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A third order shear and normal deformable plate/shell theory (TSNDT) and a stress recovery scheme
(SRS) are used to predict stress singularities near edges of doubly curved composite laminated shells
deformed statically with tangential and normal tractions applied on the shell major surfaces. In fluid-
structure interaction problems both tangential and normal tractions may simultaneously act on the
fluid-structure interface. The accurate computation of all six stress components is important for ascer-
taining a structure's load carrying capacity. In the TSNDT the three displacement components at a point
are expressed as complete polynomials of degree three in the thickness coordinate. The boundary-value
problems are numerically solved by using an in-house developed finite element code. Results for six
problems involving different boundary conditions at the edges and different surface tractions on the two
major surfaces are presented. For each problem studied, the computed stresses at interior points located
at a distance greater than 0.1% of the span from an edge are found to at most differ by 5% from those
obtained by either analytical or numerical (with a commercial software) solutions of the 3-D linear
elasticity theory equations. The order of the stress singularity near an edge and boundary layers close to
bounding surfaces are well captured; the region of stress singularity extends from the edge only till 0.4%
of the edge length. Advantages of using the TSNDT include considering general tractions on bounding
surfaces and finding a reasonably accurate solution, including singular stresses near the edges, with
considerably fewer degrees of freedom than those needed to analyze the corresponding 3-D problem.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Theories developed to analyze infinitesimal deformations of
doubly curved linear elastic shells of uniform thickness can broadly
be categorized as classical, shear deformation and shear and
normal deformation. Classical theories such as Love's first
approximation theory (LFAT) (Love, 1888), Donnell's (1933),
Sanders' (1959) and Flugge's (1973) shell theories neglect the
transverse shear and the transverse normal strains and give very
good results for thin shallow shells. The shear deformation theories
account for the transverse shear deformations and predict well
responses of moderately thick shells. The shear and normal defor-
mation theories consider both transverse shear and normal de-
formations, account for changes in thickness, and usually do not
require a correction factor. A challenge in plate theories especially
for laminated structures is the accurate determination of the
a@vt.edu (R.C. Batra).

served.
transverse shear and the transverse normal stresses, stress singu-
larities near the edges where failure may initiate and propagate
inwards, boundary layer effects in moderately thick structures, and
stresses at points on interfaces between adjoining layers.

A shell is called shallow (deep) if its rise equals at most (at least)
one-fifth of its smallest planform dimension (Qatu, 2004). It is
usually regarded as thick, moderately thick, and thin if the ratio of
the thickness to the smallest planform length and/or the smaller
radius of curvature is at least 1/10, between 1/10 and 1/20, and at
most 1/20, respectively (Qatu, 2004).

The first order shear deformation theory (FSDT) assumes con-
stant transverse shear strains across the shell thickness and
generally requires a shear correction factor for studying de-
formations of moderately thick shells. Higher order shear defor-
mation theories (HSDTs) (Lo et al., 1977; Murty, 1977; Reddy and
Liu, 1985; Liew and Lim, 1996; Xiao-ping, 1996) may provide ac-
curate solutions for deformations of thick shells without requiring a
shear correction factor. Nearly all HSDTs are descendants of either
Mindlin's or Reissner's theories. For example, Mindlin (1951)
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expanded the three displacements in terms of Taylor series about
their values at the mid-surface and retained terms of order K in the
thickness coordinate, z. Instead of polynomials in z, other authors
have used trigonometric functions of z to express through-the-
thickness variations of the in-plane displacements. Naghdi (1973)
and Antman (1972) have reviewed historical developments of
plate and shell theories, and proposed their own theories.

Reddy and Liu (1985), Liew and Lim (1996) and Xiao-ping (1996)
proposed a third order shear deformation theory (TSDT) in which
the transverse displacement is constant across the shell thickness
and the in-plane displacements are complete polynomials of de-
gree three in z. This leads to a parabolic distribution of transverse
shear strains along the thickness and zero transverse normal strain.
By requiring the transverse shear stresses to vanish on the two
major surfaces, they reduced the number of unknowns in the
theory. The need to consider both transverse shear and transverse
normal deformations has been pointed out by Reissner (1947) and
Koiter (1960). Reissner stated in 1947 that for sandwich shells with
(tEf)/(hEc) >> 1 both transverse shear and transverse normal de-
formations should be considered. Here t and Ef (h and Ec) equal,
respectively, the thickness and the longitudinal modulus of the face
sheet (core). Based on energy considerations Koiter (1960) recom-
mended that any refinement of the LFAT must simultaneously
consider both transverse shear and transverse normal stresses. For
a thermally loaded thick plate (length/thickness = 5) made of an
inhomogeneous linear elastic material with material moduli only
varying in the thickness direction, Vel and Batra (2002) found that
the deviation in the transverse deflection from the exact solution
equals 26%, 26% and 28% for the classical plate theory, the FSDT and
the TSDT, respectively. These large errors are possibly due to
neglecting the transverse normal strain in the three theories. For
the problem studied by Vel and Batra (2002), Qian and Batra (2004)
found that a 5th order shear and normal deformable plate theory
gave results very close to the analytical solution of the problem. For
100 K temperature difference between the top and the bottom
surfaces of the plate, the transverse displacement of the centroid of
the top surface of the plate equalled twice of that of the centroid of
the bottom surface signifying an average transverse normal strain
of ~ 10e3. These examples signify the need for considering trans-
verse normal deformations in a plate/shell theory.

Following Mindlin and Medick (1959), Vidoli and Batra (2000)
and Batra and Vidoli (2002), amongst others, expressed all three
displacements as complete polynomials of degree K (K is a variable)
in z, and studied deformations of piezoelectric and orthotropic
linear elastic plates for values of K up to 7. They deduced
the constitutive relation for the plate by using either the
HellingerePrangeeReissner principle or from the 3-D constitutive
relations and the plate theory displacements; the corresponding
theories are called “mixed” and “compatible”, respectively. The
mixed theory exactly satisfies surface traction boundary conditions
(BCs) on the two major surfaces. Batra and Aimmanee (2005) used
the Kth order mixed theory to analyze free vibrations of thick plates.
Using a compatible theory Qian et al. (2003) found that K ¼ 3 pro-
vides excellent values up to the 4th bending frequency of a moder-
ately thick plate with a rather coarse distribution of nodes. The
compatible plate theory with K ¼ 3 has been termed as the third
order shear and normal deformable theory (TSNDT). Qian and Batra
(2004) have generalized the compatible theory to plates composed
of thermoelasticmaterials. Bert and Broutman (1980), Leissa (1973),
Qatu (2004),Qatuet al. (2012) andLiewet al. (1997), amongstothers,
have reviewed shell theories. Whereas Qian et al. (2003) and Batra
et al. (2002) have analyzed the effect of K on frequencies, stresses,
deflections and wave propagation in thick plates, Carrera et al.
(2014) have proposed a unified formulation in which the three
displacement components are expressed in terms of a generic
function, F(z), in the thickness coordinate, z, as follows:

uiðx; y; zÞ ¼ FijðzÞ ujðx; yÞ ði ¼ 1; 2; 3; j ¼ 1; 2;…; NÞ
Here summation on the repeated index j is implied over the

range of values of j. In the TSNDT, N ¼ 4 and the function Fij
(z) ¼ zj�1 for i ¼ 1, 2, 3 and j ¼ 1, 2, 3, 4. Carrera et al. (2014) have
proposed varying N, the expressions for Fij (z) and uj (x, y) to
compute a solution within a pre-specified tolerance. This approach
uses the least number of variables for a given plate, lamination
scheme, domain discretization and BCs but is computationally
more expensive than other approaches mentioned above.

Vel and Batra (1999) have used the Eshelby-Stroh formalism to
analytically solve the 3-D linear elasticity theory (LET) equations for
laminated plates with possibly different BCs on each ply edges, and
have compared their results with predictions from different plate
theories. The boundary conditions at the edges were satisfied in the
sense of Fourier series. The analytical solution exhibited singular-
ities in stresses at points on the free edges that can induce
delamination between the adjoining layers. These stress singular-
ities had earlier been predicted by Bogy (1968) and Dundurs (1969),
and the order of singularity depends upon the elastic moduli of the
two adjoining layers.

