simulations is
carried out with the free end of the nanotube displaced axially at
the rate of 0:001 nm=fs. The change in the potential energy of the
system is monitored, and Eq. (11) is used to find E� q, which is
then substituted in Eq. (10) to deduce the value of the wall-
thickness q.

Other approaches for finding the nanotube wall thickness from
MM simulations are described in Refs. [50–52].
3. Results and discussion

The CPU time for a simulation is 1–3 h (depending upon the
nanotube length) with 8 processors [Intel(R) Xeon(R)
E5420@2.50 GHz] used concurrently. As is typical of an MD simu-
lation, most of the computational time is spent in evaluating the
forces ð� 90—95%Þ.
3.1. Wave speed in different nanotubes from MD simulations

The methodology described in Section 2.2 is used to obtain the
wave speeds from MD simulations and the results are depicted in
Fig. 4. The speed of the axial stress wave is found to marginally
depend upon the nanotube chirality and the excitation frequency.
For nearly all cases, the zigzag (17,0) nanotube has the maximum
wave speed. This is followed by that of the armchair (10,10) nan-
otube, and the waves travel the slowest in the chiral nanotubes.
Except for the (17,0) nanotube, the maximum wave speed is
obtained at x ¼ 0:6 THz. The ratio of the maximum wave speed
to the minimum wave speed varies between 1.12 and this agrees
with that obtained from the phonon-dispersion relationship for
acoustic modes where the wave velocity decreases at large x.
ximation. The speed has a marginal dependence on the nanotube chirality, but is
chiral angle unlike the results from the MD simulations that give the opposite trend.

hci for different chiralities
,8) (15,4) (17,0)

203 0.0212 0.0218
210 0.0210 0.0218
209 0.0213 0.0220
207 0.0212 0.0218
205 0.0213 0.0217

207 0.0212 0.0218



Table 2
Comparison of the first five natural frequencies (in THz) of the 70 nm long (10,10) armchair BNNT obtained from the MD and the HA approaches. The average difference in the
results from the two approaches is 18%.

xj (in THz) for different chiralities

(10,10) (12,8) (15,4) (17,0)

j MD HA MD HA MD HA MD HA

1 0.80 0.94 0.81 1.09 0.86 0.99 0.76 0.89
2 1.60 1.88 1.60 1.97 1.55 1.97 1.60 1.78
3 2.44 2.82 2.49 2.90 2.44 2.96 2.44 2.67
4 3.27 3.76 3.33 3.83 3.27 3.94 3.27 3.55
5 4.11 4.69 4.95 4.77 4.06 4.93 4.90 3.44

Fig. 5. Spatiotemporal plots of the velocity along the z-direction for the (10,10) armchair nanotube of three different lengths: (a) 70 nm, (b) 140 nm, and (c) 210 nm. The
figures correspond to the constant energy ensemble. Notice different interaction patterns for the three tube lengths. The incident and the reflected waves interact to create
constructive and destructive interference. The amplitude of the maxima/minima depends upon the nanotube length.

Fig. 6. (a) Spatiotemporal plot of the velocity for a purely harmonic N ¼ 100 particle FPU chain, (b) snapshots of the velocity profile at 5 different times, and (c) temporal
history of the axial velocity for the 20th and the 40th particles. Notice the difference between the results depicted in this figure (a) and the spatiotemporal plots shown in
Fig. 5. Here, the nodes and the antinodes persist throughout the simulation. The small error in locating the position of the nodes (see (b)) is due to the numerical approach. The
standing wave formed in the chain is comprised of at least two different frequencies, as is evident from the results exhibited in (c).
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3.2. Wave speed from harmonic approximation analysis

Using the approach described in Section 2.3, the wave speeds
found for the different BNNTs are listed in Table 1. The wave
propagation is found to be independent of the excitation fre-
quency, but depends marginally on the tube chirality. Unlike
the MD simulation results for which the armchair and the zigzag
nanotubes gave the fastest wave speeds, here the wave propaga-
tion is the slowest for the armchair nanotube. With increasing
chiral angle, the wave speed decreases. The difference between
the wave speeds from the MD and the HAs varies from 20 to
25%.



