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   Abstract 

 We studied three-dimensional transient large coupled thermo-
mechanical deformations of a polycarbonate (PC) plate with 
a through-the-thickness inhomogeneity at its centroid. The 
PC exhibits strain softening followed by strain hardening and 
its elastic moduli are taken to be functions of strain rate and 
temperature. The inhomogeneity is either a void or a region of 
initial temperature higher than that of the rest of the plate. The 
nonlinear initial-boundary-value problem is solved numeri-
cally by the fi nite element method. It is found that deforma-
tions localize into narrow regions that we call bands. For a 
plate deformed in tension, the maximum principal stretch 
within the band is almost twice that of the maximum shear 
strain and for a plate deformed in shear the two have approxi-
mately the same magnitude. For the PC deformed in uniaxial 
compression, we call the minimum slope of the effective 
stress vs. the effective strain curve in the strain softening 
regime as the softening modulus,  E   s  , and fi nd values of  E   s   and 
the defect strength needed for the deformations to localize. 
These values are found to be different for the plate deformed 
in shear from that deformed in tension and the minimum 
value of  E   s   for the localization of deformation also depends 
upon the defect type and the defect strength (e.g., the ratio of 
the major to the minor axes of the elliptic void).  

   Keywords:    coupled large transient thermo-mechanical 
deformations;   fi nite element solution;   polycarbonate;   strain 
localization.     

  1. Introduction 

 The thermo-mechanical response of a polycarbonate (PC) is 
different from that of a metal and a metallic alloy due to dif-
ferences in their atomic structures. Polymers are usually com-
prised of long chains of monomers  [1]  and metals of grains 
with each grain being a single crystal. A typical experimental 
true axial stress vs. true axial strain curve of a PC in glassy 
state deformed in uniaxial compression at different strain rates 
is shown in Figure  1  . Young ’ s modulus and the fl ow stress of 
a PC usually depend upon the strain rate and the temperature; 

the fl ow stress also depends on the hydrostatic pressure  [3] . 
The post yield response is characterized by intrinsic strain 
softening during which the true axial stress decreases with 
an increase in the true axial strain and it is followed by strain 
hardening  [4] . 

 The strain softening (hardening) of a material point usu-
ally destabilizes (stabilizes) deformations. Several investiga-
tors have observed instabilities during large deformations of 
a PC in the form of narrow bands or necking (e.g., see  [5, 
6] ). In PCs, the extent of the strain localized region might be 
limited because of the hardening of the material following its 
softening. Wu and Turner  [7]  experimentally studied torsional 
deformations of tubular PC specimens, observed instabilities 
after the material had yielded and found that the maximum 
shear strain within the band reached 70 %  at the fully soft-
ened stage and remained constant thereafter. During simple 
shearing deformations of a PC specimen, G ’ Sell and Gopez 
 [8]  observed a band of localized deformation triggered by an 
existing inhomogeneity in the material, and the band widened 
along lines perpendicular to the direction of the applied shear; 
a similar phenomenon has been reported in  [5, 9] . 

 Strain localization in PCs has also been investigated 
numerically, e.g., see  [9 – 13] . Grenet and G ’ Sell  [10]  have 
studied quasi-static shearing deformations of a PC plate with 
a defect near its centroid. Many features of the localization 
of deformation observed experimentally were well captured 
during simulations using a one dimensional (1D) constitu-
tive equation. Wu and van der Giessen  [12]  analyzed plane 
strain quasi-static simple shearing deformations of a PC using 
the fi nite element method (FEM) and constitutive relations 
similar to those proposed by Boyce et al.  [14] . Their constitu-
tive equations can reproduce the mechanical response of PCs 
over a wider range of temperatures and strain rates than those 
used by Grenet and G ’ Sell  [10] . Wu and van der Giessen  [12]  
introduced a weak region within the specimen that served as 
the nucleation site for the deformations to localize and found 
that the intrinsic strain softening was the driving force for the 
shear band formation and they did not observe a shear band in 
the limiting case of no strain softening. They  [15]  also studied 
necking of a PC dog bone sample deformed in quasi-static 
plane strain tension, which successfully predicted various 
stages of necking observed in experiments and concluded 
that strain softening was the driving force for necking. Lu and 
Ravi-Chandar  [11]  studied both experimentally and numeri-
cally the shear band formation in a PC specimen deformed in 
uniaxial tension. Experimental observations revealed micro 
shear bands in the material, particularly near surface defects, 
which grew with the deformation. For numerical simula-
tions of quasi-static deformations of a rectangular specimen 
deformed in simple tension, the true axial stress vs. the true 
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axial strain curve of the PC was idealized by a trilinear curve 
with linear portions corresponding to elastic, yielding, and 
strain hardening regimes of deformation. Neither the test data 
nor the idealized stress-strain curve had any strain softening 
regime. They found that localized regions of high plastic strain 
formed and propagated within the material and they called 
them shear bands, and concluded that strain softening is not 
the driving mechanism for the shear band formation in a PC. 
Effects of loading rate, temperature and the dependence of the 
yield stress upon the hydrostatic pressure were ignored. 

 Sweeney et al.  [16]  found that depending on the polymer, 
the region of localized deformation could take different geo-
metrical forms like a shear band or necking in a dog bone 
sample. They developed constitutive equations for a PC by 
assuming each material point to have two phases connected 
in series: an Eyring process and a Gaussian network. The 
strain localized region took the form of a shear band when 
the Gaussian network was stiff and the Eyring process domi-
nated, and a symmetric neck when the Gaussian network was 
relatively soft. The dominance of a phase is determined after 
fi nding values of material parameters that fi t the experimen-
tally obtained stress-strain curve. The PC dog bone samples 
were tested in tension at an axial strain rate of  ∼ 0.07/s and a 
temperature of 373 K. Sweeney et al.  [16]  predicted the occur-
rence of a shear band or of a necking instability but analyzed 
neither the propagation nor the speed of a shear band. 

 Govaert et al.  [17]  studied quasi-static tensile and torsional 
deformations of circular cylindrical PC dog bone specimens 
deformed at low strain rates, observed zones of localized 
deformations and showed that the strain softening in PCs 
could be suppressed by cyclically twisting PC samples prior 
to testing them in uniaxial tension and torsion. They found 
that strain localization occurred only in those materials that 
exhibited strain softening, which seemingly contradicts Lu 
and Ravi-Chandar ’ s  [11]  fi ndings. Results of their numerical 
simulations employing a compressible Leonov model that can 
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 Figure 1    True axial stress vs. the true axial strain curves for a 
PC deformed in uniaxial compression at various strain rates (from 
Mulliken and Boyce  [2] ).    

reproduce the strain softening and the strain hardening phe-
nomena in PCs agreed with their experimental observations. 
Even though they showed that the strain softening is neces-
sary for the strain localization to occur, the minimum strain 
softening needed for the strain localization to occur was not 
quantifi ed. 

 Although several investigators have shown that deforma-
tions can localize in PCs under quasi-static loading, very little 
work has been done on studying the deformation localiza-
tion phenomenon at high strain rate deformations of PCs. An 
understanding of this phenomenon will help design industrial 
processes such as extrusion, drawing and molding wherein 
the material undergoes large plastic deformations. Instabilities 
occurring in these processes will very likely generate defects 
in fabricated parts and make them either partially or fully use-
less. This work will help quantify processing parameters so 
that instabilities either do not occur or are minimized. It will 
also help characterize materials that are resistant to fragmen-
tation under impact loading, e.g., a stone striking automo-
bile ’ s windshield. 

 The objectives of this work are to delineate the effect on 
the strain localization of (i) high strain rates of deforma-
tions, (ii) strain softening and quantify, if possible, the mini-
mum softening needed for the region of strain localization to 
propagate, (iii) initial defect in the form of an elliptic void 
and (iv) a zone of elevated initial temperature. We propose a 
criterion for the deformation localization, compute the speed 
of propagation of this band and fi nd if either the maximum 
principal stretch or the maximum shear strain at points within 
the band has high values. In addition to the material soften-
ing, the initiation of deformation localization depends upon 
the number, the type and the strength of defects present in 
the body. Generally speaking, a geometric singularity (e.g., a 
void, a crack or a notch) facilitates the initiation of localiza-
tion of deformation more than a material inhomogeneity and 
thus a precise answer to the afore-stated objectives cannot be 
obtained. 

 We accomplish these goals by studying (i) three-dimen-
sional (3D) deformations of a square PC plate with either a 
through-the-thickness elliptic hole at its centroid or a circu-
lar region of elevated temperature and deformed by pulling 
axially the two opposite edges with the other two edges kept 
traction free and (ii) plane strain shearing deformations of a 
PC specimen with a defect at its centroid that is initially at a 
temperature higher than that of the rest of the body. 

 It is found that in the region of localization, principal 
stretches rather than the maximum shear strain dominate. 
However, in PC specimens deformed in simple shear, the 
two strains are nearly of the same order of magnitude. The 
minimum value of the softening modulus, defi ned as the 
minimum slope of the magnitude of the Cauchy stress tensor 
vs. the magnitude of the true strain tensor curve in the strain 
softening regime during uniaxial compressive deformations, 
required for deformations to localize is found to depend 
upon the type and the strength of the defect in addition to the 
type of deformation. For a strong enough defect, deforma-
tions localize in the absence of the PC exhibiting any strain 
softening. 

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



A.G. Varghese and R.C. Batra: Strain localization in polycarbonates deformed at high strain rates  497

 The rest of the paper is organized as follows. The problems 
are formulated in Section 2, constitutive relations for a PC for 
its high strain rate thermo-mechanical deformations are briefl y 
reviewed in Section 3 and the deformation localization crite-
rion is stated in Section 4. Section 5 describes the numerical 
scheme used to fi nd an approximate solution of the nonlinear 
coupled multiphysics (mechanical and thermal deformation) 
initial-boundary-value (IBV) problem formulated in Sections 
2 and 3. Section 6 gives results of numerical simulations and 
conclusions of the work are summarized in Section 7.  