Deformations of a laminated shell (or plate) can be analyzed
either by using an equivalent single layer (ESL) theory in which the
shell is envisaged to be made of a homogeneous material or by
using a layer-wise (LW) theory. In an ESL (LW) theory, the number
of unknowns equals (the number of layers times) that for a
monolithic shell. The transverse normal and the transverse shear
stresses computed using constitutive relations in an ESL theory
may not satisfy the continuity of surface tractions across interfaces
between adjoining layers. However, in a LW theory these continuity
conditions are built into the weak formulation of the problem.
Carrera (2003), Ambartsumian (1962, 2002), Reddy (1993), Reddy
and Arciniega (2004) and Kapania (1989), amongst others, have
reviewed various ESL and LW theories for laminated plates and
shells.

A commonly used approach is to find in-plane stresses from
constitutive relations and the plate/shell theory displacements and
compute transverse stresses by using either a one-step or a two-
step stress recovery scheme (SRS). In the one-step SRS, transverse
stresses are found by integrating the three equilibrium equations
starting from a major surface and satisfying the traction continuity
conditions at each interface between two adjoining layers. Pagano
(1970) computed inter-laminar stresses in a laminated plate by
using the one-step SRS in conjunction with the classical laminated
plate theory (CLPT) and found them to agree well with the corre-
sponding 3-D LET solutions. Pryor and Barker (1971) used the FSDT
and Lo et al. (1978) employed a TSDT with the cubic and the
quadratic variations of the in-plane and the transverse displace-
ments, respectively, to analyze deformations of laminates and
computed transverse shear stresses by using the one-step SRS.
Using the SRS and TSNDT, Shah and Batra (2015) computed trans-
verse stresses in laminates subjected to different traction BCs on
their major surfaces. Tornabene et al. (2015) used a higher order
shell theory to analyze deformations of doubly curved laminated
shells and employed the generalized differential quadrature
method to solve the 3-D LET equations at points along the shell
thickness for computing transverse stresses. Rather than using the
3-D equilibrium equations, Chaudhuri and Seide (1987) employed
1-D quadratic shape functions through the thickness of each layer
of the laminate to compute transverse shear stresses.

In the two-step SRS, transverse stresses are iteratively
computed. For example, Noor et al. (1990, 1991) used a predictor-
corrector approach to find inter-laminar stresses. In the predictor
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phase the in-plane stresses are obtained by using constitutive re-
lations and the plate theory displacements with a shear correction
factor, transverse stresses are obtained with the one-step SRS, and
the corresponding strain energies are computed. In the corrector
phase from predicted values of either transverse shear stresses or
strain energies of transverse shear deformations, either through-
the-thickness distributions of displacements or the shear correc-
tion factor are refined until convergence within a prescribed
tolerance is achieved.

Wang and Li (1992) employed the method of separation of
variables and the 3-D LET to study deformations of laminated cy-
lindrical shells subjected to thermal and mechanical loads. They
deduced equilibrium equations for unknown displacements for
each layer and computed inter-laminar stresses by making dis-
placements and stresses satisfy BCs and the interface continuity
conditions. Wu and Kuo (1992) proposed a local third order lami-
nation theory in which the local displacement components are
represented as high order polynomials in the thickness coordinate
within each ply. They introduced displacement continuity con-
straints at the interface between the adjoining layers into the po-
tential energy functional through Lagrange multipliers thereby
increasing the number of unknowns. Rohwer et al. (2005) and Kant
and Swaminathan (2000), amongst others, have reviewed different
techniques to compute inter-laminar transverse stresses in
laminates.

A reasonably accurate estimate of interlaminar stresses and
edge singularities is needed to delineate damage and failure initi-
ation and propagation from the edges. Once delamination ensues
new traction free surfaces are created and stresses at the edges of
the delaminated zone may exhibit singularities. Xiao and Batra
(2014) and Batra and Xiao (2013) have used a LW TSNDT to
analyze the initiation and propagation of mode-I and mode-II
delamination in laminated and sandwich curved beams subjected
to water slamming loads.

Here we study static infinitesimal deformations of laminated
composite doubly curved shells using the compatible ESL theory
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(2)
with no shear correction factor and the TSNDT displacement field.
We compute in-plane stresses from constitutive relations and the
shell theory displacements, and the transverse normal and the
transverse shear stresses by the one-step SRS. Using in-house
developed code based on the finite element (FE) formulation of the
problem, we study several problems for laminated shells specified
with different BCs including combination of clamped, simply sup-
ported and traction free edges and subjected to different loads that
include (i) uniform and sinusoidal normal tractions on a major sur-
face, (ii) equal and opposite uniform tangential tractions on the top
and the bottom surfaces, and (iii) combined uniform normal and
tangential tractions on a major surface. The focus is on ascertaining
transverse stresses, boundary layer effects and stress singularities, if
any, at interface points near the edges. It is found that for each
problem studied, all stress components agree well with those from
either analytical or numerical solutions of the 3-D LET equations.
Furthermore, stress singularities, if present, near the edges and
boundary layers near bounding surfaces are well captured.
2. Problem formulation

A laminated doubly curved shell, shown in Fig. 1, is composed
of N perfectly bonded layers with each layer made of a homo-
geneous, orthotropic and linear elastic material. The total thick-
ness and the two constant principal radii of curvature of the mid-
surface of the shell are denoted by h; R1m and R2m; respectively.
Let ðy1; y2; y3Þ be orthogonal curvilinear coordinates such that
y1 ¼ constant and y2 ¼ constant are curves of principal curvature
on the mid-surface, y3 ¼ 0. The arc lengths of the shell at the
mid-surface in the y1- and the y2- directions are a and b;
respectively, and the corresponding planform lengths are l1 and
l2, respectively. We use fixed rectangular Cartesian coordinate
axes ðX1;X2;X3Þ and ðx1; x2; x3Þ with the X3- and the x3- axes
parallel to the y3- axis, to denote position vectors of a point by X
and x in the reference and the current configurations,
respectively.

The components Gij of the metric tensor in the reference config-
uration are given by

Gij ¼ Ai$Aj; Ai ¼
vX
vyi

ði ¼ 1; 2; 3Þ (1)

where Ai$Aj equals the inner product between vectors Ai and Aj.
We note that for the orthogonal curvilinear coordinate system, Gij is
non-zero only when i ¼ j. Let ðe1; e2; e3Þ be unit base vectors
associated with the curvilinear coordinate axes ðy1; y2; y3Þ. That is,
ei ¼ AðiÞ

HðiÞ
(no sum on i), where H1 ¼

�
1þ y3

R1

�
;

H2 ¼
�
1þ y3

R2

�
; H3 ¼ 1, R1 and R2 are radii of curvature at

ðy1; y2; y3Þ of the planes y2 ¼ constant and y1 ¼ constant,
respectively.

The displacement u of a point is given by u ¼ x � X. The physical
components of the infinitesimal strain tensor in the curvilinear
coordinate system are given by (Saada, 2009)
where2ii(i ¼ 1, 2, 3; no sum on i) is the normal strain along the yi-
direction,212 is the in-plane shear strain, and213 and223 are the
transverse shear strains.

In the TSNDT the displacement, ui, at a point is expressed as a
complete polynomial of degree 3 in the thickness coordinate, y3.
That is,

d ðy1; y2; y3Þ ¼ ðy3Þidiðy1; y2Þ ði ¼ 0; 1; 2; 3Þ (3)

Unless mentioned otherwise, a repeated index implies sum-

mation over the range of the index. In Eqn. (3) d ¼ ½u1 u2 u3�T. The
12-dimensional vector d ¼ [d0, d1, d2, d3] is called the vector of
generalized displacements at a point on shell's mid-surface.