Fig. 7. Spatiotemporal plot of the velocity for N ¼ 100 particle FPU chain with
k2 ¼ 0:20. The value of k2 is incremented in steps of 0.01 until nodes of the standing
waves disappear. The figure is reminiscent of the spatiotemporal plot of the (10,10)
nanotube shown in Fig. 5(c). The results indicate that the anharmonic effects
contribute � 20% to the system dynamics.

1 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
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3.3. Continuous wave propagation

Nanotubes are divided into 200 distinct non-overlapping strips
for calculating different parameters. Each strip comprises of sev-
eral particles, and the results presented are their mean values.
The atomic counterpart of the continuum Cauchy stress is the Vir-
ial stress, defined as:

rcd ¼ 1
V

X
a

racF
a
c �mavacv

a
d

h i
ð12Þ

Here ðc; dÞ take values of the x; y and z directions, Fa denotes the
total force on the particle a having a position vector ra, and V
denotes the volume of the system. The computation of the Virial
stresses for a nanotube is nontrivial due to the ill-defined nature
of the volume of the system. For the present problem, since the sys-
tem has been equilibrated at 0.01 K, the initial contribution of the
velocity terms in Eq. (12) to the Virial stress is considered negligi-
ble. Subsequently, since the nanotubes undergo NVE dynamics (free
of any thermostat influence), the axial component of the particle
velocity is used as a proxy for the propagation of stress waves with-
out computing the Virial stress. However, this approximation will
not be valid when the particle dynamics is under a constant tem-
perature environment.

The natural frequencies of vibration are derived from the MD
simulations by taking the Fourier transform of the velocity auto-
correlation function. Only the axial velocity component is consid-
ered. These natural frequencies are compared with those
obtained from the harmonic approximation approach. Results
given in Table 2 indicate that frequencies from the two analyses
differ by 15–20% and by 30% for the 5th mode of the (17,0)
nanotube.

We now discuss results of a wave train propagating in the nan-
otube. From the fixed right end the compressive axial wave is
reflected as a tensile axial wave of twice the amplitude. As
expected, the axial velocity of the particles remains close to zero
prior to the passage of the stress wave. Until the incident and the
reflected waves interact, the velocity profile at a cross-section
resembles that of the incident wave-velocity. The incident and
the reflected waves interact with each other to form standing
waves with nodes and antinodes. The standing waves for the
(10,10) nanotubes are shown in Fig. 5. The plots illuminate how
the disturbance due to the sinusoidal loading propagates along
the nanotube spatially as well as temporally. A section perpendic-
ular to the tube axis provides the temporal evolution of the axial
velocity at a particular cross-section of the nanotube. Likewise, a
section perpendicular to the time axis provides the time snapshot
of the axial velocity profile of the nanotube. Green regions between
two subsequent yellow and blue1 regions have zero axial velocity,
denoting the presence of nodes. However, if the wave propagation
is studied for longer durations, the nodes and the antinodes become
less prominent, especially for the longer nanotubes. It is interesting
to note that the kinetic energy due to the motion along the trans-
verse direction keeps on increasing with time. This may be attribu-
ted to the nature of the potential of the system since it has
coupling among different degrees of freedom. These results may be
viewed as an approach towards equilibration by the nanotubes.

These results are in sharp contrast to those for typical wave
propagation observed in one-dimensional (1-D) systems like elas-
tic bars or stretched strings. In order to better elucidate the differ-
ences, we first consider a purely harmonic 1-D chain (k2 ¼ 0 in Eq.
(9)) with N ¼ 100. The equations of motion are solved for 1� 107

time steps. The free end of the chain is subjected to a sinusoidal
displacement of amplitude 1.0 and x ¼ 0:1. The results displayed
in Fig. 6(a), (b), and (c), respectively, show the entire spatiotempo-
ral evolution of velocity along the chain as the wave propagates,
the spatial profile of the axial velocity at five distinct time-steps,
and the temporal history of the velocity of two particular particles.
Unlike for the results plotted in Fig. 5, the nodes and the antinodes
persist throughout the simulation in this case. A small error is pre-
sent in finding the exact location of the nodes and the antinodes
owing to the finite length of the chain and the numerical integra-
tion of the governing equations. The chain vibrates in at least
two different frequencies, as can be seen from Fig. 6(c).