  2. Problem formulation 

  2.1. Plate with a through-the-thickness elliptic void 

 A schematic sketch of the problem involving a square plate 
composed of a homogeneous and isotropic PC and having 
a through-the-thickness elliptic hole at the plate centroid is 
depicted in Figure  2  . The plate is deformed by pulling axi-
ally its top and bottom surfaces with a speed that increases 
linearly from zero to a steady value in time t 0 . The order of 
singularity in deformations at the geometric imperfection 
depends upon the ratio of the lengths of the major and the 
minor axes of the elliptic void and the orientation of the void 
relative to the direction of loading, and will very likely affect 
when deformations localize. 

 In the Lagrangian description of motion balance laws gov-
erning deformations of the plate material are: 

 Mass:   ρ J   =    ρ   0  in  Ω  (1) 

   0
ˆLinear momentum: in ρ =∇⋅ Ωv T�

 
 (2) 

   
ˆ ˆMoment of momentum: in T T= ΩTF FT  

 (3) 

   0Energy: in c Qρ θ= Ω� �
 

 (4) 

 Here,   ρ   0  and   ρ   are mass densities in the reference and the 
current confi gurations, respectively,  J   =  det  F  is the Jacobian, 
F  =   ∂  x /   ∂  X  the deformation gradient where  x  and  X  are 
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 Figure 2    (A) Front and (B) side views of a square plate with a through-the-thickness void and (C) shape of the elliptic void.    

coordinates of places a material particle occupies in the 
deformed and the undeformed confi gurations, respectively,   θ   
the temperature,  c  the specifi c heat,   Q̇ the heating produced per 
unit volume in the reference confi guration due to plastic work-
ing,  v  the velocity fi eld defi ned as   v = ẋ, and a superimposed dot 
denotes the material time derivative. Furthermore,   T̂ is the fi rst 
Piola-Kirchhoff stress tensor and   ∇⋅T̂ the divergence of  T̂  with 
respect to coordinates in the reference confi guration. The fi rst 
Piola-Kirchhoff stress tensor is related to the Cauchy stress ten-
sor,   σ ,  by   T̂ = Jσ(F)-T. In Eq. (4), we have assumed that effects 
of heat conduction are negligible, i.e., deformations are locally 
adiabatic. Batra and Kim  [18]  have shown that in metallic bod-
ies deformed at high strain rates the thermal conductivity does 
not affect the time of initiation of the localization of deforma-
tion but infl uences the band width; it is tacitly assumed that the 
same conclusion can be carried over to a PC. 

 The body is assumed to be initially at rest, stress free and at 
a uniform temperature of 300 K. 

 Because of the symmetry of the plate geometry, the void 
and of the initial and the boundary conditions about the three 
centroidal planes we assume that plate ’ s deformations are 
symmetric about the  X  1 -, the  X  2 - and the  X  3 -axes shown in 
Figure  2 . Accordingly, we analyze deformations of one-eighth 
of the plate in Figure  2  (shown in grey) under the following 
boundary conditions: 

   1 2 3 10  0  0 on 0x t t X= = = =   (5a) 

   1 2 3 10  0  0 on t t t X L= = = =   (5b) 

   2 1 3 20  0  0 on =0x t t X= = =   (5c) 

   3 1 2 30 0 0 on =0x t t X= = =   (5d) 

   1 2 3 30  0  0 on / 2t t t X h= = = =   (5e) 

   

0
0 0

2 1 3 2
0

0

, 0
0  0  on 

,

t
v t t

v t t X Lt
v t t

⎧ ≤ <⎪= = = =⎨
⎪ ≥⎩  

 (5f) 
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( )

2 2

1 2ˆ 0 1,2,3; 1,2 on 1i

X X
T N i

b aβ β β
⎛ ⎞ ⎛ ⎞= = = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 
 (5g) 

 Here,   t̄ = T̂N is the present traction vector measured per 
unit area in the undeformed confi guration,  N  is an outward 
unit normal to the surface of the elliptic void in the reference 
confi guration and the steady state nominal axial strain rate 
equals  ν  0 / L . Because of the assumption of locally adiabatic 
deformations, no boundary conditions are needed for the ther-
mal problem. 

  2.1.1. Plate with a through-the-thickness circular 

thermal defect     The afore-stated problem for the square PC 
plate is also studied when instead of the elliptic void, there is 
a circular through-the-thickness region centered at the plate 
centroid of temperature   θ   def  higher than that of the rest of the 
body. It will help decipher the effect of the type of defect on 
the localization of deformation. The problem formulation is 
identical to that given above except that boundary condition 
(5g) is ignored and the initial temperature distribution is taken 
as non-uniform with temperature equal to   θ   def  in the circular 
cylindrical region and 300 K in the rest of the plate. The 
temperature of material points at the interface between the 
defect and the remaining plate is that of the defect where the 
normal component of the heat fl ux is taken to be continuous.   

  2.2. Plane strain simple shearing deformations of a 

plate 

 A PC plate of length/height  =  7, schematically shown in 
Figure  3  , with a thermal defect at its centroid is deformed by 
equal and opposite tangential velocities prescribed at its top 
and bottom surfaces such that the nominal steady state strain 
rate equals 5000/s. To enforce plane strain condition, the out-
of-plane displacement of the plate particles is set equal to zero, 
i.e.,  x  3 - X  3   =  0. The tangential velocity of points on the top and 
the bottom surface increases linearly from zero to a steady value 
in time  t  0  giving a nominal steady state shear strain rate of  ν  0 / L . 
The initial temperature of the plate material within the defect is 
  θ   def  (  θ   def   >  300 K) whereas that of the remaining material is 300 K. 
The length and the height of the rectangular defect equal 6 %  of 
those of the plate that is initially at rest and stress free. 

 The following boundary conditions are imposed on the 
plate boundaries: 

   1 2 10  0  on 7 2t t X L= = =±  
 (6a) 

   

0
0 0

1 2 2
0

0

, 0
0 on / 2

,

t
v t t

v v X Lt
v t t

⎧± ≤ <⎪= = =±⎨
⎪ ± ≥⎩  

 (6b) 

 Thus, the top and the bottom surfaces of the plate stay fl at 
during deformations and might have normal tractions acting 
on them. 

 Equations (1) through (6) are supplemented by constitutive 
relations reviewed briefl y below.   

  3. Constitutive relations 

 Referring the reader to  [19, 20]  for details, we describe 
essentials of the constitutive relations for the PC. It is 
assumed that three phases,   α  ,   β  , and B, co-exist at a material 
point. At the molecular level, phases   α   and   β   correspond 
to the intermolecular resistance to rotations of main chain 
segments and of bulky groups, respectively, and phase B to 
the resistance to chain alignment. In PC, the phase   β   is due 
to the resistance to rotation of the phenyl group attached to 
the main chain  [2] . From a continuum mechanics point of 
view, the phase B accounts for strain hardening and phases 
  α   and   β   for viscoplastic and strain softening effects, respec-
tively. There is neither an explicit yield surface postulated 
nor the loading/unloading of a material point checked. We 
use bold face letters to indicate tensorial quantities and affi x 
the subscript  i  to a quantity to indicate its value for the phase 
 i  ( i  =   α  ,   β  , B). 

 The deformation gradient  F  that maps infi nitesimal mate-
rial lines in the undeformed reference confi guration to infi ni-
tesimal material lines in the present confi guration is the same 
for the three phases and so is the temperature. Similar to the 
work of Lee  [21] , the deformation gradient for the   α   and the   β   
phases is multiplicatively decomposed into elastic and plastic 
parts, i.e., 

   
e p e p,α α α β β β= =F F F F F F

 
 (7) 
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 Figure 3    (A) Front view of the plate undergoing plane strain shear deformations and (B) the defect at the centroid of the plate. The origin of 
the coordinate axes is at the plate centroid.    
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 The plastic deformation gradients   Fp
α and  Fp

β  map a mate-
rial line in a stress-free reference confi guration to a material 
line in the stress-free confi guration obtained by elastically 
unloading the deformed state of the body. Neither  F  e  nor  F  p  
are gradients of a vector fi eld but  F  is the gradient of  x ( X , t ) 
with respect to  X . 

 The rate of the plastic deformation gradient in phases   α   and 
  β   is given by: 

   
-1 -1p e p p e p,α α α α β β β β= =F F D F F F D F� � � �

 
 (8) 

 where   D
~ p

i is the plastic strain rate tensor in phase  i . The 
elastic deformation gradient in phase  i  can be determined 
from Eq. (7) if the total deformation gradient and the plastic 
deformation gradient in phase  i  are known. It has been tacitly 
assumed in Eq. (8) that the plastic spin tensor in phases   α   and 
  β   identically vanishes. 

 The plastic strain rate tensor in phase  i  is assumed to be 
coaxial with the deviatoric Cauchy stress tensor in phase  i , 
i.e., 

   

''
p p p p

' '
, βα

α α β β

α β

γ γ= =D D� �� �
ss

s s   

(9) 

 where   σ'
i ( i   =    α  ,   β  ) is the deviatoric part of the Cauchy stress 

  σ    i   in phase  i ,   ( )' tri i ii= ′ ′s s s  is the magnitude of   σ’

i
, tr( ) is the 

trace operator, and   γ̇i
p is the effective plastic strain rate in 

phase  i . Eq. (9) implies that   tr (D
~ p

i ) = 0, and the plastic strain 
rate tensors in phases   α   and   β   are determined by the devia-
toric components of the Cauchy stresses in phases   α   and   β  . 

 The true strain tensor  ε  and its magnitude,  ε  mag , are defi ned 
as: 

   
( )1 2Tln ,= =V V FFe

 
 (10) 

   mag ,   , 1,2,3;  and  summedij ij i j i jε ε ε= =
 

 (11) 

 Thus  ε  is the logarithmic strain tensor. 
 The Cauchy stresses in the   α   and the   β   phases are related to 

their elastic deformations by: 

   

e e1
2 ln tr(ln ) , ,i i i i i

i

i
J

µ λ α β⎡ ⎤= + =⎣ ⎦V Vs d
 

 (12) 

 where   J
i = det(F ei) gives the volume change due to elastic 

deformations in phase  i . ln Eq. (12) Vi
e   is the logarithmic 

elastic strain in phase  i ;   δ   is the identity tensor and Vi
e   is the 

left stretch tensor in the polar decomposition of the deforma-
tion gradient   F

i
e     The material elasticities   λ    i   and   µ    i   (Lame ’ s 

constants for infi nitesimal deformations) are functions of the 
current temperature and the present strain rate and capture the 
temperature-dependent viscoelastic response of the material. 
As pointed out in  [22]  the constitutive relation (12) is valid 
for fi nite elastic deformations of the body and accounts for all 
geometric nonlinearities. 