We substitute for ui from Eqn. (3) into Eqn. (2) to obtain

∈ ¼ Ziðy3ÞLdiðy1; y2Þ ði ¼ 0; 1; 2; 3Þ (4)

where



Fig. 1. Geometry and coordinate system of a doubly curved laminated shell. Colored figures are only on the web version of the paper.
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∈ ¼ ½211 222 233 2223 2213 2212�T (4.1)

and the operator matrix L and matrices Zi (i ¼ 0, 1, 2, 3) are defined
as
Zi ¼

2
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(4.3)
Similar to components of the strain tensor, we write compo-
nents of the Cauchy stress tensor as a 6-D vector

s ¼ ½s11 s22 s33 s23 s13 s12�T (5)
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The constitutive relation (Hooke's law) for a linear elastic ma-
terial is

sij ¼ Cijmn2mn; Cijmn ¼ Cmnij ¼ Cjimn; ði; j; m; n

¼ 1; 2; 3Þ (6)

where C is the fourth-order elasticity tensor having 21 independent
components for a general anisotropic material. For an orthotropic, a
transversely isotropic and an isotropic material, the independent
components of C reduce, respectively, to 9, 5 and 2.

With respect to the material principal axes Eqn. (6) for an
orthotropic material of layer k becomes
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where quantities for the kth layer are indicated by the superscript k.
In the global coordinate axes ðy1; y2; y3Þ Cijmn are computed by
using the tensor transformation rules for the stress and the strain
tensors, and the 6 � 6 matrix may be fully populated. For the
TSNDT, the elastic constants in Eqn. (7) are the same as those used
in the LET, i.e., they are not modified to satisfy s33 ¼ 0 as is often
done in the classical shell theories.

We use the principle of minimum potential energy, given by
Eqn. (8), to derive equations governing static deformations of the
shell:

dP ¼ 0 (8)

where d is the variational operator and P is the potential energy of
the shell which in the absence of body forces is given by

P ¼ 1
2

XN
k¼1

Z
Uk

�
∈k

�T
skdUk �

Z
A

dTf dA (8.1)

inwhich Uk represents the region occupied by the kth layer, and A is
the part of the bounding surfaces of the shell on which surface

traction, f, is specified. Points on the remainder of the boundary of

the domain, U ¼ PN
k¼1U

k, occupied by the shell have either null
tractions (i.e., are on a free surface) or have displacements pre-
scribed on them. The work done by reaction forces at points of the
boundary where displacements are prescribed is not included in
Eqn. (8) because variations in the prescribed displacements there
are null.

We substitute in Eqn. (8.1) for d in terms of di (i ¼ 0, 1, 2, 3) from
Eqn. (3), for sk in terms of ∈k from Eqn. (7), and for ∈k in terms of
the generalized displacements defined on the shell mid-surface
from Eqn. (4). In the resulting expression for dP, we integrate
with respect to y3 over the shell thickness to obtain the following:
dP ¼
Zb
0

Za
0

ddT
i L

TDij Ldj dy1dy2 �
Z
A

ddT
i ðy3Þif dA ¼ 0 ði; j

¼ 0; 1; 2; 3Þ
(9)

where

Dij ¼
XN
k¼1

Zhkþ1

hk

ZTi C
kZj dy3 (9.1)

We discretize the mid-surface, < ¼ ½0; a� � ½0; b�, of the shell
into an FE mesh of Ne disjoint 8-node iso-parametric elements
where the region <e occupied by the element e is given by,
<e ¼ ½ye1; yeþ1

1 � � ½ye2; yeþ1
2 �. Thus dP equals the sum of integrals

over each element. The 12-dimensional vector d of generalized
displacements at a point in an element is expressed in terms of

values of d at the 8-nodes using the FE basis functions. Thus the
total number of unknowns in the problem equals 12Nnode where
Nnode equals the number of nodes. We note that in the FE formu-
lation of the corresponding 3-D problem, the number of unknowns
equals 3 N�

node, where N�
node equals the number of nodes in the 3-D

problem. Since N�
node >> Nnode, the total number of unknowns for

the TSNDT will be much less than that for the 3-D problem.
We write the vector of generalized variables dj ðj ¼ 0; 1; 2; 3Þ

of a point in an element e in terms of the 24-D vector

de
j ¼ ½d1

j ; d
2
j ;…;d8

j � containing values of dj at the 8-nodes of the
element as follows:

dj ¼ Fde
j ðj ¼ 0; 1; 2; 3Þ (10)

Here

F ¼ ½j1I j2I ::: j8I�; (10.1)

is a (3 � 24) matrix containing shape functions ðj1; j2; :::; j8Þ
associatedwith the 8 nodes of the element and I is a (3� 3) identity
matrix. Following the terminology in Chapter 5 of Bathe's book
(Bathe, 1996), we employ 8-node iso-parametric elements for
which shape functions for the 8-node master element are given in
Fig. 5.4 of Bathe's book.

Substituting for dm ðm ¼ 0; 1; 2; 3Þ from Eqn. (10) into Eqn.
(9), the first variation of the total potential energy of a typical
element is given by

dPe ¼ dde T
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The elemental stiffness matrices Ke
ij and the elemental load

vectors T±e
i ; P±e

i ; Q±e
i ði; j ¼ 0; 1; 2; 3Þ appearing in Eqn. (11) are

given by

Ke
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where
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B ¼ LF (11.1)
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where fþ and f� are surface tractions prescribed on the top and the
bottom surfaces, respectively, of the shell; and pþ;p�;qþ and q�

are surface tractions prescribed on the edge surfaces, y1 ¼ a, y1 ¼ 0,
y2 ¼ b and y2 ¼ 0, respectively. P±e

i and Q±e
i are evaluated only for

those elements that share a boundary with the shell edges.
Recalling that variations in generalized displacements are

arbitrary except at nodes where displacements are prescribed, Eqn.
(11) yields the following equilibrium equations for an FE:
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where

Fei ¼ Tþe
i þ T�e
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Eqns. (12) are assembled using the standard technique to obtain

KU ¼ F (13)

In Eqn. (13) K is the global stiffness matrix,U the global vector of
generalized nodal displacements, and F the global load vector; their
expressions are given by Eqn. (13.1). The vector F of generalized
nodal forces is work equivalent to surface tractions applied on the
top, the bottom, and the edge surfaces of the shell. For an FE mesh
of Nnode nodes, before applying essential BCs, the length of vector U
equals 12 Nnode since a node has 12 degrees of freedom.
Table 1
Nomenclature for boundary conditions specified at edges y1 ¼ 0 or a.

Notation Name BC

C Clamped u1
S Simply supported s11

F Traction free s11
K¼

2
6666666666666664

K00
1
2
ðK01þKT

10Þ
1
2
ðK02þKT

20Þ
1
2
ðK03þKT

30Þ

1
2
ðK10þKT

01Þ K11
1
2
ðK12þKT

21Þ
1
2
ðK13þKT

31Þ

1
2
ðK20þKT

02Þ
1
2
ðK21þKT

12Þ K22
1
2
ðK23þKT

32Þ

1
2
ðK30þKT

03Þ
1
2
ðK31þKT

13Þ
1
2
ðK32þKT

23Þ K33

3
7777777777777775

U¼

2
666664

U0

U1

U2

U3

3
777775; F¼

2
666664

F0

F1

F2

F3

3
777775

(13.1)

in which U0; U1; U2 and U3 are global vectors of generalized
displacements.

We specify three types of BCs at a point on a shell edge. At edges
y1 ¼ 0 and a, the definitions of these BCs in the 3-D LET and their
equivalent in terms of variables of the TSNDT are given in Table 1.

In Table 1 and in Eqn. (14) below, the index i takes values 0, 1, 2
and 3, u1i is the 1st component of vector di appearing in Eq. (3), and

Mi
1n ¼

Zh=2
�h=2

ðy3Þis1ndy3 ðn ¼ 1; 2; 3Þ (14)

Displacement (or essential) BCs applied at points on a shell edge
are satisfied while solving the linear system of algebraic equations
summarized in Eqn. (13).

3. Numerical solution of problems

We use the following values of elastic constants with respect to
the material principal axes (Z1, Z2, Z3). Values of elastic constants
Cijmn in Eqn. (6) are deduced from these by using the tensor
transformation rules. The data set 1 and 2 are, respectively, for
transversely isotropic and orthotropic materials. The Z1-axis is the
axis of transverse isotropy for a transversely isotropic material.