We now add anharmonicity to the chain motion by increasing
the value of k2 in Eq. (9) in increments of 0.01 till the velocity pro-
file similar to that in Fig. 5(c) is obtained. With k2 ¼ 0:20, a situa-
tion similar to that in Fig. 5(c) arises, as shown in Fig. 7. These
results indicate that the anharmonic effects of the potential con-
tribute � 20% towards the dynamics at long time.

3.4. Thickness determination

In this section, the wall-thickness of a nanotube is determined
using the methodology discussed in Section 2.5. The values of
thickness scaled elastic modulus, E� q, and the wall-thickness, q,
of the nanotubes so found are listed in Table 3. The computed
wall-thickness varies from 0.295 nm to 0.365 nm, with an average
value of 0.342 nm. This variation can be attributed to the possible
non-convergence of hy2i in the simulation time duration. We note
that the computation of the standard deviation requires a longer
time for convergence in comparison to that of the mean values.
One can use the values listed in Table 3 to evaluate E in typical
stress units.

The stress-wave problem studied for the nanotubes may be
modeled as a continuum scale 1-D wave equation:

@2u
@t2

¼ E
q
@2u
@z2

: ð13Þ

Here u represents the displacement along the z-direction, E the elas-
tic modulus, t the time and q the mass density. The speed of the
wave is given by:



Table 3
Scaled elastic modulus (E� q) and q as determined from the methodology described in Section 2.5. The temperature used for the calculation was the average values during the
simulation, and not the thermostatted temperature used for the initial equilibration. We believe that the wall-thickness for the different cases would approach the same value if
simulations were performed for longer time durations.

Chirality

(10,10) (12,8) (15,4) (17,0)

E� q (in TPa nm) 0.2192 0.2341 0.2226 0.206
q (in nm) 0.344 0.364 0.365 0.295
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c ¼
ffiffiffiffi
E
q

s
ð14Þ

Based upon the length, the diameter and the mass of the atoms, one
can determine the mass per unit area of the nanotube as

� 7:6� 10�7 kg=m2. Using the values of E and q listed in Table 3,
the wave speed (in nm/fs) from Eq. (14) equals 0.0169, 0.0174,
0.0170 and 0.0164, respectively, for the (10,10), (12,8), (15,4) and
(17,0) BNNTs. These values agree with those obtained from the
MD simulations at large excitation frequencies where little scatter-
ing is expected.
4. Conclusions

We have studied the axial wave propagation in Boron-Nitride
nanotubes, and utilized the vibration data to obtain their elastic
modulus and wall-thickness. The main conclusions drawn from
the present study are summarized below.

1. The wave speed is the highest for a zigzag nanotube followed by
that in an armchair and a chiral nanotube in MD simulations.

2. The wave speed decreases by a factor of 1.12–1.14 as the exci-
tation frequency is increased from 0.5 to 5 THz.

3. The wave speed from the harmonic approximations is almost
25% greater than that from the MD simulations. Unlike in the
MD simulations, waves travel faster in chiral nanotubes than
in armchair nanotubes.

4. There is � 18% discrepancy between the frequencies of vibra-
tion derived from the MD and the harmonic approximation
results.

5. When the nanotube is subjected to a wave train, waves
reflected from the fixed end interact with the incident waves
to create patterns resembling a standing wave. However, for a
long nanotube after sufficiently large time duration, the nodes
are not prominent.

6. By comparing the spatiotemporal wave pattern of velocities
between the MD and an FPU chain results, it is found that the
anharmonicity contributes � 20% to the tube dynamics.

7. The wall-thickness of the nanotubes is found to vary between
0.295 and 0.365 nm, and this variation may be reduced by cal-
culating hy2i for longer time durations but has not been done
here.

8. From the values of E� q and q, the wave speed determined
using the 1-D continuum wave equation agrees with that
obtained from the MD simulations for low excitation
frequencies.
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