 The Cauchy stress  σ  B  in phase B is assumed to be devia-
toric, and given by: 

   

p
-1R

B Bp3
l

l

NC
L

N

λ
λ

⎛ ⎞
= ′⎜ ⎟

⎝ ⎠
Bs

  (13) 

 where   ( )p
Btr 3λ = B  is a measure of stretch;  L  is the 

Langevin function defi ned by  L  (   β  )  ≡  coth   β - 1/  β  ;   B
_

′B is the devi-

atoric part of   
-2 /3 T

B (det )=B F FF  and equals   B B-[tr( ) 3]B B
 δ; 

 N   l   is the limiting stretch;  C  R  ≡  n  R  k θ   is the rubbery modulus, 
  θ   is the temperature in Kelvin,  k  is Boltzmann ’ s constant 
and  n  R  is a material parameter. The magnitude of the stress 

in phase B increases exponentially as  λ  p  approaches   lN . 

For  y   =   L ( x ),  x   =   L  -1 ( y ). Thus the evaluation of   ( )-1 p
lL Nλ  

involves solving iteratively a nonlinear equation. The magni-
tude,  σ  mag , of the Cauchy stress tensor is defi ned in the same 
way as that of the strain tensor; see Eq. (11). 

 The total Cauchy stress at a spatial point is assumed to 
equal the sum of the Cauchy stresses in individual phases at 
that point, i.e., 

   σ    =    σ    α    +    σ     β     +    σ   B  (14) 

 The effective plastic strain rates in   α   and   β   phases are taken 
to be given by: 

   

p p
0 pexp - 1- ,

ˆ
i i

i i
i i i

G
i

k t s p

τ
γ γ α β

θ α

⎡ ⎤⎛ ⎞∆= =⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥⎣ ⎦
� �

 
 (15) 

 Here   
p
0iγ�  ( i  =   α ,  β  ) is the pre-exponential factor,  ∆  G   i   the acti-

vation energy,  p   =  - σ   ii   /3 the pressure,   ( )' '0.5tri i iτ = s s  the 

effective stress,    αp
i  the pressure coeffi cient,   ̂ 0.077 /(1- )i i is µ ν=  

the athermal shear strength,  ν   i   Poisson ’ s ratio,  k  Boltzmann ’ s 
constant and  t   i   an internal variable that evolves with plas-
tic deformations. Eq. (15) gives the pressure, the strain rate, 
and the temperature dependent evolution of the plastic strain 
rate in phase  i . The variable   ̂ is  depends upon the tempera-
ture because of the dependence of   µ    i   and  ν  i        upon the tem-
perature. Because there is no yield surface postulated, plastic 
deformations always occur. Henceforth we call the maxi-
mum magnitude,   σ   mag , of the Cauchy stress tensor reached 
before the onset of material softening as the yield stress of 
the material. 

 The internal variable  t   i   equals the athermal shear strength 
of phase  i  ( i  =   α ,  β  ) and its evolution is given by: 

   

p
0 ss1- ,

ˆ
i i

i i
i i

h t
t i

s t
γ α β

 

⎛ ⎞
= =⎜ ⎟⎝ ⎠
� �

 
 (16) 

 where   ss
it  and  h   i   are softening parameters, and   0

îs  is the refer-
ence value of   ̂ is  given by the reference values of   µ    i   and  υ   i  . Eq. 
(16) implies that   it�  is almost zero when either   p

iγ�  is close to 
zero or when  t   i   is close to   ss

it . Hence, the internal variable  t   i   
remains constant during elastic deformations, and evolves dur-
ing continued plastic deformations to   ss

it . The strain softening 
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in PCs is captured by the evolution of  t   i   from an initial value 
of 1.0 to the fi nal value of     t

 
i
ss. Because   p

iγ�  depends upon  t   i  , the 
right hand side of Eq. (16) is a nonlinear function of  t   i   and the 
stress state in phase  i . 

 We postulate that: 

   ( ) ( )p pQ J Jα α α β β β= +D D� � �ttr trσ σ
 

 (17) 

 Thus the energy dissipated due to plastic working equals 
the sum of energies dissipated due to plastic working in phases 
  α   and   β  . Moreover, all of the plastic working is assumed to 
be converted into heating giving the Taylor-Quinney factor 
equal to 1. 

  3.1. Values of material parameters 

 Values of material parameters for the PC tested by Mulliken 
and Boyce  [2]  are listed in Table  1  . Consistent with their 
assumption that deformations of phase   β   are affected only by 
positive pressures, we set the pressure coeffi cient   α

p
β equal to 

zero if the pressure is negative. The elastic parameters   λ    i   and 
  µ    i   ( i   =    α  ,   β  ) are given by: 

   

(1 )
,

2 2(1 )
i i i

i i
i

E Eν
λ µ

ν
+= =

+  
 (18) 

 Here  E   i   and  ν i are Young ’ s modulus and Poisson ’ s ratio 
for phase  i , respectively. Values of  E   α   and  E    β    as functions 
of the temperature and the strain rate(s) are not listed in 
Table  1  because they are derived from functions given as 
MATLAB routines in Appendices C and D of Mulliken ’ s 
thesis  [23] , which were converted to FORTRAN® 90 sub-
routines. Values of  E   α   and  E    β    at 300 K and the nominal 
strain rate of 5000/s equal, respectively, 1.678 GPa and 
0.345 GPa for the PC. 

 The simulation of simple tensile deformations of a body 
comprised of phase   α   revealed that a change in the value of 
the internal variable  t   α   from 0.9 to 0.6 increased the value 
of   

p
αγ�  by an unrealistic 13 orders of magnitude. Accordingly, 

Eq. (15) is modifi ed to: 

 Table 1      Values of material parameters for the modifi ed constitutive 
equations for the PC; for values of Young  ’  s modulus study the 
paragraph following Eq. (18).  

Phase   α  Phase   β  Phase B

  νi  0.38 0.38

  
p
0iγ�  (/s) 2.94 × 10 16 3.39 × 10 5 

 ∆  G   i   (J) 3.744 × 10 -18 3.769 × 10 -20 

  
p
iα 0.168 0.245

 h   i   (MPa) 125 400

  
ss
it 0.33 2.00

 C  R  at 300 K (MPa) 35.0
 N   l   12.25
 c  [J/(gm-K)] 1.20
  ρ   (kg/m 3 ) 1.20

   

p p 5
0 pmin exp - 1- , 10 /s , ,

ˆ
i i

i i
i i i

G
i

k t s p

τ
γ γ α β

θ α

⎛ ⎞⎡ ⎤⎛ ⎞∆= =⎢ ⎥⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎣ ⎦
� �

 

 (19) 

 that limits the maximum effective plastic strain rate in phases 
  α   and   β   to 10 5 /s. 

 We note that for the PC,   γ̇ p0α and   γ̇ p0β are of the order of 10 16  
and 10 5 , respectively.   

  4. Strain localization criterion 

 We hypothesize that deformations in a PC begin to localize at 
a material point when the magnitude of the true strain tensor 
given by Eq. (10) equals at least twice the nominal strain and 
either   γ̇ pα or    γ̇ pβ, or both equal at least twice the applied nomi-
nal strain rate. For each of the problems studied, the steady 
state nominal strain equals  ν  0  t/L . Results presented below do 
depend upon the strain localization criterion; however, our 
extensive work (e.g., see  [24 , 29]) with metals suggests that 
results using different localization criteria are qualitatively 
similar but might vary quantitatively. 

 In experiments, it is rather diffi cult to decipher when pre-
cisely the deformation begins to localize. One could poten-
tially use the digital image correlation technique to fi nd out 
when the localization process starts on the outer surface of a 
body and also compute the strain rate within the zone of local-
ized deformation. Measurements on the bounding surface of a 
body provide very little information about the state of defor-
mation in the interior of the body for large deformations.  

  5. Numerical solution of the governing equations 

 The IBV problem is solved using the commercial FE soft-
ware, LS-DYNA ( www.lstc.com ), in which the constitutive 
equations are implemented as a user defi ned subroutine. We 
used eight-node brick elements with eight-point integration 
rule and a lumped mass matrix derived from the consistent 
mass matrix by the row sum technique. Equations of motion 
are integrated with an explicit conditionally stable algorithm 
and the time step size is taken as a fraction of that required for 
the elastic dilatational wave to propagate through the smallest 
element in the mesh. The unknowns at an integration point are 
 x ,  v ,   Fp

α, Fp

β  ,  t    α   ,  t    β   ,   θ   and the mass density   ρ  . For a 3D problem, 
the number of unknowns at a node equals 28. The verifi cation 
of the user defi ned subroutine for isothermal deformations is 
described in  [19] . 

  5.1. Results for the plate with an elliptical void 

 Referring to Figure  2 , we set  h   =  0.04 mm,  L   =  1 mm,  v  0   =  
5 m/s and  t  0   =  1  µ s, giving the steady state nominal axial strain 
rate equal to 5000/s. For results discussed in subsections 
5.1.1 – 5.1.8, we take  a   =   b   =  0.04 mm. We have selected small 
dimensions of the specimen so that we can ascertain the width 
of the region (expected to be in micrometers) of the localized 
deformation within reasonable computational resources. 
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  5.1.1. Effect of the FE mesh     Using the mesh generator add-
on in Tecplot 360 ( www.tecplot.com ), the half-thickness of the 
plate is divided into fi ve uniform layers and the FE meshes for 
two voids on the plane  X  3   =  constant for  a / b   =  1, 1/4 are shown 
in Figure  4  . The total number of elements (nodes) for each 
case equaled 20,000 (24,846) with the boundary of the ellipse 
in the fi rst quadrant discretized into 40 straight line segments 
of equal length. For each void, the principal axes of the ellipse 
coincided with the  X  1 - and the  X  2 -axes and the major axes 
measured 0.08 mm. Thus for  a / b   =  4, the major axes is aligned 
with the  X  2 -axis and for  a / b    =  1/4 with the  X  1 -axis. 