Data set 1:

E1 ¼ 172:4 GPa; E1=E2 ¼ 25; E3 ¼ E2; G12 ¼ G13 ¼ 0:5E2;
G23 ¼ 0:2E2; n12 ¼ n13 ¼ n23 ¼ 0:25

Data set 2:

E1 ¼ 251 GPa; E2 ¼ 48 GPa; E3 ¼ 7:5 GPa;
G12 ¼ 13:6 GPa; G13 ¼ 12 GPa; G23 ¼ 4:7 GPa;
n12 ¼ 0:036; n13 ¼ 0:25; n23 ¼ 0:171

Here E1 denotes Young's modulus along the Z1-direction, and
G12 (n12) the shear modulus (Poisson's ratio) in the Z1Z2-plane.

When discussing below results we replace X1, X2 and X3 by x, y
s in the 3-D LET BCs in the TSNDT

¼ 0; u2 ¼ 0; u3 ¼ 0 u1i ¼ 0; u2i ¼ 0; u3i ¼ 0
¼ 0; u2 ¼ 0; u3 ¼ 0 Mi

11 ¼ 0; u2i ¼ 0; u3i ¼ 0
¼ 0; s12 ¼ 0; s13 ¼ 0 Mi

11 ¼ 0; Mi
12 ¼ 0; Mi

13 ¼ 0
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and z, respectively, and displacements u1, u2 and u3 by u, v and w,
respectively. To investigate the efficacy of the TSNDT, we compare
for each problem studied results computed from the TSNDT with
those obtained by analyzing 3-D deformations with either the
commercial FE software, ABAQUS, or analytical solutions available
in the literature. The following norms are used for quantifying er-
rors in the TSNDT solutions.

kek0 ¼
2
4 Zs2

s1

½a3�DðsÞ � aTSNDTðsÞ�2ds
,Zs2

s1

a23�DðsÞds
3
5
1=2

(15)

keksup ¼ sup
s2½s1; s2�

ðja3�DðsÞ � aTSNDTðsÞj=ja3�DðsÞjÞ;a3�DðsÞs0

(16)

Here subscripts TSNDT and 3-D denote, respectively, values of
the variable found by using the TSNDT and the 3-D elasticity
theory. We note that keksup is a stronger measure of the error than
kek0 and these quantify, respectively, the maximum and the
average relative differences between the two solutions over the
interval [s1, s2].

We compute the in-plane stresses ðsxx; syy; sxyÞ from
constitutive relations and the TSNDT displacements and the
transverse shear ðsxz; syzÞ and the transverse normal ðszzÞ
stresses by using the one-step SRS; these are labeled “C” and “SRS”,
respectively. As mentioned in the Introduction, in the SRS, the three
equilibrium equations are integrated with respect to z starting from
the bottom-most face with surface tractions prescribed there as
“initial conditions”. At interfaces between two adjoining layers the
traction continuity conditions are satisfied during integration of
equilibrium equations. The difference between the computed and
the applied surface tractions on the topmost surface can be regar-
ded as ameasure of the error in the numerical solution.While using
the SRS, stress gradients are computed by first finding stresses at
the 3 � 3 quadrature points in each FE on the shell surface
z¼ constant, fitting a complete quadratic polynomial through their
values at the 9-points by the least squares method, and then
differentiating these polynomials with respect to x and y.
Table 2
Non-dimensional deflection, wð0:5a;0:5b;0Þ � 103; of the centroid of the mid-surface o

R/a a/h ¼ 100

3-D LET (Fan and
Zhang, 1992)

TSNDT % Diff. TSDT (Reddy and Liu, 1985;
Fan and Zhang, 1992)

% Diff.

1 0.0722 0.0724 �0.28 0.0715 0.97
2 0.2857 0.2861 �0.14 0.2844 0.46
3 0.6265 0.6255 0.16 0.6246 0.30
4 1.0585 1.0618 �0.31 1.0559 0.25
5 1.5392 1.5432 �0.26 1.5358 0.22

Table 3
Non-dimensional deflection, w ð0:5a; 0:5b; 0Þ � 103; at the centroid of the mid-surfac

a/h 3-D LET (Fan and
Zhang, 1992)

TSNDT % Diff. TSDT (Reddy and
Liu, 1985; Fan and
Zhang, 1992)

100 0.0541 0.054241 �0.26 0.05351
100/3 0.4624 0.46871 �1.36 0.44185
20 1.1724 1.2055 �2.82 1.073
100/7 2.0863 2.167 �3.87 1.8231
100/9 3.1667 3.3048 �4.36 2.6473
10 3.7676 3.9352 �4.45 3.0856
5 12.083 12.464 �3.15 8.6043
Unless mentioned otherwise, all layers of a laminate are of equal
thickness, the displacement, w, and the stress, s, are normalized as

w ¼ wðh3=b4ÞE2=q0 and s ¼ s=q0, respectively, where q0 equals
the maximum applied surface traction. The lamination scheme
a1=a2=…=aN with layer 1 being the bottom-most implies that fibers
in the kth layer are oriented at angle ak measured counter-clockwise
from the x- axis. Except when finding stress singularities at points
near the edges that necessitates a much finer FE mesh, results from
the TSNDTare computed using a uniform FEmesh of 25 elements in
the x- and the y- directions (23,712 nodal degrees of freedom
(DoF)) that provided a converged solution for most problems
studied herein.

3.1. Comparison of the presently computed solution with that from
the 3-D LET

We analyze deformations of a simply supported cross-ply
laminated spherical (R1m ¼ R2m ¼ R) shell with normal tensile
traction applied only on the top surface, and values of material
parameters given by Data set 1.

3.1.1. Uniform surface traction, q0
In Table 2we have compared the non-dimensional deflection, w,

of the centroid of the mid-surface of the symmetric 0�/90�/90�/
0� shell for a¼ b, h¼ 40 mm, a/h¼ 100 and 10, and different values
of R/a obtained from the TSNDT, the 3-D LET solution of Fan and
Zhang (1992) and the TSDT solution of Reddy and Liu (1985), and
Fan and Zhang (1992). The entries in the column “Diff.” next to
the TSNDT and the TSDT results are the difference between the
values from the 3-D LET and the respective shell theory. For thin
shells of a/h ¼ 100, the three sets of results are in good agreement
with each other. For a/h ¼ 10 and R/a ¼ 1, the TSDT and the TSNDT
solutions differ from the 3-D LET solution by 12.6% and 6.6%,
respectively. The maximum error in the TSNDT prediction for the
other four problems is less than 2% whereas that for the TSDT is
11.7%. The results reported in Table 2 indicate that for moderately
thick shells (a/h ¼ 10), the centroidal displacements predicted by
the TSDT are less than those by the TSNDT. Both for a/h ¼ 10 and
100, the centroidal deflection of the shell increases with an increase
f the 0�/90�/90�/0� spherical shell with a/b ¼ 1, h ¼ 40 mm.

a/h ¼ 10

3-D LET (Fan and
Zhang, 1992)

TSNDT % Diff. TSDT (Reddy and Liu, 1985;
Fan and Zhang, 1992)

% Diff.

5.5323 5.8991 �6.63 4.8366 12.58
9.1212 9.2959 �1.92 8.0517 11.73
10.3331 10.3163 0.16 9.1463 11.49
10.8207 10.706 1.06 9.5999 11.28
11.0535 10.8861 1.51 9.8249 11.12

e of 0�/90�/0� spherical shell; R/a ¼ 1, a/b ¼ 1, h ¼ 30 mm.

% Diff FSDT (Fan and
Zhang, 1992; Reddy, 1984)
ððk21; k22Þ ¼ ð0:7; 0:6ÞÞ

% Diff. FSDT (Fan and Zhang,
1992; Reddy, 1984)
ðk21 ¼ k22 ¼ 5=6Þ

% Diff.

1.09 0.05361 0.91 0.05361 0.91
4.44 0.44867 2.97 0.44801 3.11
8.48 1.1144 4.95 1.1052 5.73
12.62 1.9435 6.84 1.9024 8.81
16.40 2.8953 8.57 2.787 11.99
18.10 3.4152 9.35 3.2588 13.50
28.79 10.339 14.43 9.2536 23.42



Table 4
Non-dimensional deflection, w ð0:5a; 0:5b; 0Þ � 102, at the centroid of the mid-surface of [0�/90�/0�/ …] spherical shell; R/a ¼ 2, a/b ¼ 1, h ¼ 10 mm.

