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Abstract 

We construct a mixture theory which describes a porous elastic anisotropic solid with 
inclusions. Thermal effects are taken into account. The theory is in accord with classical 
thermodynamics. Fully nonlinear isotropic and anisotropic materials are considered, 
and field equations are also given for a nontrivial special case which, though nonlinear, 
is controlled by a few material functions. When properly specialized, the theory reduces 
to the P-o~ model, a model widely used to describe porous solids. 

1. Introduction 

A number of applications arise where a porous solid body with inclusions is 
subjected to large stresses and the influence of heat transfer, both by conduction 
and by radiation. Often such a body is anisotropic either because of its method 
of  manufacture, or in the case of  geological materials, because of its method of  
formation. Though a priori, empirical, and semi-empirical models and partial 
models for such materials are commonly used in engineering calculations, no 
three-dimensional model exists which takes all of  these phenomena into account, 
and also has been shown to be in accord with all of  the accepted principles for 
formulating constitutive equations. Here we formulate such a model. 

The basic principles we use are straightforward applications of techniques 
of  rational mechanics, most developed many years ago, but some settled only 
quite recently. Since the problem we consider is intrinsically complicated, it is 
no surprise that the equations are complicated also. However, we do attempt 
to formulate the model with the greatest economy of formalism consistent with 
our goals. Our approach is as follows. Since we are dealing with a material 
composed of more than one constituent, we use a mixture theory. The constituent 
of  primary interest is a porous hyperelastic solid, which we allow to undergo finite 
deformations. The other constituent is a dissipative material which we envision 
as filling part of the pore space in the elastic material. The rest of  the pore space 
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is treated as vacuous, though we allow for pore crushing through a dissipative 
mechanism. 

One matter needs special emphasis. Though the mechanics we use is quite 
widely accepted, the fact that we deal with thermal effects means that some sort 
of thermodynamics will be useful. Exactly what form " the"  theory of  thermo- 
dynamics takes for a single material is currently the subject of some debate. 
The corresponding question for mixtures is even more problematical. One ap- 
proach which is in favor because it has had very many successful applications 
is that of COLEMAN t~r NOEL [1963]. We use a generalization of that approach 
here. If, as some individuals claim, its psychology is unacceptable and its results 
are "obvious" when the mixture is "sufficiently close" to equilibrium and mean- 
ingless otherwise, it is appropriate to apply to this work whatever statements 
or incantations of that sort one applies to other works. Realistically but on a 
very tentative basis, indications are that the standard restrictions derived from 
thermodynamics, of whatever origin, may force some systems to be somewhat 
more strongly stable than they are in nature. If a conclusion of that type is cor- 
rect, thermodynamics should eliminate most phenomena which are physically 
unacceptable as well as, conceivably, some which could be of great interest. 
This may be good in that, since the results of  this work are intended to be use- 
ful in engineering applications, such excess stability should force systems away 
from bifurcations or similar phenomena. These, in turn, could be the cause of  
considerable inconvenience or even a possible source of error in some digital 
computations. 

In our effort to make this work compact and expository, we have laid aside 
the custom of interrupting the presentation with numerous references and foot- 
notes. It is principally a rational extension of well-established theory to an inter- 
esting physical case. We choose to cite our major sources in the list of  references, 
but not mention to all of  them in the body of the paper. If  we feel something 
needs to be said about a particular reference, we say it in braces (} along with 
the bibliographical information. We do note that the formal literature on mixtures 
has been pervaded, almost since its beginning, by a number of works which are 
substantially incorrect. We cite none of  these. Since we make no attempt here to 
give a "complete" set of references, it is also true that we leave uncited many works 
which are entirely free of error. 

2. Kinematics and Equations of Balance and Conservation 

Consider a solid material containing both pores and inclusions. Conceptually, 
there are two obvious ways to treat such a material. First, we might choose some 
reference state and delineate in that state the exact position and configuration 
of  each pore and inclusion. The ultimate purpose of solving a boundary-value 
problem would then be to describe the evolution of the solid as well as the voids 
and inclusions in time and space. Such an approach is impractical not only 
because it usually leads to impossibly complex boundary-value problems but also, 
even assuming the initial state of the body were known precisely, because it yields 
as its outcome far more information than can be used in most engineering situa- 
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tions. Second, we could "smear  out"  the pores and inclusions and replace them 
with appropriate variables which vary smoothly in space and time. A useful 
model of  this type would, of  course, require that the corresponding physical 
entities, in some sense, also vary smoothly. Moreover,  the amount  of  phy- 
sical detail it could handle would depend strongly on the complexity built into 
the theory. This is the type of theory commonly used to model composites. We 
choose to use a model of  this type, in fact a very simple model of  this type, here .* 

Henceforth, we often call the solid material the matrix and, when using 
index notation, assign it the index 1. We assign the inclusions the index 2, and 
use the terms pore and void interchangeably. At each material point X and time 
t, we let ffl be the portion of  space occupied by the matrix, and if2 be the portion 
of  space occupied by the inclusions. We will often call these quantities volume 
fractions. The total volume fraction ff is given by ~ = ffl + ~b2, and the material 
is called saturated if ff = 1 and unsaturated if ~b < 1. The case ~b > 1 is of  no 
physical interest. Each of the materials, of  course, will have an intrinsic mass 
density ~a (a  = 1, 2), which is the mass of  that material per unit volume of that 
material, and a mass density Ca, which is the mass of  that material per unit total 
volume. It then follows that ~)a ~ ~a and 

9~ = 7~h~. (2.1) 

The mass density 9 of  the material is given by r = oi q- 92 �9 We abbreviate that 
equation by 

9 = Z'9~. (2.2) 

We often sum quantities over both constituents of  a mixture. When we do, we 
always use notation of the type set forth in (2.2). 