 In order to get an idea of the error in the numerical solu-
tion, we analyzed deformations of the PC plate using the two 
meshes described below; the fi ner mesh is referred to as mesh 
2. In the two discretizations near the elliptic void shown in 

Figure  5  , the number of elements along the boundary of the 
ellipse, near the elliptic void, and in the thickness direction 
was increased by 50 %  in mesh 2 as compared to those for 
mesh 1 resulting in 20,500 (19,800) and 47,040 (39,984) 
nodes (elements), respectively, in meshes 1 and 2. 

 Three points within the narrow region of intense defor-
mations and their coordinates in the reference confi guration 
for the two meshes are exhibited in Figure  6  . For a node in 
mesh 1, the node closest to that node in mesh 2 was chosen 
to compare the results because nodes in the two meshes do 
not coincide with each other. Because a narrow region of 
severe deformations had formed in the plate at 25  µ s, we 
show in Figure  7    time histories of   σ   mag  and  ε  mag  at these 
points until  t   =  25  µ s. Over the duration of the simulations, 
the maximum difference in   σ   mag  and  ε  mag  from results with 
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 Figure 4    Discretization of the plate on the plane  X  3   =  0 near the through-the-thickness elliptic void for  a / b   =  1 (left) and  a / b   =  1/4 (right).    
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 Figure 6    Locations of three points considered for comparing results from the two FE meshes (left) and their coordinates, in mm (right), in 
the reference confi guration.    

1.0

0.8

0.6

0.4

0.2

Max difference=4%

Max difference=3%

Max difference=9%

Max difference=7%

Max difference=4%

Max difference=7%

0
0 5 10 15

Time (�s)

Mesh 1 - Point 1
Mesh 1 - Point 2
Mesh 1 - Point 3
Mesh 2 - Point 1
Mesh 2 - Point 2
Mesh 2 - Point 3

Mesh 1 - Point 1
Mesh 1 - Point 2
Mesh 1 - Point 3
Mesh 2 - Point 1
Mesh 2 - Point 2
Mesh 2 - Point 3

20 25

3.0

2.5

2.0

1.5

1.0

0.5

0
0 5 10 15

Time (�s)
20 25

ε m
ag

σ m
ag

 (G
P

a)

 Figure 7    Time histories of  ε  mag  (left) and of   σ   mag  (right) at the three points in the plate from the two FE meshes.    

the two meshes at any one of the three points considered 
was 9 % . Results presented below computed with mesh 1 
provide a good qualitative description of the localization of 
deformation and if desired the quantitative information can 
be improved upon by computing results with successively 
fi ner meshes.  

  5.1.2. Localization of deformation     At time  t   =  26  µ s, 
contour plots of  ε  mag  on the front face  X  3   =  0.02 mm and in 
a small region near the circular void on the plane  X  2   =  0 are 
exhibited in Figure  8 . It can be seen that a band of intense 
strain has developed in the plate with the strain near the void 

tip exceeding 1.0. The value of  ε  mag  reaches 1.0 fi rst at the 
tip (0.04, 0, 0) of the circular void on the  X  1 -axis and is in 
the mid-surface of the plate. The effective strain is essentially 
uniform through the plate thickness at least near the void 
surface. If we defi ne the width of the band as the thickness of 
the region in which  ε  mag  equals about 0.5, then we get  ∼ 18  µ m 
as the band width. 

 Figure  9   exhibits the time history of  ε  mag  and the tempera-
ture at two points (0.04, 0, 0) and (0.04, 0, 0.02), where the 
strain localization condition is satisfi ed at 3.12  µ s and 4.50  µ s, 
respectively. At each one of the two points, the temperature 
increases monotonically until it equals  ∼ 380 K at  ∼ 17  µ s and 
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 Figure 9    Time histories of  ε  mag  (left) and of the temperature (right) at points (0.04, 0, 0.02) and (0.04, 0, 0).    

stays there subsequently because the average plastic strain-
rate and hence the plastic working become null. For a typi-
cal PC, the yield stress of the material drops noticeably at 
  θ    =  380 K; e.g., see Figure  1  in Bauwens-Crowet et al.  [25] . 
The maximum strain rate at both points equals  ∼ 10 5 /s; values 
of   ε̇

 mag are found by differentiating  ε  mag  with respect to time  t  
by the backward difference method.  

  5.1.3. Strain localization band     From fringe plots of shear 
strains   ε   12 ,   ε   13  and   ε   23  near the void and over the entire domain 
on the front face  X  3   =  0.02 mm of the plate at  t   =  26  µ s depicted 
in Figure  10  , it can be seen that the maximum magnitudes of 
  ε   12 ,   ε   13 , and   ε   23  equal  ∼ 0.41,  ∼ 0.18 and  ∼ 0.11, respectively, 
which are less than one-half of the maximum value of  ε  mag  
(Figure  8 ). Also, magnitudes of shear strains over most of 

the domain are close to zero and the high shear strains are 
concentrated in a small region near the void and none of the 
three fringe plots show a band of high shear strain. 

 Figure  11   shows fringe plots of principal stretches (eigen-
values of the left or the right stretch tensor) at  t   =  26  µ s on 
the deformed shape of the plane  X  3   =  0.02 mm. The overall 
elongation of the plate equals about 12 %  and its maximum 
contraction  ∼ 8 % . Recalling that a stretch equals 1.0 in the 
reference confi guration, a line element near the void surface 
and close to the horizontal plane  X  2   =  0 is stretched by  ∼ 230 %  
and another one in the same general location contracted by 
 ∼ 40 % . Thus the normal strains in the narrow region of local-
ized deformation are much higher than the shear strains. 
The eigenvectors for the maximum principal stretch lie in 
the plane  X  3   =  constant and are parallel to the boundary of 
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 Figure 10    Fringe plots of   ε   12 ,   ε   23  and   ε   13  at  t   =  26  µ s near the void (left) and over the entire domain (right) on the plane  X  3   =  0.02 mm.    
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 Figure 11    At  t   =  26  µ s fringe plots of the three eigenvalues of the left or the right stretch tensor on the deformed shape of the front face 
 X  3   =  0.02 mm of the plate.    

the geometric defect. The  X  3 -axis is the eigenvector for one 
of the other two principal stretches and the eigenvector for 
the 3 rd  principal stretch is along the normal to the bound-
ary of the geometric defect. Eigenvectors of the left stretch 
tensor give directions of principal stretches in the deformed 
confi guration. 

 Whereas for the present problem, the principal stretches 
are much larger than the maximum shear strains within the 
band of localized deformation, Lu and Ravi-Chandar  [11] , 
and Wu and van der Giessen  [15]  found the maximum shear 
strain within the band to be dominant during simple tensile 
and plane strain simple shearing deformations of a PC body. 
Lu and Ravi-Chandar approximated the material response by 
a trilinear axial stress  –  axial strain curve, and Wu and van der 

Giessen used constitutive relations similar to those employed 
here except that they assumed strain rates to be very small, 
neglected inertia forces and introduced a weak region with 
a smaller value of the yield stress to trigger the initiation of 
localization of deformation.  

  5.1.4. Propagation of the band of intense 

deformations     Figure  12   depicts fringe plots of  ε̇  mag  on 
the deformed shape of the plate ’ s front face  X  3   =  0.02 mm 
at  t   =  14, 24 and 34  µ s; the legend indicates strain rates in 
10 6 /s thus the maximum strain rate at a point within the 
region of localization is  ∼ 10 5 /s. At 14  µ s, the region of the 
high true strain rate emanating from the void periphery is 
simply connected, which at 24  µ s widened and the point of 
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 Figure 12    Fringe plots of the maximum     ε̇ mag on the deformed shape of plate ’ s front face  X  3   =  0.02 mm at  t   =  14  µ s (A),  t   =  24  µ s (B), and  t   =  34 
 µ s (C).    

maximum   ε̇ mag moved along the boundary of the void. The 
simply connected region split into two disconnected regions 
of high   ε̇

 mag at  t   =  34  µ s. Also, points of high value of   ε̇ mag at 
14  µ s become points of low value of   ε̇

 mag at 24  µ s and later. 
This splitting of the narrow region of high strain rate into 
two parts has not been reported by previous investigators 
 [11, 15] . Note that at each one of the three times, there are 
small regions away from the void where the strain rate varies 
between 10 3 /s and 10 4 /s. 

 The high value of   ε̇
 mag at a point causes the deformation to 

increase rapidly, the stress in phase B increases exponentially 

with an increase in   p
lNλ , the material hardening in phase 

B overcomes material softening in the   α   and   β   phases and 
the deformation stabilizes. The drop in the value of   ε̇

 mag at a 
material point is attributed to its strain hardening. This can 

be seen from the fringe plots of   p
lNλ  near the void on the 

plane  X  3   =  0.02 mm at  t   =  14, 24, and 34  µ s given in Figure  13  . 

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



A.G. Varghese and R.C. Batra: Strain localization in polycarbonates deformed at high strain rates  507

0.40
A B

C

0.35

0.25

0.15

0.05

-0.05
0 0.1 0.2 0.3

0.40

Y

Z X

0.35

0.30

0.25

0.20
0.53
0.51
0.49
0.47
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30

0.50
0.48
0.47
0.45
0.43
0.42
0.40
0.38
0.37
0.35
0.34
0.32
0.30

0.37
0.36
0.35
0.35
0.34
0.34
0.33
0.32
0.32
0.31
0.30
0.30
0.29

0.15

0.05

-0.05
0 0.1 0.2 0.3

0.10

0

0

0.10

0.30

Y

XZ

Y

XZ

0.20

0.40

0.35

0.25

0.15

0.05

-0.05

0

0.10

0.30

0.20

X
2 

(m
m

)

X
2 

(m
m

)

X
2 

(m
m

)

X1 (mm)
0 0.1 0.2 0.3

X1 (mm)

X (mm)

λchain/√N

λchain/√Nλchain/√N

 Figure 13    Fringe plots of   p
lNλ  near the void in the reference confi guration of the plane  X  3   =  0.02 mm at  t   =  14  µ s (A),  t   =  24  µ s (B) and 

 t   =  34  µ s (C).    