Number of layers, N 2 3 4 5 10

a/h ¼ 10 3-D LET (Huang, 1994) 0.8533 0.6087 0.6128 0.5671 0.5495
TSNDT 0.8645 0.6045 0.596 0.5529 0.5413
%Diff. �1.31 0.69 2.74 2.5 1.49
HSDT* (Huang, 1994) 0.8567 0.6119 0.617 0.5696 0.5516
%Diff. �0.40 �0.53 �0.69 �0.44 �0.38
HSDT** (Huang, 1994) 0.848 0.584 0.5673 0.5344 0.5221
%Diff. 0.62 4.06 7.42 5.77 4.99
TSDT (Reddy and Liu, 1985; Huang, 1994) 0.8207 0.5633 0.5471 0.5151 0.5031
%Diff. 3.82 7.46 10.72 9.17 8.44

a/h ¼ 5 3-D LET (Huang, 1994) 1.646 1.482 1.434 1.376 1.284
TSNDT 1.65 1.445 1.31 1.249 1.183
%Diff. �0.24 2.5 8.65 9.23 7.87
HSDT* (Huang, 1994) 1.683 1.519 1.498 1.404 1.315
%Diff. �2.25 �2.50 �4.46 �2.03 �2.41
HSDT** (Huang, 1994) 1.615 1.42 1.228 1.217 1.148
%Diff. 1.88 4.18 14.37 11.56 10.59
TSDT (Reddy and Liu, 1985; Huang, 1994) 1.551 1.363 1.177 1.167 1.101
%Diff. 5.77 8.03 17.92 15.19 14.25
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in the shell curvature to edge length ratio, R/a, when a ¼ b.
3.1.2. Sinusoidal surface tractions
For the top major surface subjected to the sinusoidal surface

traction
Fig. 2. For a simply supported 0�/90�/0� spherical shell subjected to the sinusoidal tensile no
of (a) sxxð0:5a; 0:5b; zÞ; (b) sxzð0; 0:5b; zÞ; syzð0:5a; 0; zÞ; and szzð0:5a; 0:5b; zÞ. Stre
Wu and Liu (1994).
qðx; yÞ ¼ q0 sinðpx=aÞ sinðpy=bÞ (17)

we have listed in Table 3 the non-dimensional deflection at the
centroid of the mid-surfaces of the symmetric 0�/90�/0� shells with
R/a ¼ 1, a ¼ b, h ¼ 30 mm and different values of the a/h ratio
rmal traction given by Eqn. (17) on the top surface, through-the-thickness distributions
sses are normalized by q0. Analytical solutions are plotted using the data digitized from



Fig. 3. For a simply supported 0�/90�/0� spherical shell loaded on the top surface by
sinusoidal normal tractions given by Eqn. (17), the through-the-thickness distribution
of syz ð0:5a; 0; zÞ. The stress is normalized by q0. Solutions from the LW third order
theory and the 3-D LET are plotted using the data digitized fromWu and Liu (1994) and
Wu et al. (1996), respectively.

Fig. 4. For a cantilever 90�/0� spherical shell subjected to equal and opposite uniform
tangential tractions on the two major surfaces, (a) the deformed shape of the cross-
section y ¼ b/2 with displacements magnified by a factor of 5, and (b) the x- and
the z-displacements along the line y ¼ b/2 on the shell mid-surface.
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obtained from the TSNDT, the TSDT (Reddy and Liu, 1985; Fan and
Zhang, 1992), and the FSDT (Fan and Zhang, 1992; Reddy, 1984)
with two sets of values for the shear correction factors (k1, k2)
associated with ðsxz; syzÞ and compared these results with the
corresponding 3-D LET solutions (Fan and Zhang, 1992). These re-
sults suggest that the error in the shell theory predictions increases
with an increase in the ratio, a/h. The TSNDT predicted centroidal
displacement has the least error (less than 4.5%) among the three
shell theories considered. The maximum error in the centroidal
displacements from the TSDT is 29% and from the FSDT is 23% and

10% for k21 ¼ k22 ¼ 5=6 and ðk21; k22Þ ¼ ð0:7; 0:6Þ, respectively.
In Table 4 we have compared the non-dimensional deflection

at the centroid of the mid-surface of [0�/90�/0�/ …] shells with R/
a ¼ 2, h ¼ 10 mm, a/h ¼ 10 and 5 and the number of layers N ¼ 2,
3, 4, 5 and 10 obtained from the TSNDT, the 3-D LET (Huang,
1994), the HSDT of Huang (1994) and the TSDT of Reddy and
Liu (1985) and of Huang (1994). We note that displacement
fields for the HSDT and the TSDT are the same. However, unlike
for the TSDT shear correction factors were used in the HSDT to
obtain continuous transverse shear stresses at interfaces of the
adjoining layers and no shallow shell approximations were
made. The shear correction factors were iteratively varied to
match the strain energy for the quasi 3-D transverse shear
stresses and that of the shell theory transverse stresses within a
prescribed tolerance. We note that values for “HSDT*” and
“HSDT**” reported in Table 4 were obtained with and without
using shear correction factors. The entry “Diff.” below a shell
theory result denotes the difference between it and the 3-D LET
result. The maximum difference between results from the TSNDT
and the 3-D LET is 9.23% (2.74%) for a/h ¼ 5 (10). For a/h ¼ 5 (10),
the corresponding differences in the centroidal deflections found
from the HSDT without using shear correction factors and the
TSDT are 14.37% (7.42%) and 17.92% (10.72%), respectively. How-
ever, when shear correction factors are used with the HSDT this
difference reduces to 4.46% (0.69%) for a/h ¼ 5 (10). Results listed
in Table 4 indicate that the TSNDT generally gives lower errors in
centroidal deflections than those from the TSDT and the HSDT**
but higher than those from the HSDT*. Whereas the HSDT*
slightly under-predicts the centroidal deflection, the other three
shell theories over-predict it.
3.2. Cross-ply 0�/90�/0� laminated spherical shell subjected to
sinusoidal distributed normal traction on the top surface

3.2.1. Thin shell
We analyze deformations of a simply supported 0�/90�/0� thin

and deep laminated spherical shell with a ¼ b, R/a ¼ 1, h ¼ 30 mm
and a/h ¼ 100, material properties given by Data set 1, and the
sinusoidal normal tensile traction given by Eq. (17) applied only
on its top surface. We have compared in Fig. 2(a) and (b) the
presently computed through-the-thickness distributions of the
axial stress, sxxð0:5a; 0:5b; zÞ; the transverse normal stress,
szzð0:5a; 0:5b; zÞ; and the transverse shear stresses
sxzð0; 0:5b; zÞ and syzð0:5a; 0; zÞ with those from the analyt-
ical solution of Wu and Liu (1994) who employed a LW third order
theory. Stresses at points on an edge are found by extrapolation
from their values at interior points of the element abutting the
edge. The transverse normal stress at the centroid of the shell top



Fig. 5. For a cantilever 90�/0� spherical shell subjected to equal and opposite uniform
tangential tractions on the two major surfaces, through-the-thickness distributions of
(a) sxxðx; 0:5b; zÞ for x/a ¼ 0.055, 0.5, and sxzðx; 0:5b; zÞ for x/a ¼ 0.055 and 0.945.
Stresses are normalized by q0.