The physical situation which is of  primary interest here is that in which 
neither material diffuses through the other, so that each has the same deforma- 
tion gradient F(X, t) and velocity v(X, t). We assume the deformation function 
x = ;t(X, t) invertible so we may also write the deformation gradient and velocity 
as functions of  the spatial co-ordinate x and time. We allow each material to have 
its own temperature Oa. We expect to have balance laws for mass, momentum, 
moment  of  momentum,  energy and entropy as in any continuum theory. In addi- 
tion, the presence of volume fractions implies that there should be some equa- 
tions which give information about them. Here we use an approach derived from 
that of  GOODMAN & COWlN [1972]. We treat both the inclusions and the pores as 
centers of dilatation in much the same sense as does Love [1927], but we allow for 
local inertia associated with opening or closing of  inclusions or pores. Thus, 
there are local equations of balance, called equations of  equilibrated force, which 
describe these mechanisms, but which do not affect the equations of  linear mo- 
mentum for the body. Interactions among the effects arise, of  course, in the equa- 
tions of  balance of  energy. 

To ensure that a mixture theory is formulated in an entirely self-consistent 
fashion, a very substantial axiomatic structure, much of which is explained by 

* Most of the material in this chapter duplicates, in terms of the referential descrip- 
tion, the article of PASSMAN, NtmzIArO, & WALSH [1984]. 
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TRUESDELL [1957, 1969] and by PASSMAN, NUNZIATO, t~; WALSH [1984], must be 
satisfied. Though we write out only those aspects which we use specifically, all 
of  the equations we use here agree fully with that structure. For  example, we 
postulate principles of  balance for a material body. Then, if the appropriate 
fields are sufficiently smooth, we may derive their local forms. They are 

0a = 9,, det F,  

ma + = ~ a l )  - -  D I V  S a - -  "~aba, 

M + = FS r _ S.F r, 

ga + = o.(k,A;.)" - -  D I V  h a - -  "~a(la - t - f a ) ,  

ea+= 

(2.3)1 Mass 

(2.3)2 Momentum 

(2.3)3 Moment o f  Momentum 

(2.3), Equilibrated Force 

Qaea -~- m a  + �9 13 - -  S a �9 F T  .~  D I V  qa - -  ~ara 

~- ~a~a ( fa  -~ g~+ - -  � 8 9  

- -  h a " G R A D  ~ a "  (2.3)5 Energy 

Here ~a is the mass density in the reference configuration, S a is the first Piola- 
Kirchhoff stress tensor, DIV denotes divergence with respect to X, etc. We 
assume there are no interchanges of  mass among constituents. The quantities 
m +, M + . . . . .  allow for interchange of momentum, moment  of  momentum . . . . .  
among constituents. We allow momentum, moment  of  momentum, . . . ,  to change 
form, but do not allow the total mixture to produce these quantities. This requires 

Z m a  + = 0 ,  (2.4)~ 

S M ~  = 0 ,  (2.4)2 

Zg  + = 0 ,  (2.4)3 

Xe~ = 0. (2.4), 

These equations are statements that, if one looks at the body as a whole, one 
cannot tell it is a mixture in the sense that it satisfies the same balance equations 
(but not necessarily constitutive equations) as a single body. To see this, define 

~(e 

o = s Q , ,  ~ = ~ a ,  
S = SSa, 

-~b : ~ '~aba,  

-~(l + f )  = x~o(t~ + fa), 

q - -  hf~ = z~_,(q a - -  ha~a)  , 

h = Z h . ,  

~(r + 15) = S~a(ra + IAo). 

(2.5)1 

(2.5)2 

(2.5)3 

(2.5), 

(2.5)5 

(2.5)6 

(2.5)7 

(2.5)s 
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Most of these definitions are motivated either by elementary measure-theoretic 
considerations, or by classical kinetic theory. It then follows that 

= ~ det F,  (2.6) 

~-v = oIv S + ~b, (2.7) 

F S  r is symmetric (and thus the Cauchy stress T = S F T / d e t  F and the second 

Piola-Kirchhoff stress tensor T = F - I S  are symmetric), and we have 

~(k~)" = DIV h q- ~(l q - f ) ,  (2.8) 

Qe = S"  ~l~r _ _  D I V  q + ~r q- Q ~ + h .  G R A D  (~ - -  ~f~. (2.9) 

These are the accepted balance laws for a single porous material. Under moderate 
additional conditions, the saturation constraint 4~ = 1 forces the equation of  
equilibrated force to be satisfied identically, and the energy equation to reduce 
to 

~b = S. /~T __ DIV q At- ~r, (2.10) 

the accepted form for a single nonporous continuum. We do not impose the 
saturation constraint in this work. 

The preceding presentation of balance principles is quite standard. Though 
the method of exposition is open to considerable adjustment, the final results 
do not leave cause for substantive debate. It is useful to have one final type 
of  balance law--one for entropy. The form of  that principle allows room for 
discussion, and the current literature contains much of  it. Here we choose a 
treatment deriving from that of COLEMAN t~ NOEL and of BOWEN [1967]. PASSMAN, 
NUNZIATO, & WAESH [1984] have discussed this particular treatment in some 
detail. 