Recalling that  λ  p  depends upon the deformation gradient, the 
value of   p

lNλ  increases from 0.286 at t  =  0 as a material 

point deforms. At  t   =  14  µ s, the hardening in the material is 
confi ned to a small region near the tip of the void, but at  t   =  

24  µ s,   p
lNλ  increases by 80 %  at points close to the circular 

void and the true strain rate at those points decreases by a 
factor of three. On further deformation the material within the 
band hardens, the band widens and the region of high values 
of   ε̇

 mag has the hardened material. 
 The interaction between the softening and the hardening at 

a material point is further illustrated in the time history plot, 
presented in Figure  14  , of effective stresses in the   α   and   β   
phases, and of   ε̇ mag at the point (0.04, 0, 0.02). Until t  =  10  µ s 
effective stresses in phases   α   and   β   increase monotonically; 
subsequently the effective stress in phase   α   drops but that 
in phase   β   continues to increase monotonically for the time 

duration, 40  µ s, of the computation. Recalling that   γ̇ p0α and    
γ̇ p0β are of the order of 10 16  and 10 5  respectively, deformations 
of phase  α  contribute more to the value of   ε̇ mag than those 
of phase   β  . For  t   > 15  µ s, as phase   α   hardens   ε̇ mag begins to 
decrease because the softening in phase   β   is not strong enough 
to overcome the hardening in phase   α   deformations of the 
material point stabilize and     ε̇ mag decreases. 

 Figure  15   exhibits time histories of  ε  mag  and of the inverse 
Langevin function at the point (0.04, 0, 0.02). The value of 
 ε  mag  begins to increase rapidly at  ∼ 10  µ s, the plateau in the rate 
of increase of  ε  mag  at  ∼ 16  µ s coincides with the instant of the 
rapid increase in the inverse Langevin function and that of the 
drop in the value of   ε̇

 mag.  

  5.1.5. Effect of strain rate     Deformations of the PC plate 
were also studied at nominal axial strain rates of 1, 50, 1000, 
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3000, 7000, and 10,000/s. To decrease the computational 
time of simulations at nominal strain rates of 1 and 50/s, we 
increased the mass density of the material by a factor of 10 3  
and 10 2 , respectively, to use larger time steps for temporal 
integration than those possible for the normal value of the 
mass density. 

 At a strain rate of 1/s, the propagation of localized defor-
mations is different from that at the strain rate of 5000/s 
described in the previous section. We compare in Figure  16   
fringe plots of  ε  mag  near the void for plates deformed at 5000/s 
on the plane  X  3   =  0, and at 1/s on planes  X  3   =   h /2  =  0.02 mm 
and 0 when the nominal axial strains in the plate were 8, 9 
and 10 % . At strain rate of 1/s, the localized deformations ini-
tially propagated along the  X  1 -axis but on further deforma-
tion propagated along a direction close to that when the strain 
rate is 5000/s. However, on the plane  X  3   =  0.02 mm, the band 
for the nominal strain rate of 1/s was initially inclined to the 
 X  1 -axis. The propagation of localized deformations along the 
 X  1 -axis was not observed for the fi ve strain rates higher than 

1/s considered here. Furthermore, the band of localized defor-
mations for the applied strain rate of 5000/s is nearly three 
times as wide as that for the applied strain rate of 1/s. 

 The nominal axial strain when the strain localization con-
dition is fi rst satisfi ed at the fi ve points along the band marked 
in Figure  17   and its average speed of propagation in the refer-
ence confi guration of PC plates deformed at different strain 
rates are listed in Table  2  . The coordinates in the undeformed 
confi guration of the fi ve points are listed in Table  3  . At the 
nominal axial strain rate of 1/s the propagation of the local-
ized deformations did not follow the same path as that at the 
other strain rates considered here. Hence, at strain rate of 1/s 
fi ve points were chosen within the band such that they have 
the same  X  1  and  X  3  coordinates in the undeformed confi gu-
ration as the fi ve points in Figure  17 , but have different  X  2  
coordinates that are listed in Table  3 . The average speed of 
propagation is computed by dividing the distance between 
points 1 and 5 in the undeformed confi guration by the differ-
ence in the localization times for those two points. 

 From the data in Table  3 , we conclude that the nominal 
axial strain at the initiation of localization of deformation at a 
point and the average band speed increase with an increase in 
the applied nominal axial strain rate.  

  5.1.6. Effect of pressure-dependent yielding     To 
check the infl uence of pressure-dependent yielding on the 
localization phenomenon, we computed deformations of the 
plate with the pressure coeffi cients    α p

α and    α p
β in Eq. (19) 

set equal to the six values listed in Table  4   and the nominal 
axial strain rate equal to 5000/s. Results of the six simulations 
were essentially close to each other; a band of high strain was 
observed in all the simulations and it had high stretches rather 
than high shear strains. Thus the pressure-dependent yielding 
is not responsible for the principal stretches rather than 
the shear strains being large within the region of localized 
deformation. 

 The times when the localization condition is satisfi ed at 
the fi ve points along the band marked in Figure  17  and the 
average speed of propagation of the band for the six simu-
lations described above are listed in Table  5  . The maximum 
difference in values of times and the average speed for these 
six simulations is  ∼ 20 %  implying that values of   αp

α and   αp
β 

do not affect much either the time when the deformation 
localizes at a point or the average speed of propagation of the 
band. Also, the angle between the centerline of the region of 
the localized deformation and the  x  1  - axis was nearly the same 
for these six simulations.  

  5.1.7. Softening modulus E 
s
      In an attempt to fi nd a 

material parameter that characterizes whether or not 
deformations in a PC localize, we introduce the softening 
modulus,  E   s  , defi ned as the minimum slope of   σ   mag  vs.  ε  mag  
curve during the strain softening regime. For the   σ   mag  vs.  ε  mag  
curve shown in Figure  18  ,  E   s   equals the magnitude of the 
slope of line AC, i.e., it equals AB/BC. 

 For metals, Wright and Walter  [26]  among others, 
hypothesized that  E   s   determines the propensity of a material 
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 Figure 16    Near the void fringe plots of  ε  mag  for PC plates; (left) on the plane  X  3   =  0.02 and nominal axial strain rate  =  1/s, (center) on the plane 
 X  3   =  0.0 and nominal axial strain rate  =  1/s, (right) on the plane  X  3   =  0.02 and nominal axial strain rate  =  5000 /s. Values of the nominal axial strain 
for these fringe plots are listed in the left column.    

 Figure 17    Five points of interest along the strain localized band.    

to shear strain localization. The strain softening in the con-
stitutive relations of a PC is governed by Eq. (16) and it 
depends on values of material parameters  h   i   and   ti

ss ( i   =    α  , 
  β  ). Here, we study the softening only in phase   α   because 
softening in both phases is governed by the same equation 
with only different values of material parameters. For vari-
ous values of  h   α   and     tα

ss, the   σ   mag  vs.  ε  mag  curves for uniaxial 
compressive deformations at a nominal axial strain rate of 
5000/s are depicted in Figure  19  . Values of  E   s   computed 
from these curves and others not shown here are listed 
in Table  6  . These reveal that for the same nominal axial 
strain rate  E   s   in tensile deformations generally differs from 
that in compressive deformations. For both compressive 
and tensile deformations, the value of  E   s   decreases with a 
decrease in  h   α   and an increase in     tα

ss. Furthermore, the value 
of  E   s   depends upon the present strain rate, the current tem-
perature and the strain hardening parameters. Hence, the 
variation of the elastic modulus with the strain rate and the 
temperature will infl uence the value of  E   s  . Note that values 
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 Table 2      Nominal strain in the plate when strain localization initiates 
at points in Figure 17 and the average speed of propagation of the 
localized deformations.  

Strain rate 
(/s)

Nominal axial strain at which strain 
localization initiates ( % )

Band speed 
(m/s)

Point 1 Point 2 Point 3 Point 4 Point 5

1 0.14 4.25 4.44    4.60    4.62    0.0247
50 1.16 5.52 6.23    6.77    6.92    0.96
1000 1.62 6.25 7.62    9.36    9.29    14.4
3000 1.81 6.49 8.05    9.13    9.19    45.0
5000 1.82 6.94 8.23    8.61    8.77    72.8
7000 2.14 7.45 8.65    9.55    9.89 100.0
10,000 2.05 7.72 9.67 10.83 11.31 119.5

 Table 3      Coordinates of the fi ve points in Figure 17 in the reference 
confi guration.  

Point  X  1  (mm) 
all strain 
rates

 X  2  (mm) 
strain rate 
of 1/s

 X  2  (mm) 
strain rate 
higher than 1/s

 X  3  (mm) 
all strain 
rates

1 0.04 0.00 0.00 0.00
2 0.29 0.11 0.14 0.00
3 0.56 0.28 0.31 0.00
4 0.81 0.41 0.45 0.00
5 1.00 0.55 0.55 0.00

 Table 4      Values of the pressure coeffi cient for phases   α   and   β   for 
the six simulations conducted to study the infl uence of the pressure 
dependent yielding; the row shaded in grey corresponds to material 
parameters for the PC.  

Simulation number Pressure coeffi cient (  α p
i    )

Phase   α  Phase   β  

1 1.68 × 10 -1 2.45 × 10 -1 
2 1.68 × 10 -2 2.45 × 10 -2 
3 1.68 × 10 -3 2.45 × 10 -3 
4 0.0 0.0
5 0.0 2.45 × 10 -1 
6 1.68 × 10 -1 0.0

 Table 5      Localization initiation times at the fi ve points along the 
band and the average speed of propagation of the band for the six 
simulations with values of     α p

α  and     α p
β  listed in Table  4 ; the row shaded 

in grey corresponds to material parameters for the PC.  