Fig. 6. For a cantilever 90�/0� spherical shell subjected to equal and opposite uniform
tangential tractions on the two major surfaces, variation of sxxðx; 0:5b; zÞ along the
x- direction of the shell for z/h ¼ ±0.475.
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surface computed with the TSNDT and the one-step SRS accu-
rately satisfies the normal traction BC with only 0.3% error.
Furthermore, for the two solutions, keksup equals 1.29%, 3.45% and
2.3% for sxx; sxz; and syz, respectively. These errors occur at z/
h ¼ 0.5, 0.35 and 0.43, respectively, i.e., not at the same point in
the shell.
3.2.2. Thick shell
For the shell studied in subsection 3.2.1 but with a/h ¼ 10, we

have depicted in Fig. 3 through-the-thickness distribution of the
transverse shear stress, syzð0:5a; 0; zÞ; computed from the TSNDT
using the one-step SRS, and the analytical solution based on the LW
third order theory (Wu and Liu, 1994) and the 3-D LET (Wu et al.,
1996). The stress computed using the SRS exactly satisfies the
zero traction BCs on the major surfaces. However, the TSNDT and
the LW theory predicted syz values differ from that of the 3-D LET,
respectively, by at most 10.1% and 0.5% at z¼ �0.08 h. We note that
for a laminate with N layers, the LW theory requires N times the
number of independent variables needed for the ESL theory. In
order to investigate whether the FE mesh refinement will improve
the accuracy of the TSNDT syz at the edge, we have included in the
Figure results with the uniform FE mesh of 33 elements in the x-
and the y- directions and a non-uniform FE mesh of 33 elements in
the x- and the y- directions generated using the Chebyshev-Gauss-
Lobatto (C-G-L) discretization (Tornabene et al., 2015) with co-
ordinates (xi, yj) of a node on the mid-surface given by

xi ¼
a
2

�
1�cos

�
i�1
IN�1

p
�	

ði¼1; 2; :::; INÞ; for xi2½0; a�

yj ¼
b
2

�
1�cos

�
j�1
IM�1

p
�	

ðj¼1; 2; :::; IMÞ; for yj2½0; b�

(18)

Here IN and IM equal the number of nodes in the x- and the
y-directions, respectively. The results from the three FE meshes
(including the original uniform FE mesh of 25 elements in the
x- and the y- directions) are found to be essentially the same as
should be evident from the plots of Fig. 3. We note that when 33
elements are used in the x- and the y-directions of the shell, the
length of each element in the uniform mesh is 0.0303a whereas
that in the non-uniform mesh is 0.0023a and 0.0475a for the
element adjacent to the edge surface and at the center of the shell,
respectively. The in-plane normal stress sxx at the centroids of the
top and the bottom surfaces of the shell computed using the non-
uniform mesh differs, respectively, by 0.7% and 7.3% from those
obtained using the uniform mesh.
3.3. Cross-ply 90�/0� laminated spherical shell subjected to equal
and opposite uniformly distributed tangential tractions on the two
major surfaces

We discern deformations of a 90�/0� cross-ply spherical shell
with h ¼ 2 cm, a/h ¼ 10, a/b ¼ 2, R/a ¼ 5, values of material pa-
rameters given by Data set 2, clamped at the edge x ¼ 0, the
remaining three edges traction free, and subjected to equal and
opposite uniform tangential tractions of magnitude q0 ¼ 10MPa on
the two major surfaces as illustrated by the inset in Fig. 4(a). We



Fig. 7. For a clamped �45�/45� spherical shell subjected to combined normal and tangential uniform tractions on the top surface, through-the-thickness distributions of (a) sxx, syy

and szz at (0.5a, 0.5b, z) and (b) syzð0:5a; y; zÞ for y/b ¼ 0.93 and 0.75. The transverse stresses are normalized by q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2z

q
and the in-plane stresses by 10q.
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have depicted in Fig. 4(a) the deformed shape of the cross-section
at y ¼ b/2 and in Fig. 4(b) the x- and the z- displacements along
the line y ¼ b/2 on the shell mid-surface with their scales on the
right and the left vertical axes, respectively. The results from the
TSNDT are computed using the uniform FE mesh of 45 and 23 el-
ements in the x- and the y- directions, respectively, (38,904 DoF)
and those from the 3-D LET with 100, 50 and 5 8-node uniform
brick elements per layer in the x-, the y- and the z- directions,
respectively, (total 226,644 DoF). The results from the two theories
have keksup ¼ 1.41% and 1.06% for the x- and the z-displacements,
respectively.

In Fig. 5(a) we have displayed through-the-thickness distribu-
tions of the axial stress, sxx, along transverse normal sections near
and away from the clamped edge. The axial stress computed from
the TSNDT and the 3-D LET agree well with each other having the
Fig. 8. For a �45�/45� spherical shell subjected to combined uniform normal and
tangential tractions on the top surface, through-the-thickness distribution of
sxzð0:055a; 0:5b; zÞ for three different BCs. The stresses are normalized by
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2z

q
.

maximum difference, keksup, of 4% and 3.65% along points (0.055a,
0.5b, z) and (0.5a, 0.5b, z), respectively; these differences occur at z/
h ¼ 0þ. The magnitude of the axial stress on the top surface at
x ¼ 0.055a is about twice that at x ¼ 0.5a. In Fig. 5(b) we have
portrayed through-the-thickness distributions of the TSNDT
transverse shear stress, sxz, computed using the SRS along the
transverse normal in the plane y ¼ b/2 located at 0.055a from the
edges x ¼ 0 and x ¼ a and those obtained by analyzing 3-D de-
formations of the shell. The two sets of results differ at most by 7.2%
and 9.9% along the sections x¼ 0.055a and x¼ 0.945a, respectively.
The transverse shear stress computed on the top surface differs
from the applied tangential traction by at most 5.74% at x ¼ 0.945a
near the traction free edge. However, near the clamped edge,
x ¼ 0.055a, this error is only 0.67%.

In Fig. 6 we have depicted the variation of sxx in the plane y¼ b/
2 along the x- direction of the shell at z¼ ±0.475 h. The results from
the TSNDT and the 3-D LET are in good agreement with each other
differing at most by 6.2% and 5.6% at z ¼ ±0.5 h on the clamped
edge. At the free edge, x¼ a, sxx accurately satisfies the zero normal
traction BC. The axial stress is maximum at the clamped edge, first
rapidly and then linearly decreases with an increase in the distance
from the clamped edge. Results not included herein suggest that
the shell curvature strongly influences magnitudes of the axial
stress induced at the clamped edge in the top and the bottom
layers.

3.4. Angle-ply �45�/45� laminated spherical shell subjected to
combined uniform normal and tangential tractions on the top
surface

We analyze deformations of an angle-ply �45�/45� laminated
spherical shell of the same geometry and material as those
considered in subsection 3.3 but with all edges clamped and
loaded only on the top surface with uniform normal (qz) and
tangential (qx) tractions, each of magnitude 10 MPa. Using the
same FE meshes as those for the problem studied in subsection
3.3, we have displayed in Fig. 7(a) through-the-thickness distri-
butions of the normal stresses ðsxx; syy; szzÞ along the trans-
verse normal passing through the centroid of the mid-surface; the
inset depicts the schematic of the problem studied. The results
from the TSNDT and the LET agree well with each other and the
average difference norm, kek0, equals 5.2%, 4.5% and 1.6% for sxx,



Fig. 9. For a clamped 45�/0�/45� doubly curved shell subjected to a uniform normal tensile traction q0 on its top surface, through-the-thickness distributions of (a)
sxxð0:5a; 0:5b; zÞ and syyð0:5a; 0:5b; zÞ, (b) szzð0:5a; 0:5b; zÞ, and (c) sxz (0.055a, 0.5b, z) and (0.25a, 0.5b, z). Stresses are normalized by q0.

P.H. Shah, R.C. Batra / European Journal of Mechanics A/Solids 63 (2017) 68e83 79
syy and szz, respectively. It can be seen that the transverse normal
stress computed using the SRS accurately captures the “boundary
Fig. 10. For a clamped 45�/0�/45� doubly curved shell subjected to a uniform normal
tensile traction on its top surface, variation of sxxðx; 0:5b; 0:467hÞ and
sxzðx; 0:5b; 0Þ along the length in the x- direction of the shell. Stresses are normal-
ized by q0.
layer” phenomenon near major surfaces of the shell as predicted
by the 3-D LET and the prescribed normal traction BC is accurately
satisfied on the top surface of the shell with only 0.11% error at the
centroid. In Fig. 7(b) we have depicted through-the-thickness
distributions of the transverse shear stress, syz, near and away
from the edge y ¼ b along the transverse normal passing through
points (0.5a, 0.93b, 0) and (0.5a, 0.75b, 0). It is found that near the
edge at y ¼ 0.93b, the maximum and the average differences be-
tween results from the two theories are 4.42% and 2.75%,
respectively. These differences diminish to 3.32% and 2.05% at
y ¼ 0.75b. We note that the maximum differences between the
two sets of results occur at z/h ¼ �0.075 and 0 for y/b ¼ 0.93 and
0.75, respectively. The maximum value, 2.8q, of syz at y/b ¼ 0.93,
z/h ¼ 0.225 is significantly more than the maximum value, 1.7q, at
y/b ¼ 0.75, z/h ¼ ± 0.075, where q is the magnitude of the applied
surface traction. Whereas the distribution of syz about z ¼ 0 is
symmetric on the plane y/b ¼ 0.75, it is asymmetric on the plane
y/b ¼ 0.93.