Consider a body* ~ of the a th constituent. No material of the a th constituent 
may cross the boundary ~ of  ga, which itself may move in time. Material of  
other constituents may cross the boundary of ~a. Let the entropy equation for 
the a th constituent be 

f~a + d V = ~  f~a~a dr+ a .~dA-- dr. (2.11) 
~ a  ~a  O~a 

Here "l]a is the entropy per unit mass of  ~a, and ~/a + is the entropy exchanged 
between &a and other bodies which, since we are dealing with a mixture, may 
occupy the same region of space as ~a at the same time. The local form of this 
equation is ()- �9 qa  Qara (2.12) 9~a + = ~ag~a Jr- D I V  " ~ a  Oa " 

* In order to maintain maximum clarity in this exposition, we set forth the balance 
principle for entropy in somewhat more detail than we have done for the other balance 
principles. 
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Define the Helmhol tz  free energy ~Pa by 

"/Pa = e, - -  0,'q,. (2.13) 

Then the en t ropy equat ion for  each consti tuent  is 

"~a ( qa) "~aga 
7]2 = "~a (~a - -  Oag~a - -  Ca)  -~- D I V  k Oa " (2.14) 

We postulate  as the en t ropy  inequality 

~ ] 2 0 a  ~ O, (2.15) 
and obtain 

-]- h a �9 GRAD t~ a} q , "  GRAD Oa] -j ~ 0, (2.16) 

as our  reduced ent ropy inequality. This completes  the theory of  balance equations.  

3. Constitutive Equations--General Considerations 

3.1. Formulation of Constitutive Equations. Our  constitutive equat ions model  
a porous  elastic body  with inclusions. They are somewhat  similar to those o f  
NUNZIATO & COWIN [1979] for  a single porous  elastic body.  However ,  they do 
include the concept  tha t  we have a mixture.  In addition, we t reat  anisot ropy in 
some detail. 

Let 

'-~a ~- {F, ~a, ~a, GRAD dpa, Oa, GRAD Oa}. (3.1) 

We postulate as constitutive equations* 

~)a = ~Oa(~a), (3.2) 

S = S(6ea), (3.3) 

~]a = ~ ] a ( ~ a ) ,  (3.4) 

fa ---~ ? a ( ~ a ) ,  (3.5) 

h a = f l a (~a )  , (3.6) 

q ,  = ~,(6"a), (3.7) 

ga + = s Seb) , (3.8) 

ma  + = / ~ l a - [ ' ( ~ a ,  ~,t~b) , (3.9) 

k a = ka(f~a ) . (3.10) 

* Almost always, our constitutive equations will depend on an initial state 
{F, 4~,, 0,} = (1, ~a, Oa} of the body. We usually suppress that dependence in our notation 
for general considerations. When we consider specific applications, we sometimes use 
that dependence explicitly. 
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Then arguments deriving from those of COLEMAN t~ NOLL [1963] give 

~a ~- V~a(F, (~a, GRAD dpa , Oa) , (3 .11)  

9. -- aO.' (3.12) 

S = r (3.13) 

in (3.13)3 

~Pa 
ha = ~a a (GRAD ~ba) ' (3.14)  

= + - T - )  (3.15) 

It is significant that all of  these results may be written in terms of ~o only, rather 
than ~o a. They are 

'7. ~. a0. '  (3.16) 

S =  af " a - i f '  (3.17) 

with 

given by* 

a~ 
ha = "~ a (GRAD ~ a ) '  (3.18) 

~0 = ~(F ,  t~a , GRAD d#a , Oa) , 

W = ' - f  Zr  W~+--~)  2 ' 

=Z~a~)a ( ('~a) Z 7 2 k~2) 

: v~(F, q~a, GRAD (~a, Oa) ~- ]~(~a, (~a)" 

We also have the residual entropy inequality 

X + + 
k to% 

(3.19) 

(3.20) 

t/a �9 GRAD Oa] 
-j ~ 0. (3.21) 

3.2. Material Frame-Indifference. The two invariance principles of  central 
interest in the theory of constitutive equations are frame-indifference and material 
symmetry. For  a theory with as many variables as the one we consider here, a 
general discussion of  such principles would be so complicated as to be opaque. 
However, we have seen that, for the type of mixture we deal with, the free energy 

* Here we have used (2.3)1 to eliminate ;% in favor offf a in the last of equations (3.20). 
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~v determines much of the behavior of the mixture. Thus we concentrate on dealing 
with it in detail. It is then easy to write out the corresponding results for other 
quantities, and we do so without proof. 