Simulation 
number

Localization initiation time ( µ s) Band 
speed 
(m/s)Point 1 Point 2 Point 3 Point 4 Point 5

1 4.40 14.31 16.32 17.96 18.68 78
2 4.28 16.21 17.85 20.29 20.70 67
3 5.57 16.49 17.86 19.82 20.63 73
4 5.01 16.56 18.26 20.88 21.56 67
5 4.50 16.35 17.49 19.65 20.42 70
6 5.05 14.39 16.14 17.84 18.54 82
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 Figure 18    Schematic diagram illustrating the softening modulus, 
 E   s.  .    

of  h   α   and     tα
ss listed in Table  6  are for fi ctitious materials. 

A negative value of the softening modulus implies that no 
strain softening is observed for the material. 

 In Eq. (16), the variation of  t   α   affects only stresses in phase 
  α   but the Cauchy stress at a material point equals the sum of 
the Cauchy stresses in phases   α  ,   β   and B. Hence, even though 
the stress in phase   α   might decrease, the total stress at a point 
could increase.  

  5.1.8. Effect of the softening modulus on plates 

with circular voids     For a PC plate with a through-the-
thickness circular void and made of materials with  E  

s  less 

than or equal to  ∼ 75 MPa deformed in tension at a nominal 
axial strain rate of 5000/s and initial temperature of 300 K, 
a band of localized deformation did not form in the plate. 
The localization initiation condition was satisfi ed at points 
near the geometric defect but not at points away from the 
defect. For different values of  h   α   and     tα

ss, we have listed in 
Table  7   the localization initiation times for the fi ve points 
within the band (Figure  17 ). Because of the inhomogeneous 
deformations of the plate, the effective plastic strain rate 
and the temperature rise will be different at various points 
of the plate. Thus the   σ   mag  vs.  ε  mag  curve and the values of 
E

s will vary from point to point in the plate. The values 
of  h   α   and     tα

ss are the same for every point of the plate but 
not necessarily those of E

s unless plate ’ s deformations are 
homogeneous. 

 The data in Table  7  is plotted in Figure  20   as the percent-
age change in the localization initiation time compared to 
that of the PC ( h   α    =  125 MPa and     tα

ss = 0.33) vs. the ratio of 
E

s for the fi ctitious material to that of the PC. The soften-
ing modulus is determined from simulations of uniaxial 
compression at a nominal axial strain rate of 5000/s and a 
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5000/s.    

 Table 6      Values of the softening modulus for different values of  h    α    and   tα
ss in uniaxial compression and tension tests at nominal axial strain 

rates of 2000, 5000 and 7000/s.  

 h    α    (MPa)     tα
ss Softening modulus (MPa)

Strain rate  =  2000/s Strain rate  =  5000/s Strain rate  =  7000/s

Tension Compression Tension Compression Tension Compression

31.5 0.330 -26    3 -29    0 -30    0
64.0 0.330    25    31    13    25    13    23
84.0 0.330    71    63    58    49    49    43
99.5 0.330 105    93    95    75    84    68
112.0 0.330 137 122 123 102 114    94
133.0 0.330 197 187 177 150 167 146
150.0 0.330 247 252 238 200 222 184
166.0 0.330 310 316 303 250 290 245
218.0 0.330 501 555 463 454 434 409
257.0 0.330 691 771 750 693 696 648
125.0 0.540    -4    4   -14    0 -16    -2
125.0 0.448    52    42    35    25    25    20
125.0 0.401    80    68    70    50    59    41
125.0 0.374 119    98 100    77    90    67
125.0 0.351 154 125 130 103 117    97
125.0 0.315 213 193 194 167 184 155
125.0 0.290 264 258 261 210 251 210
125.0 0.270 316 322 310 275 298 271
125.0 0.231 452 494 437 463 414 451
125.0 0.195 770 775 794 711 710 677

reference temperature of 300 K. In every case, the strain 
localization initiated fi rst at a point near the circular void and 
the deformation localization initiation times depend notice-
ably upon the value of  E   s  . The localization initiation times at 
points away from the void computed for two different mate-
rials with nearly the same value of  E   s   but different values of 
 h   α   and   tss

α varied by approximately 10 % . An increase in the 
value of  E   s   from that of the PC affects the localization initia-
tion time at a point weakly because when  E   s   is increased by a 
factor of 5 the localization initiation time at point 5 decreased 

by only 32 % . However, a decrease in the value of  E   s   from that 
of the PC has a signifi cant effect on the deformation localiza-
tion initiation time. Near the void tip (i.e., point 1) deforma-
tions are singular and the variation with  E   s   of the localization 
time is erratic. 

 For the eight values of  E   s  , the average speed of propaga-
tion of the strain localization band listed in Table  8   reveals 
that the speed of propagation increases monotonically with 
an increase in the value of  E   s  ; entries in the shaded row are 
for the PC.  
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 Table 7      Localization initiation times at the fi ve points of interest for different values of the softening modulus in uniaxial compression at 
nominal axial strain rate of 5000/s and reference temperature of 300 K;  ‘ - ’  indicates that the localization condition was not satisfi ed at the point, 
and the row shaded in grey corresponds to material parameters for the PC used in simulation 1.  

Softening parameters 
(hα[MPa],   tα

ss)
Softening modulus 
(MPa)

Point 1 
( µ s)

Point 2 
( µ s)

Point 3 
( µ s)

Point 4 
( µ s)

Point 5 
( µ s)

(125.0, 0.330) 125.0 4.40 14.31 16.32 17.96 18.68
(125.0, 0.540)    0 4.24  –  –  –  – 
(31.5, 0.330)    0 5.02  –  –  –  – 
(125.0, 0.448)    25 4.10 23.53  –  –  – 
(64.0, 0.330)    25 5.02 25.34  –  –  – 
(84.0, 0.330)    49 3.70 19.41 31.70  –  – 
(125.0, 0.401)    50 4.06 17.97 28.77  –  – 
(99.5, 0.330)    75 3.40 16.61 21.75 28.30  – 
(125.0, 0.374)    77 4.09 16.44 21.42 26.31 28.84
(112.0, 0.330) 102 4.72 15.40 18.63 21.61 22.68
(125.0, 0.351) 103 4.09 15.46 18.46 21.18 22.07
(133.0, 0.330) 150 3.40 13.44 15.18 16.64 17.30
(125.0, 0.315) 167 4.06 13.48 14.85 16.13 16.58
(150.0, 0.330) 200 3.43 13.11 14.21 15.66 16.33
(125.0, 0.290) 210 4.16 13.04 14.18 15.37 15.81
(166.0, 0.330) 250 3.28 12.58 13.50 14.58 15.05
(125.0, 0.270) 275 4.06 12.41 13.27 14.35 14.74
(218.0, 0.330) 454 5.01 11.60 12.26 12.73 13.13
(125.0, 0.231) 463 4.06 11.66 12.26 12.97 13.85
(257.0, 0.330) 693 4.47 11.25 11.79 12.37 12.68
(125.0, 0.195) 711 4.05 11.06 11.66 12.23 12.71
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 Figure 20    For the fi ve points of interest, the percentage change 
in the localization initiation time compared to that of the PC vs. the 
ratio of the softening modulus to that of the PC; curves for points 4 
and 5 overlap.    

  5.1.9. Effect of the shape of the geometric defect     We 
study strain localization in the PC plate with the softening 
modulus equal to 25, 50, 75, 103 and 125 MPa and through-
the-thickness elliptic voids with  a/b   =  8, 6, 4, 2, 1/2, 1/4, 1/6 
and 1/8 with the length of the major axis equal to 0.08 mm. 
Values of the softening modulus correspond to those found 

 Table 8      Variation with the softening modulus of the band prop-
agation speed in a square plate deformed in tension at a nominal axial 
strain rate of 5000/s. The grey fi lled row corresponds to the PC.   

Softening modulus (MPa) Average speed (m/s)

76.0    44.70
102.5    61.57
125.0    77.49
158.5    83.99
205.0    90.35
262.5    98.75
458.5 124.57
702.0 131.23

from simulations of uniaxial compression tests at a nominal 
axial strain rate of 5000/s with the initial temperature  =  300 K. 
Recall that a strain localized band formed in the square plate 
with the circular void (i.e.,  a/b   =  1) for  E   s   equal to 77, 103 
and 125 MPa but not for  E   s   equal to 75, 50 and 25 MPa. The 
localization initiation times at two points, one near the tip of 
the void and the other at the edge of the plate on the plane 
 X  3   =  0.002 mm are listed in Table  9  . The plane  X  3   =  0.002 mm 
passes through integration points of all elements with one 
surface on the plane  X  3   =  0. Coordinates of points 1 and 2 in 
the reference confi guration are ( b , 0, 0.002) and (1.0, 0.55, 
0.002). For small values of  a/b , the localization initiated at 
point 1 at the same time for all values of  E   s  . However, for 
large values of  a/b  the localization initiation time at point 
1 increased with an increase in the value of  E   s   possibly due 
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 Table 9      Localization initiation times at a point near the elliptic void for different values of  a / b  and of the softening modulus;  ‘   –   ’  indicates that 
the strain localization condition was not satisfi ed. Numbers in the column shaded in grey correspond to the PC.  

 a/b Localization initiation time ( µ s)

 E  s   =  125 MPa  E  s   =  103 MPa  E  s   =  75 MPa  E  s   =  50 MPa  E  s   =  25 MPa

Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2

1/8    2.08 20.45    2.08  –    2.08  –    2.08  –    2.08  – 
1/6    2.08 20.11    2.08 31.20    2.08  –    2.08  –    2.08  – 
1/4    2.29 19.90    2.34 25.72    2.30  –    2.31  –    2.25  – 
1/2    3.05 18.52    3.05 23.64    3.05  –    3.05  –    3.05  – 
1    4.40 18.68    4.09 22.07    3.40  –    4.06  –    5.02  – 
2    5.61  –    5.61  –    5.47  –    6.13  –    5.59  – 
4 10.03  – 10.01  –    9.76  – 10.04  – 10.19  – 
6 11.46  – 11.59  – 11.93  – 12.95  – 14.42  – 
8  –  –  –  – 15.56  – 19.99  – 42.53  – 

to the change in the order of singularity of deformations at 
point 1. Furthermore, a band of strain localization was not 
observed for elliptic voids with  a/b  greater than 2.0 for all 
values of  E   s   considered here. For  E   s    <  ∼ 75 MPa, the band did 
not propagate to the edge of the plate for all values of  a/b . For 
 a/b   =  8, deformations at the point near the tip of the void did 
not meet the strain localization criterion for  E   s    =  125 and 100 
MPa, whereas the deformation at the same point localized 
for  E   s    =  75, 50 and 25 MPa. With an increase in the value of 
 a/b , the time of initiation of localization at the point near the 
void increased but that at the point near the edge of the plate 
decreased. 