Shells with CCSS and CCFF edges. In Fig. 8 we have depicted
through-the-thickness distribution of the transverse shear stress,
sxz, along the transverse normal passing through the point (0.055a,
0.5b, 0) near the edge x ¼ 0 for the shell with edges y ¼ 0 and b
clamped (C) and edges x ¼ 0 and a either simply supported (S) or
traction free (F); the corresponding results are denoted by labels



Fig. 11. For a cantilever curved beam (a/h ¼ 5) made of two layers of dissimilar isotropic materials and subjected to equal and opposite uniform tangential tractions q0 on the two
major surfaces, (a) variation of sxzðx; 0:5b; 0Þ along the length in the x-direction of the shell, and (b) on the log-log scale sxzðx; 0:5b; 0Þ vs. the normalized distance, x/a, from the
edge x ¼ 0. The stress is normalized by q0.
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CCSS and CCFF in the Figure. The norm, kek0, for results computed
from the TSNDT SRS and the 3-D LET equals 1.58%, 2.45% and 4.74%
for the CCCC, the CCSS and the CCFF shells, respectively. The
transverse shear stress computed using the SRS accurately satisfies
the tangential traction BC on the top surface of the shell having less
than 0.05% error at the point (0.055a, 0.5b, 0.5 h) for the three BCs.
This indicates that, as for laminated plates analyzed by Vel and
Batra (1999) using the Eshelby-Stroh formalism, the stress distri-
bution near an edge depends on the BC specified on that edge. For
the three BCs studied, the maximum value of the transverse shear
stress at a point near the edge x¼ 0 is the largest for the clamped BC
and the smallest for the traction free BC specified on that edge. For
each set of BCs the variation of sxz versus z is asymmetric about
z ¼ 0.

3.5. Angle-ply 45�/0�/45� laminated doubly curved shell subjected
to uniform normal traction on the top surface

We now study deformations of a clamped angle-ply 45�/0�/45�

shell with h ¼ 3 cm, a ¼ b, a/h ¼ 10, R1m ¼ 2a, R2m ¼ 2R1m, values
of material parameters listed in Data set 2, and subjected to a
uniform normal tensile traction, q0 ¼ 10 MPa, only on its top
surface. As mentioned in the Introduction, R1m and R2m are the
principal radii of curvature of the mid-surface of the shell. This
shell geometry is obtained by first drawing two curves of radii
R1t ¼ R1m þ h/2 and R1b ¼ R1m � h/2 with the included angle ¼ a/
R1m. Taking these two curves as segments of two concentric cir-
cles, we revolve them about the horizontal axis in the plane of the
concentric circles and passing through their centre by the
Table 5
The relative change in the stress sxz(x ¼ x0)/sxz(x) as the distance from the clamped ed

x/a x0/x Analytical
(Ma and Wu, 1990)

0.020100 0.036 1.4227
0.010172 0.071 1.3236
0.007130 0.101 1.2747
0.005201 0.139 1.2328
0.003574 0.202 1.1847
0.002658 0.272 1.1481
0.002250 0.321 1.1280
0.001877 0.385 1.1065
0.001537 0.470 1.0834
0.001232 0.586 1.0582
0.000960 0.752 1.0306
angle ¼ b/R2m. In Fig. 9(a) and (b) we have exhibited through-the-
thickness distributions of the in-plane normal stresses and the
transverse normal stress, respectively, along the transverse normal
passing through the centroid of the mid-surface. The TSNDT stress
sxx (syy) differs from the 3-D LET stress by at most 8.14% (4.78%);
this maximum difference occurs at the interface between the
middle and the bottom (top) layers. The transverse normal stress
computed using the SRS differs from the prescribed normal trac-
tion at the centroid of the top surface by only 0.31% and exhibits
boundary layers near the two major surfaces. We note that the 3-D
FE results are obtained with 100, 100 and 5 uniform 8-node brick
elements for each layer in the x-, the y- and the z- directions,
respectively (total 550,854 DoF). In Fig. 9(c) we have exhibited
through-the-thickness distribution of the TSNDT and the LET
transverse shear stress, sxz, along the transverse normal passing
through points (0.055a, 0.5b, 0) and (0.25a, 0.5b, 0). The two sets
of results qualitatively agree very well, and quantitatively differ
from each other at most by 5.33% (3.46%) for x ¼ 0.055a
(x ¼ 0.25a); this maximum difference occurs at the interface be-
tween the middle and the bottom (top) layers.

In Fig. 10 we have exhibited variations of sxz and sxx along the
line parallel to the x- axis in the plane y ¼ b/2 located at z ¼ 0 and
0.467 h, respectively, with their scales shown on the left and the
right vertical axis. The TSNDT captures the boundary layer effect in
sxz as predicted by the 3-D LET near the clamped edges. However,
sxz (sxx) obtained by the SRS (the TSNDT constitutive relation) at
the edge x ¼ 0 differs from that of the LET by 12.1% (3.1%) and at x/
a ¼ 0.1 by 2.9% (2.5%). Near the clamped edge the magnitude of sxz

equals about 16% of sxx.
ge, x, is decreased to x0 ¼ 0.000722a in the singular region with l ¼ 0.106.

TSNDT %Diff. Is point in singularity
dominated region?

2.5171 �76.92 No
1.9192 �44.99 No
1.6238 �27.38 No
1.4283 �15.86 No
1.2660 �6.86 Yes
1.1773 �2.55 Yes
1.1388 �0.95 Yes
1.1040 0.23 Yes
1.0728 0.97 Yes
1.0452 1.23 Yes
1.0209 0.94 Yes



Fig. 12. For a cantilever curved beam (a/h ¼ 7) made of two layers of dissimilar
isotropic materials and subjected to equal and opposite uniform tangential tractions q0
on the two major surfaces, variation of sxzðx; 0:5b; 0Þ along the length in the x-di-
rection of the shell. The stress is normalized by q0.
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3.6. Stress singularity in laminated shells of dissimilar isotropic
materials

In a laminate stresses may be singular at points where the major
surfaces and the layer interfaces intersect the laminate edges. For a
laminated shell made of layers of dissimilar materials the order of
this stress singularity at the apex of the layer interface depends on
the material parameters. Williams (1952) predicted that stresses
near the apex of an isotropic elastic wedge are proportional to r�l,
where r is the distance from the apex and l is the order of the
singularity which depends upon the material parameters and the
wedge angle. For the plane stress/strain deformations of wedges
made of two dissimilar isotropic, homogeneous and linear elastic
materials and perfectly bonded together along a common edge,
Bogy (1971) as well as Ma and Wu (1990) have provided expres-
sions to compute l at the intersection of the layer interface and the
wedge surface with the traction and the displacement BCs,
respectively.
Fig. 13. For a cantilever curved beam (a/h ¼ 5) made of two layers of dissimilar
isotropic materials and subjected to uniform normal tensile traction q0 on the top
surface, variation of sxzðx; 0:5b; 0Þ along the length in the x-direction of the shell.
The stress is normalized by q0.
We consider a shell comprised of two layers of dissimilar
isotropic materials and study plane strain deformations by con-
straining the y-displacement of all shell particles to zero. The elastic
constants of the bottom layer material (Ebottom, nbottom) ¼ (210 GPa,
0.3) and those of the top layer material (Etop, ntop) ¼ (Ebottom/2, 0.3)
for case 1 and equal to (Ebottom/1000, 0.3) for case 2. The analytical
values of the order l of stress singularity near the clamped edge,
x ¼ 0, given in Ma and Wu (1990) are 0.106 and 0.288 for cases 1
and 2, respectively.