Material  fi 'ame-indifference requires that the response of the material be 
independent of the motion of the observer. Its only formal consequence in terms 
of (3.11) is 

~(F, qba, GRAD r Oa) ~ ~3(E, f~a, GRAD ~a, Oa), (3.22) 

where 

is the finite strain tensor, and 

E = �89 2 -- 1) (3.23) 

U 2 = FrF.  (3.24) 

Under a change of frame, we have 

E* = E, (GRAD qba)* = GRAD ~ba, (3.25) 

where E* is the value of E under the change of frame, etc. As is obvious from 
(3.25), 

~3(E, ~ba, GRAD ~Pa, Oa) ~- ~3(E*, t~a , (GRAD qba)* , Oct). (3.26) 

3.3. Equilibrium. Consider the residual entropy inequality (3.21). Let 

g+ 
_ 1/~o~a } (3.27) 

Note that 4o depends on (E, GRAD ~a, ffa, 0a} and (through ga +) (GRAD fib, ~b, fib, 0b, 
GRAD 0b}, as well as the fact that ko depends on ~b a. The inequality (3.21) then has 
the form 

R ~ ~ q ~ o  -~ q~ GRAD 0~ __--< 0. (3.28) 
a Oa 

We define ~o to be in equilibrium if ~o ~ 0 and GRAD 0 a -~- O. We use the nota- 
tion 

( )E ~ value of ( ) in equilibrium. (3.29) 

As a consequence of (3.28), R is a maximum with respect to ~o and GRAD 0 a in 
equilibrium. It then follows that 

6OR E =  0, 'a (GRAD Oa) E 

Furthermore, consider the vector q /wi th  components 

d~/ ~ (~a, GRAD Oa) , 

and compute the matrix 
602 R 

R~e, z ~q/2" 

(3.30) 

(3.31) 

(3.32) 
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Then that matrix must be nonpositive in equilibrium 

(R~)E ~ 0, (3.33) 

in the sense that its determinant and all of its subdeterminants must be non- 
positive. 

It is easiest to apply these conditions if we assume g+ is independent of G R A D  0 b 

and q~ is independent of ~b. We thus make these assumptions. We then conclude 
from (3.30) that 

( 0 ~  g~+] = 0 ,  (qa)E = 0. (3.34) -~a + f a +  e~/E 

A condition sufficient to satisfy (3.30)i is 

g :  + = - ao( , GRAD 

The condition 
~a(E, t~a , GRAD qba, Oa) ~ O, 

suffices to render (3.35) consistent with (3.33). 

(3.35) 

(3.36) 

3.4. Material Symmetry. The other invariance principle of interest is material 
symmetry. We let 

11.' a ~ GRAD 43. (3.37) 

The function z) given by (3.22) depends on a number of scalar-valued variables 
which appear only parametrically in subsequent arguments. We suppress them 
in our notation by setting 

~)(E, 11~a) ~ ~)(E, ~a, GRAD dpa, Oa). (3.38)  

The symmetry group f# (isotropy group, peer group) of ~ is the set of all uni- 
modular transformations H that leave the value of ~ unchanged: 

~o(E, Wa) ~ ~(HEH r, Hwa). (3.39) 

In mechanics attention is usually directed towards thirteen groups if: the eleven 
groups derived by certain invariance principles inherent in elasticity theory from 
the thirty-two crystal classes usually studied by crystallographers, and the groups 
corresponding to isotropic and transversely isotropic materials. The former are 
all finite groups, the latter are both infinite groups. Under each of these groups, 
(3.39) is restricted. The results of the restrictions yield special forms of ~, and 
the theorems which yield these forms are representation theorems. Generally, 
the larger the group (and thus the more symmetry the material has), the greater 
will be the restriction and the simpler will be the representation for ~. In parti- 
cular, for isotropic materials, explicit representation theorems are known and 
clearly set out by SMITH [1969, 1971] and WANG [1969, 1970]. Representation 
theorems for other groups are less easily accessible, though many are known. 
(We note the treatise of SPENCER [1971], and the papers of PIPKIN & RIVLIN 
[1959-1960], and SMITH, SMITH, & R1VLIN [1963].} Here we give explicit results 
for isotropic and transversely isotropic materials. 
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4. Constitutive Equations for an Isotropie Material 

For an isotropic material, the symmetry group ~ is r the full orthogonal 

(4.1) 

group. We have 

~3(E, $1)a) : v~(tr E, tr E 2, tr E 3, wa" wa, tlla" EWa, 'll) a " E2gOa). 

Alternatively, we may replace the set of independent variables by the set 
(I1, 12, 13, Jla, J2~, J3a}, where 

11 ----- tr E, 12 = �89 E) 2 -- tr (E2)}, 13 = det E, (4.2) 

Jla ~- ira" Wa, J2a : Wa" El147a, J3a : Wa" E2"fll~a, 
SO 

~0(E, 14)a) : ~(I1, /2, /3, Jla, J2a, J3a)" (4.3) 

Now (3.13) is equivalent to 

~--~, ---- e ~ ,  (4.4) 

where T is the second Piola-Kirchhoff stress tensor. We may thus derive explicit 
representations for T and h a from (3.18), (4.3), and (4.4). They are 

+ E  , (4.5) 

[ew ew E2Wal (4.6) 
h a = 2 "  ~ -~ laWa-~  - 2aE'fl)a-~-~J3a j "  

The other vectors of interest in this theory are those for the heat flux Cla and 
the momentum exchange m +. These are not derivable from the potential ~, and 
therefore require individual treatment. For the heat flux recall that we have 

qa : qa( F, dPa, GRAD (~a, Oa, GRAD Oa). (4.7) 

For an isotropic material, the representation theorem for this function is 

qa = --(u~ GRAD 0 a -~ xlIE GRAD 0 a -~ ~2~2 GRAD 0 a 

0 -~- V a GRAD t~a -~ olE GRAD (~a -I- 2 2 vaE GRAD q~a), (4.8) 

where u~, v~ are functions of (Ii ,  I2, 13, Jla, J2a, J3a, Cba, Oa, GRAD Oa " GRAD 0a}. 
Assume that they do not in fact depend upon GRAD 0a" GRAD 0a. However, qa : 0 
in equilibrium. That then requires v~ --: 0, so that 

qa : --(  u~ + Ua ~E -t- U2E2) GRAD Oa, (4.9) 
where 

or ^cr ~a : Ua(I1, /2, /3, Jla, J2a, J3a, ~a, Oa), (4.10) 

with the property that, by (3.33), 

~(I1,/2,  I3, I~ ,  J~,  J3a, %, 0~) _> 0. (4.11) 
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We henceforth write (4.11) as 

u~ ~ ___> 0. (4.12) 

The remaining functions in the theory retain the same type of functional 
dependence as is listed in (4.10). 