 The average speeds of propagation of the strain local-
ized band for different values of  a/b  and of  E  

s  are listed in 
Table  10  . For the same value of  E  s , the maximum speed of 
propagation occurred for a circular void ( a/b   =  1.0) even 
though the strain localization initiated earlier for voids with 
 a/b   < 1.0. Whereas the localization initiated earlier for a plate 
with a lower value of  a/b , the strain localized band propa-
gated slowly because the hardening of the material also ini-
tiated early. 

 Figure  21   shows time histories of   σ   mag  at two points within 
the PC plate: (1) near the tip of the void and (2) at a distance 
of 0.28 mm from the void tip but within the strain localized 
band. It can be seen that for different aspect ratios,  a/b , of the 

 Table 10      Band propagation speed for different values of  a / b  and of 
the softening modulus;  ‘   –   ’  indicates that a band did not propagate to 
the left edge of the plate.  

 a/b Band propagation speed (m/s)

 E  s   =  125 
MPa

 E  s   =  103 
MPa

 E  s   =  75 
MPa

 E  s   =  50 
MPa

1/8 60.21  –  –  – 
1/6 61.35 37.98  –  – 
1/4 62.86 47.32  –  – 
1/2 71.52 53.74  –  – 
1 77.49 61.57  –  – 

elliptic void, the time history of   σ   mag  is essentially the same 
at the point farther away from the void; however, at the tip 
of the void, values of  a/b  strongly infl uence the evolution of 
  σ   mag . Thus the effect, if any, of the singularity in deformations 
near the void tip does not affect the evolution of stresses at a 
point 0.28 mm away from the void. The rate of evolution of 
  σ   mag  near the void tip increases with a decrease in the value 
of  a/b .   

  5.2. Results for plane strain shear deformations 

of the plate 

 For the plate shown in Figure  3 , we set  L   =  1 mm,  v  0   =  2.5 m/s 
and  t  0   =  1  µ s, thus the steady state nominal shear strain rate 
equals 5000/s. Fringe plots of  ε  mag  at  t   =  20, 25, 35 and 45 
 µ s for a PC with  E   s    =  400 MPa and   θ   def   =  320 K displayed in 
Figure  22   reveal that there is a region of high strain near the 
defect that propagated along the  X  1 -axis. Magnitudes of the 
shear and the axial strains within the strain localized region 
were found to be comparable to each other. Deformations are 
singular near the four corners of the plate where high values 
of  ε  mag  occur and propagate into the specimen interior. 

  5.2.1. Effect of the softening modulus     In order to study 
the effect of the softening modulus on the propagation of 
the strain localization region, two points along the band 
of localized deformations are identifi ed. Their locations 
and coordinates in the reference confi guration are given in 
Figure  23  , which shows only the left half of the plate. Point 
1 is near the corner of the defect and point 2  ∼ 0.5 mm from 
point 1. Note that the distance between points 1 and 2 is 
less than that between the points 1 and 5 in the previous 
problem. 

 The localization initiation times at the two points and the 
average speed of propagation of the band in the reference 
confi guration for materials with different values of  E   s   are 
listed in Table  11  . The band did not propagate to point 2 for 
materials with values of  E   s     < 250 MPa; the localization initia-
tion time decreased and the speed of propagation increased 
with an increase in the value of  E   s  .  
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 Figure 21    Time histories of   σ   mag  at ( b , 0, 0.02) (left) and (0.29, 0.12, 0.02) (right) during deformations of the PC plate at the nominal axial 
strain rate of 5000/s.    
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 Figure 22    Fringe plots of  ε  mag  for the PC plate deformed in plane strain shear at a nominal strain rate of 5000/s at  t   =  20, 25, 35 and 45  µ s.    
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 Figure 23    The location of points 1 and 2 where the localization initiation times are computed for the problem depicted in Figure 3; coordi-
nates of points 1 and 2 in the reference confi guration are (-0.194, 0.006) and (-0.694, 0.019), respectively.    

  5.2.2. Effect of defect strength     The defect strength is 
varied by changing its temperature. For  E   s   equal to 463, 275, 
210, 167 and 125 MPa and   θ   def  equal to 310, 315, 325, 330 
and 350 K, the localization initiation times at points 1 and 
2 listed in Table  12   imply that for materials with  E   s    =  167 
and 125 MPa, the localized deformations did not propagate 
from point 1 to point 2. At point 1, the localization initiation 
time decreased with an increase in the value of the softening 
modulus  E   s  ; the same trend holds for point 3. 

 The speeds of propagation of the strain localized band for 
different values of   θ   def  and  E  s  are given in Table  13  . For all 
values of   θ   def  considered here, the speed of propagation of 
the strain localized band increased monotonically with an 
increase in the value of  E  s  but did not increase monotonically 
with an increase in the temperature of the defect. The soften-
ing modulus of a PC depends on the effective plastic strain rate 
and the temperature of the material. Because material points 
of the plate are at different temperatures there is a discontinu-
ity in  E  s  across the defect boundaries and that could affect the 
strain localization initiation time. For materials with a value 

 Table 11      Strain localization initiation times at the two points 
exhibited in Figure 23.  ‘   –   ’  indicates that the strain localization 
condition was not satisfi ed at the point and the row shaded in grey 
corresponds to material parameters for the PC.  

Softening 
parameters 
  (hα[MPa],   tα

ss)

Softening 
modulus 
(MPa)

Localization ini-
tiation times ( µ s)

Speed of 
propagation 
(m/s)

Point 1 Point 2

(125.0, 0.330) 125 27.87  –  – 
(112.0, 0.330) 102 33.97  –  – 
(125.0, 0.351) 103 35.39  –  – 
(133.0, 0.330) 150 26.58  –  – 
(125.0, 0.315) 167 26.51  –  – 
(150.0, 0.330) 200 23.32  –  – 
(125.0, 0.290) 210 22.79  –  – 
(166.0, 0.330) 250 21.33  –  – 
(125.0, 0.270) 275 20.73 27.83    70.44
(218.0, 0.330) 454 18.37 21.55 157.18
(125.0, 0.231) 463 17.25 19.46 227.13
(125.0, 0.195) 711 17.81 19.18 366.31

of  E   s   less than or equal to 167 MPa, the strain localized band 
did not propagate.   

  5.3. Results for plate with through-the-thickness 

circular thermal defect 

 We compare the localization of deformations in plates with 
circular through-the-thickness temperature defects with that 
studied above to help differentiate strain localization in shear-
ing and tensile deformations for similar defects and identity 
the relative strength of thermal defects and voids. For the 
problems studied in this subsection we set  L   =  1 mm,  v  0   =  
5.0 m/s, radius of the circular region  =  0.04 mm and  t  0   =  1  µ s. 
Therefore, the steady state nominal axial strain rate equals 
5000/s. 

 Deformations are examined for PC plates with  E  
s
   =  463, 

275, 210 and 125 MPa and  ∆   θ   def   =  30, 40, 50 and 60 K, where 
 ∆   θ   def  equals the temperature rise within the circular region 
over that in the rest of the body. A strain localized band was 
observed only when  E  

s  and  ∆   θ   def  equaled 463 MPa and 60 K, 
respectively. Fringe plots of  ε  mag  for this case and for  ∆   θ   def   =  
50 K plotted in Figure  24   at times  t   =  15, 20 and 25  µ s reveal 
that a band of localized deformation propagated in the material 
for  ∆   θ   def   =  60 K but not for  ∆   θ   def   =  50 K. Thus, there appears 
to be a minimum value of  ∆   θ   def  below which the localized 
deformation does not propagate into the body. 

  5.3.1. Comparison with a PC plate containing a circular 

void     For the PC with  E  s   =  463 MPa and  ∆   θ   def   =  60 K the 
localization initiation condition was satisfi ed at the fi ve points 
in Figure  17  at  t   =  9.74, 13.82, 14.51, 14.65 and 14.77  µ s, 
respectively. Comparing these times with those in the row 
corresponding to  E  

s   =  463 MPa in Table  7 , it is clear that the 
strain localization criterion was satisfi ed later at identical points 
in the plate with a temperature defect than that in a plate with a 
circular void. Furthermore, the strain localization criterion was 
not satisfi ed at points 2, 3, 4 and 5 for plates studied here except 
when  E  

s  and  ∆   θ   def  were 463 MPa and 60 K, respectively. This 
suggests that a thermal defect with  ∆   θ   def   < 60 K is weaker than 
a void for the PC plate studied here. The average speeds of 
propagation of the band in a PC plate with  E  

s   =  463 MPa with 
circular cylindrical void and an identical region of  ∆   θ   def   =  60 K 
are 78 and 223 m/s, respectively. 
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 Table 12      Localization initiation times at points 1 and 2 near the defect shown in Figure 23 for different values of  E  s  and of the temperature 
of the material within the defect;  ‘   –   ’  indicates that the strain localization condition was not satisfi ed and the column shaded in grey corresponds 
to material parameters for the PC.  

  θ   def  (K) Localization initiation time ( µ s)

 E  s   =  463 MPa  E  s   =  275 MPa  E  s   =  210 MPa  E  s   =  167 MPa  E  s   =  125 MPa

Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2 Pt  –  1 Pt  –  2

310 20.29 22.58 24.63  – 28.81  –  –  –  –  – 
315 19.30 22.18 21.80  – 24.68  – 28.60  – 34.96  – 
320 17.25 19.46 20.73 27.83 22.79  – 26.51  – 27.87  – 
325 17.71 20.99 19.61 26.00 21.05  – 22.62  – 24.79  – 
330 17.54 19.54 19.18 23.70 20.46  – 21.90  – 22.98  – 
340 17.30 19.94 17.96 24.27 19.20  – 20.37  – 21.42  – 
350 17.78 19.22 18.54 22.65 18.35 26.91 19.07  – 19.90  – 
360 16.44 19.15 17.05 22.80 18.42 25.84 18.52  – 19.25  – 

 Table 13      Band propagation speed for different values of the 
temperature rise of the material within the defect and of the softening 
modulus;  ‘   –   ’  indicates that a band did not form.  