We have computed the value of l using the TSNDT coupled with
the SRS for two example problems: (i) equal and opposite uniform
tangential tractions specified on the two major surfaces of the shell
with R/a ¼ 5, h ¼ 20 mm, a/h ¼ 10 and 7 and (ii) uniform normal
tensile traction applied only on the top surface of the shell with R/
a ¼ 5, h ¼ 20 mm and a/h ¼ 5. Since the value of l does not depend
upon geometric variables of the shell and loading conditions on the
major surfaces, l computed for the two problems should be the
same. However, the magnitude of the stress intensity factor at the
edge may depend upon these parameters as pointed out by Qian
and Akisanya (1999). We have not computed the stress intensity
factor.
3.6.1. Equal and opposite uniform tangential tractions, q0, on the
two major surfaces

In Fig. 11(a) we have exhibited for the shell with a/h¼ 5 and for
the two sets of material properties the variation of sxz with the
distance from the point on the clamped edge that is on the
interface between the two adjoining layers; the inset shows the
region between x¼ 0 and 0.02a. We have used the C-G-L grid with
381 elements to obtain a very fine mesh near the shell edges. The
nearest point from the edge at which the TSNDT stress is
computed has x0 ¼ 7.22E-04a. From results plotted in the
Figure one concludes that the singularity dominant region is
bounded by x/a < 0.02 inwhich the stress also exhibits a boundary
layer effect. The analytical solution, l ¼ 0.106, for case 1 of ma-
terial properties implies that the shear stress at two points should
satisfy sxz(x ¼ x1)/sxz(x ¼ x2) ¼ (x1/x2)�0.106 ¼ p. In Table 5 we
have compared at different points values of p found from the
analytical and the TSNDT solutions. These results suggest that if
the point is moved from x¼ 0.0102a to 7.22E-04a, i.e., the distance
is decreased by a factor of z14, the stress should increase by
32.4%. However, the numerical solution predicts the increase in
the stress to be 92%. Thus, the point located at a distance from the
clamped edge as close as 1% of the edge length is not affected by
the singularity. We note that in the singularity region near a crack
tip (i.e., l ¼ 0.5), if the distance between two points is decreased
by a factor of 14, the stress will increase by 274% as compared to
32% in the present problem. As the point is moved further close to
the edge x ¼ 0, we see from Table 5 that in the region x/a < 0.0036
the relative change in the stress predicted from the analytical and
the TSNDT solutions agree well with less than 7% difference. Thus
one may conclude that the singularity dominates in a very small
region (x/a < 0.0036) near the clamped edge. By a similar argu-
ment we find for the set 2 of material properties that the singu-
larity affected region is x/a < 0.0023.

In Fig. 11(b) we have depicted on a log-log scale the variation of
the normalized stress, sxz ¼ sxz=q0, with the normalized distance,
x/a, from the clamped edge for cases 1 and 2 with their scales
shown on the left and the right vertical axes, respectively. Since sxz

has negative sign near the edge for case 2 of material parameters,
the logarithm of its absolute value is computed. A line is fitted
through (log(abs(sxz)), log(x/a)) data points using the least squares
method and the regression coefficient is found to be 0.98 and 0.96
for cases 1 and 2, respectively. The magnitude of the slope of this
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line equals the order of singularity, l, which is found to be 0.103 and
0.285 for cases 1 and 2 differing from their analytical solutions by
2.83% and 1.04%, respectively. We note that Qian and Akisanya
(1999) and Chadegani and Batra (2011), amongst others, have
used this approach to compute the order of stress singularity with
the FEM near an edge. Near the traction free edge, x ¼ a, the
boundary layer phenomenon is observed, however, sxz is not sin-
gular in this boundary layer region since it is identically zero on the
edge.

In order to demonstrate that the order of stress singularity does
not depend upon the geometric parameters, we have depicted in
Fig. 12 for a thinner shell with a/h ¼ 7 the variation of sxz along the
layer interface for the set 1 of material properties. The inset in the
Figure shows results in the vicinity of the clamped edge, x ¼ 0, on a
log-log scale and the regression coefficient of the line fitted using
the least squares method through (log(sxz), log(x/a)) data points is
0.97. The order 0.1 of singularity differs from the analytical value of
0.106 by ~6%.
3.6.2. Uniform normal tensile traction on the top surface
In order to demonstrate that the order of stress singularity does

not depend upon the loading conditions on the major surfaces, we
now study deformations of a shell with a/h ¼ 10 and subjected to a
uniform normal tensile traction, q0, only on the top surface. In
Fig. 13 we have portrayed the variation of sxz at the interface with
the distance from the clamped edge, x ¼ 0, for the set 1 of material
properties; the inset shows a plot of log(sxz) versus log(x/a) in a
neighborhood of the edge with the least squares line having the
regression coefficient of 0.97 fitted through data points. The
computed order 0.113 of singularity differs from the analytical value
0.106 by 6.6%.
4. Conclusions

Static infinitesimal deformations of doubly curved, laminated,
linearly elastic and orthotropic shells have been analyzed by using a
third order shear and normal deformable shell theory (TSNDT) and
the finite element method (FEM). The in-plane stresses are
computed from constitutive relations and the shell theory dis-
placements. The transverse shear and the transverse normal
stresses are computed with a one-step stress recovery scheme
(SRS). It is found that stresses computed from the TSNDT at interior
points (situated at a distance greater than 1% of the span from an
edge) differ by less than 5% from those found by analyzing the 3-D
deformations of the shell. The transverse normal stress computed
from the SRS exhibits the boundary layer effect near the major
surfaces of the shell and satisfies well the normal traction boundary
condition (BC) on the major surfaces with less than 0.5% error. For
simply supported symmetric and anti-symmetric cross-ply shells,
the deflections predicted by the TSNDT differ from the corre-
sponding 3-D linear elasticity theory (LET) solutions by about 9%
(3%) for the span to thickness ratio (a/h) ¼ 5 (10) and the radius of
curvature to span ratio (R/a) ¼ 2. For a three layer symmetric cross-
ply shell with R/a ¼ 1 the deflections computed from the two
theories differ at most by 4% for a/h between 5 and 100. For a four
layer symmetric cross-ply shell with a/h ¼ 10 the deflections pre-
dicted by the TSNDT and the 3-D LET differ by about 7% for R/a ¼ 1
and this difference decreases with an increase in the shell
curvature.

For a three layer symmetric cross-ply simply supported shell
with R/a ¼ 1 and a/h ¼ 10, transverse shear stress, syz, at the edge
y¼ 0 computed using the SRS differs from that predicted by the 3-D
LET by ~10%. However, this difference reduces to ~2% for a thin shell
with a/h ¼ 100. For a two layer anti-symmetric cross-ply cantilever
shell subjected to equal and opposite tangential tractions on the top
and the bottom surfaces, the axial stress, sxx, at the clamped edge
obtained from the two theories differs by ~6%. The transverse shear
stress computed using the SRS in the vicinity of the traction free
(clamped) edge differs from the 3-D LET value at most by 10% (7%)
and it differs from the applied tangential traction by ~ 6% (0.7%).

For a two layer anti-symmetric angle-ply shell with edges y ¼ 0
and b simply-supported and subjected to a combined normal and
tangential tractions, the TSNDT transverse shear stress, sxz, differs,
respectively, from the 3-D LET solution by ~1.6%, 2.5% and 4.7% near
the edge x¼ 0 for clamped, simply supported and traction free edge
x ¼ 0. For a three layer angle-ply clamped shell, the transverse
shear stress at an edge differs by ~12% from the corresponding 3-D
LET solution and this difference decreases to 3% at x ¼ 0.1a.

For a cantilever curved beam made of two layers of dissimilar
isotropic materials, the order of singularity in the stress near the
clamped edge computed from the TSNDT and the SRS differs from
the corresponding analytical solution by less than 7% for the ratio of
Young's moduli of the two materials equalling 2 and 1000. The
singularity is dominant in a very small region (~0.36% of the edge
length) near the edge.
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