4.1. A Simplified Theory. Even under conditions of maximal material sym- 
metry, the equations we have derived are quite complicated. It is appropriate to 
search for a method of simplifying them without reducing their physical appli- 
cability. TRUESDELL & NOLL [1965] commented almost twenty years ago that 
though the general theory of nonlinear elasticity gave results which were physically 
reasonable, no simplified theory had ever been found which agreed quantitatively 
and qualitatively with experiment. That is still true, and since our equations gen- 
eralize nonlinear elasticity, it should be true for them also. Nonetheless, there are 
simplified theories which are used in physical applications for purposes of mathe- 
matical expediency and are known to give reasonable results if used carefully. 
It is straightforward and useful to generalize them to the physical situation which 
we study here. 

Let us consider (4.1). Assume ~(E, l~a) has a minimum at g = 0, Wa = O, 
and write the most general positive-definite form* for ~, with this property which 
is quadratic in the joint invariants of E and wa, 

~)2 ~'�89 a + v,,(4,,,, 0,,)), (4.13) ~ ) ( E ,  lt/a) = T [2 ( t r  + 2# tr (g2)] + �9 ll,t a 

where the multiplicative factor ff takes into account the fact that the voids have 
no free energy. Here 

3 2 + 2 # > 0 ,  / ~ > 0 ,  % > 0  (4.14) 

are functions of {rba, Oa}. We then have from (4.4) and (3.18) 

= ~[2(trE) 1 + 2/rE], (4.15) 

h a = OCaW a.  (4.16) 

Equation (4.9), taken to the same order of approximation as (4.15) and (4.16) is 

q, = --ua G R A D  Oa, (4.17) 
with, by (4.11) 

u,,(%, 0.) ~ 0. (4.18) 

It is characteristic of the particular type of theory with one deformation but 
many temperatures, that the single relation for stress obtained from thermo- 
dynamics is of the form of (4.4), which gives only the total stress, while the 

* This form, whether or not thermodynamics is used, forces considerable uniqueness 
upon the theory. Furthermore, it a priori  prevents interactions of the sort which would 
occur as a result of terms in which the strain and volume fraction gradients are multi- 
plied. Our theory is closely related to that of the Mooney-Rivlin theory ([R~vLIN, 1948], 
RIVLIN & SAUNDrRS [1951]). TRELOAR [1958] gives molecular motivation for such a 
theory. 



22 S.L. PASSMAN & R. C. BATRA 

stresses in all of the constituents are needed in the energy equations, say (2.3)s. 
In general this is a profound difficulty in formulating mixture theories. That is 
no t  the case here, where in fact the difficulty is easily overcome. It is a direct 
consequence of  (2.5)2 that 

= Tx q- ~'z. (4.19) 

Now T is known from (4.15), so specification of T~ suffices to give/~z. We rewrite 
(3.20) in the form 

~P = ~Vq q- ~a~Pa q- ~R'. (4.20) 

We have not done so here, but is a straightforward task to develop a thermo- 
dynamic theory for the matrix only. A significant result of this theory is 

&P* (4.21) TI = ~1 e ~ .  

Furthermore, it is clear from (3.2) that T1 will be independent of the properties 
of the inclusions. Since the behavior of the mixture under stress is expected to 
be principally a property of the behavior of the matrix, we assume 

r 
~1~01(E, wl) = -~- [2(tr E) 2 + 2# tr (E2)] q- �89 �9 w, q- vl(q~l, 01)), (4.22) 

with 2 and/z functions of 01. It then follows that 

T~ = oh1 [2(tr E) 1 + 2#E], (4.23) 

and 

I"2 = q~z[2(tr E) 1 + 2#E]. (4.24) 

For the internal energy ea we have arguments closely analogous to those for the 
free energy Wa; that is, by (3.38), ' 

e a = ea(IE , d#a , 1Ma, Oa) , (4.25) 

and so 

ae,, E ae,, �9 8 e  a ~e. 
b~ -- ~E + " ~ a  q~a + ~--~w~" &a + - ~  ~, (4.26) 

or, with the obvious changes in notation, 

w 0 0a" (4.27) ea = CEa " i ~ -  C~a ~a -~ Ca" ~l)a -~- Ca 

0 is the specific heat* of constituent a, while the other quantities are what Here, Ca 

* This corresponds to the "specific heat at constant volume" defined in many books 
on physics. 
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were called in the older literature latent heats.* {See, for example, TRUESDELL 
,~ BHARATHA [1977].} Thus, the tensor Ca E might be called the latent heat with 

respect to strain. However, because the body is isotropic, and because of the 
degree of  approximation taken in the other equations of  this theory, the tensor 
C~ e and the vector Ca ~ have special forms. They are 

CEa EO E1 =c$ l + c ~  E, (4.28) 

w = w ( 4 . 2 9 )  C a Ca 1t3 a . 