Softening 
modulus 
(MPa)

Band propagation speed (m/s)

10 K 15 K 20 K 25 K 30 K 40 K 50 K 60 K

463 218 173 227 152 250 189 346 185
275  –  –    70    78 111    79 122    87
210  –  –  –  –  –  –    58    67

 As for plates with voids, in plates with temperature defects 
deformed in tension bands of localized strain have high 
stretches rather than high shear strains.  

  5.3.2. Comparison with PC containing temperature 

defect deformed in plane strain shear     In plates with 
 ∆   θ   def   =  60 K undergoing plane strain shearing deformations, 
a band was observed for  E  

s  greater than or equal to 210 
MPa as opposed to  E  

s   =  463 MPa in plates deformed in 
tension. Furthermore, for  E  

s   =  210 MPa, a band propagated 
in the plate as listed in Table  13 . Thus, a band forms more 
readily in plates deformed in shear than those deformed in 
tension.   

  5.4. Remarks 

 For PC plates containing a through-the-thickness void we 
have not studied compressive and shearing deformations 
because one needs to use a contact algorithm for avoiding 
interpenetration of the material when the void closes. The 
software LS-DYNA has several contact algorithms but com-
puted results depend upon values assigned to the penalty 
parameters. 

 Computed results have not been compared with the test 
data because none is available at the strain rates considered 
here. As evidenced by computed results, the localization of 

deformation strongly depends upon the type and the strength 
of the defect. In general, a properly oriented sharp elliptic void 
facilitates the localization of deformation into narrow regions. 
It is possible that for a very strong defect such as a notch the 
deformation could localize even when  E  

s  equals zero, e.g., 
see entries in rows two and three of Table  7 . This provides 
at least a partial explanation of Lu and Ravi-Chandar ’ s  [11]  
computing strain localization in the absence of the material 
exhibiting strain softening. 

 An experimentalist usually decides whether or not defor-
mations have localized through either post-mortem examina-
tion of tested specimens or in-situ observations made on the 
bounding surfaces. The present analysis of transient 3D defor-
mations reveals that deformations fi rst localize at a point in the 
specimen interior, which cannot be easily detected experimen-
tally. Also, the deformation localization criterion adopted here 
cannot be verifi ed through observations made during the tests, 
especially at high strain rates because deformations localize 
in a few microseconds. Ravi-Chandar et al.  [27]  have used a 
slightly modifi ed version of Kalthoff ’ s experimental set-up to 
study the failure mode transition from a brittle crack at low 
impact speeds to shear banding at high impact speeds in pre-
notched PC and PMMA plates impacted on a side by a cylin-
drical projectile of diameter equal to the plate thickness. Using 
high speed photography they could fi nd the time of shear band 
initiation. One could potentially simulate their experimental 
set-up to delineate whether or not the constitutive relations 
proposed herein will accurately predict the shear banding in 
a PC plate. 

 Because of the nonlinear dependence of the elastic moduli 
upon the present temperature it is diffi cult to quantify the 
effect of the initial thermal defect upon the deformation local-
ization. Other ways of introducing inhomogeneity include a 
material region with enhanced softening or lower value of 
the maximum stress just before the onset of strain softening; 
these have not been studied here. 

 We note that during plane strain deformations of a plate, 
particles are assumed to move only in the plane of the plate 
and displacements do not depend upon their position along 

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



A.G. Varghese and R.C. Batra: Strain localization in polycarbonates deformed at high strain rates  517

∆θdef = 50K

Time=25 µs

0.2 0.4 0.6 0.8 1.00
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

1.0

0
X1 (mm)

X
1 

(m
m

)

X1 (mm)

Time=20 µs

0.2 0.4 0.6 0.8 1.00
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80
X1 (mm)

X
1 

(m
m

)

X1 (mm)

1.0

Time=15 µs

0.2 0.4 0.6 0.8 1.00
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

0.75
0.68
0.61
0.54
0.47
0.40
0.33
0.26
0.19
0.12
0.05

εmag

0
X1 (mm)

X
1 

(m
m

)

X
1 

(m
m

)
X

1 
(m

m
)

X
1 

(m
m

)

X1 (mm)

∆θdef = 60K

 Figure 24    Fringe plots of  ε  mag  for plates with a circular cylindrical defect at  t   =  15, 20 and 25  µ s with initial temperature of 350 and 360 K.    

the plate thickness. This assumption is reasonable only 
when the plate thickness is very large as compared to the 
other two dimensions of the plate. For a very thin plate 
(i.e., thickness much smaller than the plate width and the 
plate length) with major surfaces unloaded it is reasonable 
to assume that a plane state of stress prevails in the plate, 
i.e.,  σ  13   =   σ  23   =   σ  33   =  0. The usual procedure to analyze a 
plane stress problem is to solve the equation  σ  33   =  0 for F 33  
in terms of F 11 , F 12  and F 22 , and substitute for F 33  in con-
stitutive relations for  σ  11  and  σ  22 . For a nonlinear problem 
like the one being studied here, this is not feasible. Thus 
the assumption of plane stress does not reduce the number 
of unknowns and thereby simplify the analysis. Also, a thin 
plate deformed in shear could buckle and thus complicate 

the analysis of the problem. For moderately thick plates one 
needs to study their 3D deformations. Both plane stress and 
plane strain analyses provide results that agree well with 
test observations provided that the thickness is appropri-
ate. Nevertheless, they help assess with less computational 
resources the sensitivity of results to various material and 
geometric parameters. 

 For metals, Batra and Chen  [24]  and Batra and Kim  [28]  
have scrutinized the effect of different thermo-elasto-visco-
plastic relations on the deformations during the pre-localiza-
tion and post-localization phases. They found that different 
constitutive relations calibrated against the same test data 
predict different times of initiation of the shear band and the 
band width.   
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  6. Conclusions 

 We have analyzed transient coupled thermo-mechanical 
deformations of a square PC plate deformed either in tension 
or in shear. In the former case, the plate has either a through-
the-thickness elliptic void or a circular cylindrical region of 
temperature higher than that of the rest of the plate. For study-
ing plane strain shear deformations, the plate has either a rect-
angular or a circular region of temperature higher than that of 
rest of the plate. The plate material exhibits strain softening 
followed by strain hardening. Effects of nominal strain rates, 
aspect ratios of elliptic voids, temperature rise in the defect 
region and values of softening parameters on the localization 
of deformation have been delineated. 

 It is found that for the same values of material parameters 
and defect sizes, a band forms at a lower value of the tempera-
ture rise in the defect for plates deformed in shear than those 
deformed in tension. For the former case the maximum prin-
cipal stretch nearly equals the maximum shear strain within 
the band. In the latter case, the maximum principal stretch is 
much greater than the maximum shear strain. 

 For plates with a through-the-thickness elliptic void, the 
regions of localized deformation in the plate deformed in ten-
sion at the nominal axial strain rate of 1/s is different from 
that in the plate deformed at the nominal axial strain rate of 
5000/s and the band width was lower in the former case than 
that in the latter case. 

 We have introduced a material property, the softening mod-
ulus  E   s  , to characterize the initiation of the band.  E   s   is defi ned 
as the minimum slope during strain softening of the magnitude 
of the Cauchy stress tensor vs. the magnitude of the true strain 
tensor curve for the PC deformed in uniaxial compression. It 
is found that the minimum value of  E   s   needed for the deforma-
tions to localize depends upon the nominal strain rate, whether 
the plate is deformed in tension or shear, the type of the defect 
(void vs. the temperature rise) and for a given defect size upon 
the strength of the defect. For the PC plate with a through-
the-thickness void, the nominal axial strain increases with an 
increase in the applied nominal axial strain rate.   
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  Appendix A 

 Algorithm for the user-defi ned material subroutine umat41 

  subroutine  umat41(  σ  ,  D ,  F , Fp 

α   , Fp 

β   ,  t    α   ,  t    β   ,   θ  ,  t ,  ∆  t ) 

 //Compute Cauchy stress tensor at time  t +   ∆  t  

   ε . = tr(DD)  

 [ E    α   ,  E    β   ]  =  Compute_Youngs_Modulus(ε .,   θ  ) 

  for   i   =    α  ,   β    

Fe  

α = F (Fp 

α)-1;  J
i
 = det (Fe
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 //Compute rate of Fp 

α, Fp 

β  ,  t    α   ,  t    β   , and   θ   at time  t  +  ∆  t  

  for   i   =    α  ,   β   
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  end for  

   
( ) ( ) ( )p p

01 tr trc J Jα α α β β βθ ρ ⎡ ⎤= +⎣ ⎦D D� � �σ σ
 

 //Compute Fp  

α, Fp 

β  ,  t    α   ,  t    β   , and   θ   at time  t  +  ∆  t  

  for   i  =   α , β   

   Fp  

i = Fp  

i + F
. p  

i ∆t

    i i it t t t= + ∆�

    tθ θ θ= + ∆�

   end for  
  end subroutine  
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 Here  D  is the strain rate tensor,  t  is the current time, 
and  ∆  t  is the value of the current time step computed by 
LS-DYNA. Values of variables   σ  ,  D ,  F , Fp 

α, Fp 

β  ,  t    α   ,  t    β   , and 
  θ   at time  t  are passed as input to the subroutine umat41. 
The subroutine then return values of   σ  , F p 

α, Fp 

β  ,  t    α   ,  t    β   , and 
  θ   at time  t  +  ∆  t  back to LS-DYNA as directed in the above 
Algorithm.  

A technique to verify that the computer code correctly 
solves an initial-boundary-value problem is described in 
the text following Eq. (20) of [30]. The constitutive relation 
employed here is similar to that used in [31] in the sense that 
there is no explicit yield surface to delineate loading/unload-
ing at a material point.
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