It is seen here that Cff' and c~ have the dimensions which might be expected 
of latent heats of  their types. 

We now formulate constitutive equations for the exchanges of  momentum, 
equilibrated inertia, and energy. Let us consider the momentum exchange func- 
tion ma +. In elementary treatments for diffusing mixtures this term is taken to be 
proportional to a diffusion velocity. Since here we have a nondiffusing material, 
a reasonable first try for a constitutive equation might be 

m 2  = O. (4.30) 

Likewise, it is a reasonable first approximation to take 

g+ = O. (4.31) 

The energy interaction e +, however, is another matter. In situations where the 
body is being heated quickly, it is to be expected that the temperatures of the 
matrix and the inclusions will differ quite radically. In that case an energy ex- 
change caused by conduction between the constituents, and possibly radiation 
also, will occur. An appropriate constitutive equation for these phenomena is 

e + = - -e  + = eC(02  - -  0 1 )  - ~  c r ( 0 2  - -  01 )  N ,  c c > O, C r > 0, N > 1, (4.32) 

with N an odd integer. The special case of this equation c" = 0 is commonly 
called "NEWTON'S Law of  cooling". The inertial coefficient ka in (2.3)4 is still the 
subject of research. Most commonly it is taken to be a constant, often zero. 
NUNZ~ATO & COWIN [1979] use as motivation arguments of KNOWLES & JAKUB 
[1979] which lead to a considerably more complicated form. 

Thus, modulo specific functional forms for scalar-valued constitutive equa- 
tions, which should be determined by experiment, we have specific equations of  
mass, motion and energy for an isotropic material of the type described. 

It is appropriate to collect the equations of this theory in one place. We have 
conservation o f  mass 

O'- a = O a det F,  (4.33) 
balance o f  momentum 

Q-l) = Qb + DIV (~bF[2(tr E) 1 + 2#E]}, (4.34) 

* Most recent books use the term "latent heat" in quite another sense. 
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balance o f  equilibrated inertia* 

Qaka~a : DIV (06 a GRAD 4'a) ~3a ~a~a, 

and balance o f  energy 

cC(02 - -  01) 2f_ cr(02 __ 01)N = ~l (Cf"  E -f- Cl$~l -~ c~-  ~1~ 1 -~ e~ 

- 4'~F[2(tr E) 1 + 2/~E] �9 lbr + DIV (--• GRAD 0~) - -  ~tr~ 

(4.35) 

c~(Ol - 02) + 

(~1~1) - -  0~t GRAD 4'1" GRAD 41,  (4.36) - 4 '  \ e 4 ' ,  - 

c'(O~ - O S  = ~2(c~" E + 442 + c~ . w: + c~ 

- -  4'2F[2(tr E) 1 + 2/uE] �9 + DIV (--Z2 GRAD 02) - -  02r2 

- . '  - - G R A D  �9 O R A O  

I 
(4.37) 

4.2. Thermal  Stresses. In the previous sections, we have taken the free energy 
to be a quadrat ic  function o f  the strain E and the volume fract ion gradients 

w a, while letting tempera ture  and volume fract ion serve as parameters  in consti- 
tutive equations.  In order  to describe thermal  stresses, we mus t  give an explicit 
role to tempera tures  in y.  {A succinct exposit ion o f  this mat te r  in the classical 
linear case is given by CARLSON [1972].} Thus,  we assume that** ~p(E, Wa, Oa) 

has a min imum at  E = O, w,, = O, Oa = 0. We write the mos t  general positive- 

definite fo rm for  ~ which has this p roper ty  and which is quadrat ic  in 0 ~ -  
and the joint  invariants o f  g and w~, 

4, 
~ ( E ,  wa) = -~- [2(tr E) 2 + 2/z tr  (E 2) + .S(2ma(Oa - -  O) tr  E + na(Oa - -  5)2)1 

-~- ~. �89 a " ill a t t- 'l~a(4'a)), (4.38) 

with 
3~. + 2,u > 0, tt > 0, o~ a > 0, (4.39) 

(4.40) n a > 0, (32 -t- 2/~) na ~= 3ma. 

Here,  2, iz, ma, and n a are constants,  while 0r a and % may  be functions o f  4'a- The  

* Here we have left the dependence of the Helmholtz free energies on the constituent 
volume fractions to be determined by experiment. There are at least two theoretical 
works which address this matter. The work of NUNZIATO & COWIN [1979], which again 
appeals to the work of KNOWLES & JAKtm [1979] for restrictions on the form of those 
derivatives, and that of COWIN & NtmZXATO [1983], which takes such derivatives to be 
affine forms in the volume fractions. 

** We have taken the obvious small liberty with the notation of the previous 
section. 
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arguments in this case are quite similar to those in the previous section. That is, 

7' :-  T~ + 7'2, (4.41) 

~ 1  
Tt = ~ ~E '  (4.42) 

so it is plausible to assume 

~vx(E, wl, 01) = �89 (2(tr E) 2 -~- 2# tr (E 2) ~- Z'[2m~(0t -- O) tr E 
(4.43) 

~_ . 1 ( 0  l __ 0)2]) _~ ~. �89 1 . t, ly I _~ ,i)1((~)1)) " 

It then follows that 

Ta = ~a[2(tr E) 1 + 2/~E + m,,(O,, - -  if) 1]. (4.44) 

There is no effect on the equations for equilibrated inertia. The field equations 
are exactly the same as (4.33)-(4.37), except that 

DIV (dpF Xma(O a - -  0)} (4.45) 

is added to the right side of (4.34), 

- -4 , ,m1(0~ - -  O) F . F r  (4.46) 

is added to the right side of (4.36), and 

- -~2m2(02  - -  0) F .  FT (4 .47)  

is added to the right side of (4.37). 

5. Constitutive Equations for a Transversely Isotropie Material 

Consider a set of rectangular Cartesian material co-ordinates. Let the ma- 
terial be transversely isotropic about the )(3 axis. This means that the mater- 
ial isotropy group f~ consists of the identity 1 and the tensors which have the 
following matrices with respect to that co-ordinate system: 

i cos  sin  !] I!0!1 --sin 0 cos 0 , 1 , 

0 0 0 -- 

(5.1) 

together with their products. The result corresponding to (4.3) is then 

~ ( g ,  Wa) = ~(E~,~,, E~,~E~,:, E33 , E3o~E~3 , E3~E~:E~3 , 

W3a, WaaEa3, W~,aE~,aE:3, WaaWoc a, Wc, aEaBWOa), (5.2) 

where each of (~, fl} takes the values {1, 2), and the usual summation convention 
is observed for Greek indices. 
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We define 

e -'~t' (5.3) 

where It is the Ith entry in the list of independent variables on the right hand 
side of (5.2). We then have 

8 E lo 

a 

~'~3 = v,4E~3 + ~o~(e~oE~) + ~] (~;W~a + ~'"aE.~W~o), 
a 

~3a = ~p3, (5.4) 

ha a 7 8 10 = 0Pa 6~fl § ~o.E~#) Ea3 § 2(~p 9 6~,# -r  y,, E~,fl) W~a, 

h3a : ltfi. 

The general equation for the heat flux (corresponding to (4.9)) in this case is 

0 1 = ~,,E.,aO,,,~), q,~a --(~aOa,~, § 
(5.5) 

q3a = --~aOa,3, 
where 

0~,a ~ OXp' 

etc.,  and the ~'s are again non-negative. 

5.1. A Simplified Theory. Here, we write out the equations for the transversely 
isotropic case, which correspond to the simplified theory for the isotropic case 
given in the previous section. We have 

@ [c1E~,~,E~ ~ § c2E~,flE~ ~ § caEca, E3 3 § 4 2 ~--- C E 3 3 §  cSE3~,E.~3] 

caE33w3a CaW3a caEa31/r (caEc~W3a _~ If_ ~_ + Z  6 7 8 2  9 

a 

Ca Wo;aWor § ~(4a, Oa)" (5.6) § 1o 

Therefore* 
7r a = r 7 6~ § cZE.a § lc3E33 6~fl] § Z 6 Ca (~ ~flW3a 

a 

7"~3 f3~ ~b[cSE3~] § Z 9 = CaWo; a ~, 
f t  

T33 ~ ~)[c3Ec~x § 2c4E33] § Z Ca7W3 a' (5.7) 
a 

hao~ 9 10 r x3 § 2r W~a, 

ha 3 6 7 2CSaW3a caE33 = caE~,~, + + 

* We have here taken account of the fact that E~fl and W~,aWaa are symmetric. 
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The heat flux is 
qa~ : - -~a  0 . . . .  q3~ : --h~a3Oa,3" (5.8) 

The stresses in the constituents are of the forms (5.6), that is, 

= 6 ~ c~flW3a Tara do.[c'E~ boa + c2E~a + �89 boa + Ca 

7"~3 = Ta3~ = do,[cSE~] + CaW~a9, (5.9) 

T.33 �89 + 2c4E33] + 7 = CaW3a, 

and the rate of change of internal energy is 

: -  C a E ~  , + 2ca3E~,3E~,3 + Ca33E33 -~ 

w W " w " 0 " AU C a aWa~x -~- Ca3Wa3 -~- CaO a. (5.10) 

The equations (4.30)-(4.32) do not change, i .e. ,  

m + = O, g+ = O, (5.11) 

e ~  = - - e2  + = cc(02 - -  01) ~- cr(02 - -  01) N .  (5.12) 

5.2. Thermal Stresses. The arguments for this case are easy extensions of the 
previous ones. We have a free energy of essentially the form (5.6), that is, 

do 

+ 2 Z (m'~(Oa --  ~) E ~  + m](O. --  ~) E .  + .o(0o --  ~)~)1 
a 

(caEa~w3a  -~  ~ -  -[- Z 6 7 8 2  9 10 
CaE33W3a ~ -  caE~,3W~,a + Ca WaaWa, a) CaW3a 

a 

-~- V(doa). (5.13) 

This leads to the same equations as in the previous section, except that the stresses 
(and therefore the balance equations for momentum and energy) must be adjusted 
to account for additional terms of the forms 

a 

(5.14) 
~. ~ do X m~(Oa-  ~), 

a 

fYa~xfl 1 doamo( O a --%) ~ ~ , 

~a33 ~ do,,m]( O,, - -  "if). (5.15) 
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6. Relation to the P-~ Model for Porous Solids 

A model which is widely used in calculations for porous solids is the P-0~ 
model. (This model was formulated by HERRMANN [1969]. A useful synopsis is 
presented by KIPP & LAWRENCE [1982].} The model we have presented here 
is much more general than the P-0~ model in that it is a three-dimensional theory 
which includes dissipation and which accounts for inclusions.* This theory 
reduces to the P-0~ model. To see that, we consider the one-dimensional case 
of the theory for isotropic materials set forth in w 4. We assume the body has no 
inclusions, so q~ ~- 4h and ~2 = 0. The only case of interest is 0 < 4~ < 1. Then 
the function ~p in (3.22) depends only on {E, qb, wa, 0, ~). Moreover, let us drop 
the dependence of this function on wa, so we have 

V ----- ~(E, 4~, 0, ~,). (6.1) 

We replace the stress by the pressure 

then (4.4) becomes 

while (3.12) is 

~ --p; (6.2) 

p =  - - ~ - ~ ,  (6.3) 

- a0"  ( 6 . 4 )  

The above contain constitutive information only. The field equation for equi- 
librated inertia is also of interest. By (4.35) it is 

-}- + - - - -  0. (6.5) 

The relations (3.23)-(3.24) between deformation gradient and strain become 

F---- gEE + 1, (6.6) 

so the equation of mass balance is 

~'----- 7~ ~/2-E + 1, (6.7) 

Thus, in this one-dimensional ease, we may eliminate the strain E from the func- 
tion ~ in (6.1) in favor of the intrinsic mass density 7. We define 

~p('h, 0, y) ---- ~(/~(~b, y), ~b, 0, 7), (6.8) 

* The model thus allows for hysteresis. For a detailed discussion of this matter, see 
PASSMAN [1984]. 
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where /~(~, y) is the function obtained by solving (6.7) for E. We then have 

&p 
e---E = 0~0, (6.9) 

cq~p c~E 
= ~,W-T2s -+- O2~P, (6.10) 

u ~ o  

e--0= ~3W, (6.11) 

where 8,~? is the partial derivative of ~ with respect to the n th variable. The pressure 
/~ is then 

=- 0a~. (6.12) 

It is also useful to define the pressure associated with the Cauchy stress 

T --~ --p (6.13) 
so that 

and thus 

p = -~-p (6.14) 

e ,~ .  (6.15) p = - ~ -  

Recall that stresses (and therefore pressures) are defined as force per unit total  
area. Pressures expressed as forces per  unit  area o f  sol id  are given by 

P = ~Ps, p - -  cbp,, (6.16) 

so that (6.12) and (6.15) are 

- ~ ~,~, 
P s  ~- 

4, 

~ 2 

P, -- 01t.  (6.17) 

Both (4.13) and (5.6) indicate that the free energy should have the form 

~ = ~(0, ~) ~(E) + v(r 0, 9,). 
Then by (6.17) 

(6.18) 

_~ d# 
Ps = -- ( -d-E' (6.19) 

=/3s( 7, ~, 0), (6.20) 

Let us consider (6.5), and neglect inertia and dissipation, so that k = 0, 
= 0. Then 

~--~ = 0, (6.21) 

or, by (6.10) and (6.18) 

6q1~ 
0 (6.22) 
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Under moderate conditions of smoothness this equation may be solved to yield 

~b ---- ~(y, 0). (6.23) 

Substituting (6.23) into (6.20) gives 

Ps = Ps(~', 4;(y, 0), 0), (6.24) 

so that, with the obvious redefinition of the function/~s, 

ps = fi~(y, 0). (6.25) 

It is usual to assume that functions of the type ~, satisfy 

e---~ =~ 0 (6.26) 

almost everywhere on their domain. We make that assumption here. Then we 
may solve (6.25) for y, obtaining 

= y(p,, 0). (6.27) 

If  we substitute (6.27) into (6.23), we obtain 

= ~(p~, 0). (6.28) 

The equations (6.25) and (6.28) are the same as those of HERRMANN ([1969], 
equations (3) and (5)) which defined the P-0~ theory, except that HERRMANN, ap- 
parently motivated by the Mie-Grfineisen equation of state,* takes the internal 
energy e to be an independent variable. Two comments are appropriate here. 
The first is that the original papers of MIE and GRCNEISEN assume condi- 
tions so restrictive that the internal energy is proportional to the temperature. 
Furthermore, the equation is often interpreted in that way by those who apply 
it. Second, by (2.13) and (3. ! 2), 

e = ~p -- 0 8_~.~ (6.29) 
80' 

so by (6.21) and our assumptions about the functional dependence of % we have 

e ---- b(y, 0). (6.30) 

Unless the assumption of MIE and GR/3NEISEN that the energy is a function only 
of the temperature holds, e must satisfy 

8e 
-~y =~ 0 (6.31) 

almost everywhere on its domain. Then we may write 

0 = 0(y, e). (6.32) 

* HERRMANN cites RICE, McQuEErq, & WALSH [1958]. 
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Substituting (6.32) into (6.25) gives 

Ps = Ps(7, ~b, 6(7 , e)) = f ( y ,  4~, e), (6.33) 

while (6.23) and (6.32) give 

q5 = ~(7, 0(~', e)), (6.34) 

which, when substituted into (6.33), gives 

p, ---- h(y, e). (6.35) 

This is the relation of HERRMANN [1969]. Assume 

O h  
~-~ @ 0 (6.36) 

almost everywhere on the domain of h. Then by (6.33) 

V ---- Vw(P~, e), (6.37) 

which, when substituted into (6.34), gives 

cb = ~(yw(Ps, e), 0(yw(ps, e), e)), (6.38) 

or 

4, = g(p~, e), (6.39) 

which is the relation (5) of HERRMANN [1969]. 
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